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1= INTRODUCTION

All diagnostic methods based on transmitting electro-
magnetic radiation through plasma depend on a degree of
coherence in the probing beam. The early availability
of quasi-coherent microwave sources made possible the
extensive development of interferometry, Faraday rotation
measurements, and turbulence scattering in the cm and mm
wavebands. The coherence requirement is likewise respon-
sible for the failure to extend these techniques to
shorter wavelengths by the use of thermal sources. Indeed,
the need to increase the range of plasmas accessible to
investigation by reducing the probing wavelength could

be met only when lasers became obtainable after 1960.

The appropriate way to describe the propagation of
a beam of coherent radiation is by gaussian optics (Siegman
1971) and a complete account of its interaction with plasma,
including scattering by the electfons, is given in terms

of phase shifts, by refraction theory.

Plasma with magnetic field behaves as a birefringent,
optically active medium, propagation perpendicular to the
field being purely birefringent, propagation parallel to
it, purely optically active. It can be shown (Ramachandran
and Ramaseshan, 1961) that for any direction of propagation
there exist two characteristic waves with different phase
velocities whbse state of polarization remains unchanged
during propagation, and the characteristic polarizations
are orthogonal. A beam propagating in arbitrary direction
can be resolved into two characteristic components, which
will travel at different phase velocities determined by
thes corresponding characteristic refractive indexes, then
recombine to produce an altered polarization and phase
relative to a second beam that traversed the same distance
of empty space. This is the basis of the Faraday rotation
method for measuring magnetic field, and of interferometry
designed to measure plasma electron density. It is also,
though less obviously, the process underlying Thomson
scattering. The present article is devoted to a short

account of these three topics.



2. FARADAY ROTATION

2.(1) Refraction and the Poincare Sphere

Faraday rotation can conveniently be discussed with
reference to the Poincare unit sphere (Ramachandran and
Ramaseshan, 1961; Born and Wolf, 1964), points on whose
surface can be made to correspond to all possible states
of optical polarization in the following way. If the
polarization of light propagating in the +z direction
is specified by its ellipticity x = tan 'b/a , and by
the angle ¥ between the ellipse major axis and the x-
coordinate axis, as shown in Figure 1, then (x,¥) defines

a unique point having Cartesian coordinates (Stokes parameters)

= Ccos 2% cos 2y

X
= cos 2x sin 2y s (1)
s 7 sin 2%
on the surface of the unit sphere. It will

be seen that orthogonal polarizations occupy diametrically
opposite points on the sphere, with plane polarized light
at the equator in the x-y plane, and left and right handed
circularly polarized light at the north (+z) and south (-z)
poles respectively. A line of longitude is the locus of
all ellipses at the angle ¢ , and & line of latitude
that of all ellipses having a fixed shape (X) but all

crientations.

Being orthogonal, the two characteristic waves referred
to in the Introduction define an axis through the sphere's
centre, and it can be shown that evolution of polarization
during propagation can be represented on the Poincare
sphere by a rotation about this axis equal to a phase
difference ¢ = (w/c) L (k - w,), where « is the optical
angular frequency, c the velocity of light, L the g=so-
metric distance of propagation, and B and h,oare the
characteristic refractive indexes. For a homogeneous
medium, if n is unit vector in the direction of this axis
of rotation, and u , also a unit vector, defines the polar-
ization of the incident light, the emergent polarization

will be given by the vector
u' =ucos @ +u'n (1 -cos @) n+ (nxu)sino - wim 2]
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2.(ii) Characteristic Waves for Magnetised Plasma

Assuming the magnetic field B lies in the y-z plane
at an angle § to the direction of radiation propagation (+z),
it can be shown that the characteristic waves are elliptically
polarized with axes along the x and y coordinate axes, as
shown in Figure 2.
De Marco and Segre (1972) introduce the parameter F, where

. 2
: - e Sl cea(3)

- ?

2(1-0%) cos ©
p

allowing cone to write the Appleton-Hartree equation

(Heald and Wharton, 1965) for the characteristic refractive

indexes p as 02
1—}.1:2 = = . -.-(4)
7 £ 0 -
T MV (1F) T 1]

Here Q = w /@ and Q= (w__/w) cose , 4 e and w__ being

n
the electron plasma frequency and the electron gyrofrequency

respectively.
The wave polarisation is (Heald and Wharton, 1965)

E Q2 ~(1-1%) J1+F%) T 1
- x . D + :
tanx = g~ = 1 = = 1 " sw 5 65
Y (1-p°)0Q F
Cn
That this turns out to be pure imaginary means that the

phase difference between the x and y components is mn/2,
and the major axis of the ellipse lies in the x-direction
(Born and Wolf p.29, 1964). The coordinates of the
characteristic polarizations on the Poincare sphere are
then determined by

sin 2x = ¥ e ¥ s 2x = ———1—;—— ; s o 66
N (1+F%) N (1+F2)

and ¥ = wn/2 or 0 .

This has the general meaning that radiation passing
through homogeneous magnetized plasma will alter its
polarization both in ellipticity and in angular attitude
of the plane of polarization. However it can be seen that
if F>>1, the characteristic waves are almost right and left
hand circularly polarized, and then the effect of the

transit on polarization, represented by
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rotation about the z-axis, is to leave the ellipticity
unchanged while rotating the angle of the ellipse. In
particular, radiation initially plane polarized exper-
iences only a rotation of the plane of polarization, and

this is popularly called Faraday rotation.

2.(11ii) Faraday Effect as Rotation of Polarization

For F >> 1 equation (4) above gives the indexes of
refraction of the characteristic waves as
1p? = Q1 ra )7
p S
and the angle V¥/L through which the plane of polarization

y

rotates per unit path length through the plasma becomes

w w Qpa Qc w
_ R ... _ -3 2B B 420U R G
Lp/]-—l Cp/ZL 2 c (“‘l IJ'E) P c 1 ~ Q ] p= p JC"
—-13 2 Cu
= 2.64 x 10 A o B
provided 0 ® << 1, Ais incm, n  in cn® and B in tesla.

Tt was pointed out by R W Wood (1967) that in the
F>>1 approximation the effect of magnetic field on the
dispersion curve, W as a function of v, is merely to shift

its origin by an amount * 3 @ , the Larmour frequency, but

to leave its shape unchanged.ce"

It cannot be taken for granted that the F>>1
condition, necessary for the foregoing simplification,
will inevitably be met. For example, if a CDBF laser
(A = 1.22 mm) is being used to measure Faraday rotation
in a plasma with B = 3 tesla, F is already smaller than
unity when 86 is greater than 80° and an incident plane
polarized wave will emerge with an elliptical component
perpendicular to the incident plane of polarization
which will be confused with the pure angular rotation of

this plane.

To ensure the validity of the plane polarization
approximation, the wavelength must be kept as small as
possible, even though the Faraday rotation angle one
seeks to measure is proportional to A% Suppressing
ellipticity has generally been held to bes more important

than a large rotation angle, however, and the measurement



of small rotations of the plane of polarization has
accordingly been the subject of considerable experimental
ingenuity. Two distinct approaches are in use. One
relies on ratios of amplitudes, the other on phase shifts.

2.(iv) Amplitude Ratio Method: Half Shade Angle

A general description of the amplitude ratio method
has been given by Falconer and Ramsden (1968). After
traversing the plasma, the plane polarized probe beam of
intensity IO is divided into two equal parts by a polar-
ization sensitive beam splitter. Each part meets a
polarizer oriented %e radians away from perpendicular
to the initial polarization, as shown in Figure 3 .

From polarimetry (Heller, 1960) 4e¢ is termed the half-
shade angle.

If the plane of polarization has experienced no
rotation, the signal in each of the two channels will
be % Iosina%e , but a rotation 6 will give rise to
signals I _(8) = 3 Iosina(%e + @9), and the ratio

I+—I sin € sin 26

I++I 1 - cos € cos 26

which is independent of the incident power IO, will have

a value between ¥ 1 . The sensitivity of this arrangement
to small rotations is determined by the slope of the curve
R as a function of 6 near # = 0 , viz.

dR 2 sin e

de 6=0 1 - cos €

One configuration sometimes adopted (Dougal et al, 1964 ;
Brown et al, 1977) 1is to set the analysers at * 45° to

the incident plane of polarization, in which case R
dR

becomes simply sin 286 and 38 00 = Z
A more sensitive configurati;n is one in which e
is made less than 45°. When e is small, the sensitivity
of the ratio R to small changes in rotation becomes
g% . O= 4/e . Figure 4, displaying R as a function of

rotation angle 6 , shows that a choice of 1e smaller than
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the expected value of 8 would be foolish, and that the
best choice of 1e¢ would be about twice the maximum

rotation to be measured.

The minimum rotation 6 that can be measured by this
method is set ultimately by detector noise, but window
birefringence, imperfections in the analysers, and simply
the range of angles at which radiation impinges on the

analysers may all be important limitations.

2.(v) Polarization Modulation Method™

A quite different approach to small angle Faraday
rotation measurement, involving modulating the incident
radiation's polarization angle, was suggested by Kunz and
Dodel (1978). The question of measuring poloidal field
and its radial distribution in tokamak plasma by Faraday
rotation has been extensively discussed (DeMarco and
Segre 1972, Craig 1976, Segre 1978) and was successfully
performed for the first time using this technique in the
TFR plasma by Kunz and the TFR team (1978).

A disc of material transparent at the appropriate
probe wavelength and with a reasonable Verdet constant
is placed within a coil and located so that the plane
polarized probe beam passes through it prior te edcountering
the plasma. For 337 pm radiation from an HCN laser,
ferrite (Frayne 1968, Birch and Jones 1970) has been used,
though a disc of suitable thickness absorbs about 80% of
the incident power. A radio frequency current in the
coil causes the plane of polarization to oscillate with
an angular amplitude o of a few degrees. A detector,
viewing the result through an analyser crossed with the
initial polarization, produces a signal proportional to
Iosing(a sin wt) =~ 1 Ioaa(i—cos 2uwt) for small @ .
Magnetized plasma in the path of ths probe beam induces
an additional rotation 6 , resulting in a detector
signal I sin®(8 + @ sin wt) which is approximately
1 [0°+ 30°(1 - cos 2wt)+ 208 sin et] for small @ and & .
Comparison of this with the plasma-free expression above
shows that the plasma contributes a term at the modulation

frequency w: T = IO2QS sin wt , and this can be
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efficiently extracted from the detector output by the
use of a lock-1in amplifier referred to the radio frequency
oscillator.
Assuming their experimental performance on TFR to

be limited by detector NEP, Kunz et al (1978) expected
a minimum measurable rotation of 0.6 mrad for a modulation
frequency of 100 Hz and a GaAs detector. In practice
they realized a minimum of about 1 mrad and ascribed the
discrepancy to amplifier noise.

2.(vi) Amplitude Independent Polarization Modulation

Though very different from the half-shade angle
technique, the method just described remains amplitude
dependent, and its success depends on the constancy of
the probe beam intensity. Any component of probe beam
vibration at the modulation frequency will be wrongly
attributed’ to plasma Faraday effect. Dodel and Kunz (1978)
have suggested a modification that altogether removes the
dependence on intensity, and converts the measurement to
one of phase shift. The significant step is the replace-
ment of the small amplitude oscillation imposed on the
plane of polarization by a complete rotation through 2T .
This is readily produced by superimposing right hand and
left hand circularly polarized beams having a freguency
difference Aw, The result 1s plane polarized radiation
whose plane of polarization rotates at the frequency +Aw .
Such a beam, viewed through an analyser by a square law
detector, induces a signal component cos A%t . Plasma
Faraday rotation appears as a phase shift resulting in
cos(dwt + 8) . Provided the frequency of rotation Aw
is chosen so that the condition %g g% <m, 06 can be
deduced from the time shift between zero crossings of
the signal with plasma relative to the signal without,

Iim strict anélogy with, and retaining all the advantages
of the procedure introduced by Veron (1974) for interfer-
ometry.

Frequency shifts can be generated by the rotating
grating method used by Veron, or by the detuning of a
pair of optically pumped lasers, as demonstrated by

Wolfe et al (1976).



3 INTERFEROMETRY

3.(i) Magnetic Field Independent Phase Shift

Interferometry is performed in laboratory plasmas
to measure the electron density distribution, and 1is
accordingly concerned with plasma refraction relative
to free space, rather than the difference between
characteristic wave refractive indexes as in Faraday
rotation. Once again the choice of probe wavelength
involves conflicting requirements. An interferometer
measures phase difference Ay = omA"*L(1-p) and the use
of short wavelength means kb will be well approximated
by 1—%Qpa, leading to the simple dependence Oy = rekLne,
Ty being the classical electron radius, Ng the electron
density, and L the path length. But short wavelength
also implies few fringes to measure.

On the other hand, while generating relatively
many fringes, long wavelength entails the danger of
gross refraction by density gradients, culminating in
total opacity as the plasma frequency is approached.

The choice of long wavelength can also invalidate conven-
ient approximations for ¥ . Inspection of the Appleton-
Hartree formula (equation 4) shows however that this can
be avoided even at long wavelength provided the probe
beam can be propagated as an ordinary mode (E ||B)
perpendicular to the magnetic field B, for then

TR T 1~Qpa without approximation. In a tokamak

whereog is nearly toroidal and interferometer beams are
confined to a minor cross-section, these conditions
can readily be met.

Interferometers for studying magnetically confined
plasmas have usually been assembled in the Mach-Zehnder
or the Michelson configuration (Alpher and White,1965
Jahoda and Sawyer 1971). A typical primitive layout
would consist of a pair of beam splitters and a pair of
mirrors as in Figure 5 . The first beam splitter
divides a beam of coherent radiation from a laser into
two channels, one of which passes through the plasma
under investigation acquiring a phase shift p(t) relative

to the other in the process. They then recombine on the

8



second beam splitter and are finally directed onto a
square law detector giving rise to detection current

i e & tos plt) -

Extracting @(t) and hence the time history of the
density from this detector current is complicated by the
unwanted dependence on the amplitude A , which may itself
be varying with time. It is further complicated by
the ambigulty of the cosine function regarding the sign
of i1ts argument, which makes it impossible to distinguish
increasing from decreasing @ , or to determiﬁe when a
change in the sign of o has occurred. Such an instrument
will also be subject to spurious phase shifts due to
vibration-induced variation in the optical path length.
Remedies for the former failing have been sought in
different forms of phase modulation technique, while
vibration compensation arrangements have been invented

to overcome the latter.

3.(ii) Phase Modulation: Zebra Stripe Interferometer

An elegant solution to these problems was demonstrated
by Gibson and Reid (1964) who referred to their phase
modulation technique as "zebra-striping" because of the
appearance of the presentation on an oscilloscope. The
scale of the problem of interpreting raw interference
fringes can be judged from their confused appearance
during a plasma discharge, shown in Figure 6. By contrast
phase shift in units of 1) can be read directly from the
accompanying zebra stripe display. This gives an unambiguous
indication of reversals in the changing optical path length,
is entirely independent of fringe amplitude, and even lends

itself to correction for vibration.

As applied to the three mirror interferometer of
Ashby and Jephcott (1963), the method works by imposing
controlled changes in the optical path length in the arm
of the interferometer which will span the plasma. The
mirror on that arm is caused to oscillate and the wave
form driving the oscillator is shown on an oscilloscope.
The interference fringes generated by the moving mirror

are not themselves displayed, but instead are used to
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modulate the oscilloscope brightness, one bright-up of the
beam corresponding to each fringe maximum. The result

is that the waveform appears discontinuous as though traced
by a line of bright dashes, and because the fringes are
caused by the waveform, the mth fringe always produces its
bright-up at the same value of y-displacement. When the
time base is run very slowly so as to show many cycles of
the waveform on the screen at once, the bright dashes
belonging to the mth fringe coalesce to form a horizontal
stripe. A set of successive fringes thus appears on the
oscilloscope screen as a pattern of horizontal stripes,
whose spacing corresponds to the change in optical path
length, #\ in the Ashby-Jephcott arrangement, needed to

go from one interference maximum to the next. This can

be seen in Figure 6 .

Put quantitatively, the condition for an interference
maximum or oscilloscope bright-up, is that the total optical
path, consisting of the geometrical part L , the driven
oscillation part ﬂo(t) , and the plasma contribution ﬂp(t) ;

be an integer multiple of %A
L + 4 (&) + 4 () =m (F2) .
0 P
Now the oscilloscope displays the oscillation waveform
y = const x 2O(t)

which becomes y = const x [m(3A) - Ep(t) - L ] for the
locus of a fringe or a bright-up stripe. Here L is simply

a constant displacement and may be tuned out and ignored.

Without plasma, the bright-up locus is y = const X [m(3M)],
a set of horizontal straight stripes whose spacing 1is
proportional to 1A . With plasma, the displacement in
the y-direction of each stripe follows faithfully the
plasma's phase development in time, and the stripe spacing
constitutes a calibrated scale against which the displacement
can be measured in units of 3A . The maximum rate of change
of phase that can be followed is one fringe per oscillation

cycle of the mirror.

Sensitivity is determined by the smallest fraction

of a fringe that can be detected. It could be increased
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by the ratio of the wavelengths in a two laser modification
of the system. A short wavelength would generate the
calibration scale, and a long wavelength, traversing the
same arrangement of mirrors, would produce the stripe

whose displacement measures plasma phase shift.

Furthermore, a two wavelength scheme permits spurious
vibration effects to be compensated. The expressions for
the hlstripe and the kestripe have as a common additive
component the vibration-induced change in path length.

The difference between such a pair of stripes is therefore

vibration independent.

3.(1iii) Phase Quadrature Interferometer: Optical

Another scheme that approaches the ambiguity problem
in a different way is the guadrature interferometer, employing
two signals out of phase with each other by 90°. Just as
in the simple instrument the detector signal is S = A cos o ,
in the quadrature device, the two signals are Sl: A cos o ,
and S_= A sin ¢ , whose ratio, SB/S1 = tan ¢ 1is independent
of the amplitude A . Unlike the simple system, therefore,
this one is free from spurious influences such as refraction
induced varying fringe contrast. Versions of the quadrature
interferometer described by Heym (1968) and by Berger and
Lovberg (1970) derived their two signals from separate
portions of the beam aperture and could accordingly have
been subject to misalignment uncertainty. Buchenauer and
Jacobson (1977) avoid this danger by separating polarization

components of the beam to obtain their signal pair.

Figure 7a diagrams the modified Mach-Zehnder arrangement
proposed by Buchenauer and Jacobson. The laser beam is
initially plane polarized, but a quarter wave plate in the
reference arm converts this to circular polarization.
Following the second beam splitter, a Wollaston prism
analyses the circularly polarized reference into two mutually
perpendicular plane polarized parts 90° out of phase, at
the same time as it divides the plane polarized probe beam
into two plane polarized but in-phase components. The
four resulting beams are mixed in reference-plus-probe

pairs on independent detectors, producing the signals
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illustrated in Figure 7b. It can be seen that whenever

one signal crosses its zero line the other is at an extremum,
and in general, the amplitude A = (512+ 522)% can be
measured continuously throughout the plasma discharge, in
contrast to what is possible in a simple interferometer.

Moreover, the sign of %% is at no point uncertain.

Finally it may be remarked that in the conventional
instrument the uncertainty &g in the determination of

the phase shift is itself a function of o , viz
Ap = AS/ A sin o ,

and even diverges when ¢ is an integer multiple of m.

In quadrature, by contraskt, &p . o = AS / A, and is

accordingly the same for all values of phase shift.

3.(4iv) Phase Quadrature: Electrical Method

The quadrature technique is a powerful one and its
extension to all probe beam wavelengths 1s desirable. But
division of a beam of radiation into a pair of beams mutually
orthogonal in phase can be accomplished optically only at
wavelengths at which appropriate birefringent elements
such as A/4 plates and polarizing prisms are readily
available. Universal applicability can be approached
if the quadrature is performed electrically rather than
optically, and this can be done provided an intermediate.
frequency is introduced at which electronics can operate

with comfort.

Baker and Shu-Tso Lee (1979) obtained their intermediate
frequency by Doppler shifting their probe beam frequency
with a translating mirror on the Michelson arrangement on
Doublet IIT . Another more versatile technique is to use
Bragg diffraction by sound waves driven in some
suitably transparent medium to induce a convenient frequency
shift (Jacobson and Call, 1978, Hugenholtz and Meddens 1979)
The probe beam, carrying the plasma-induced phase shift
cos(wt+yp) , is mixed on the detector in the usual way, with
the frequency shifted reference beam cos(w+wB)t to generate
a detector current only one component of which, id“'cos(wBt + o)

is at a frequency low enough to cause the electronics to
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respond. A commercially available quadrature phase comparator
can then be used to divide this current into two channels,

one of which is subject to a n/2 phase shift relative to

the other, before each is mixed with the Bragg cell driver
waveform cos wBt . This yields currents in quadrature

i = A cos @ and i2= A sin ¢ , 1n direct analogy with the

1
optical quadrature signals of the Buchenauer and Jacobson

apparatus.

3.(v) Vibration Compensated Quadrature Interferometer

Gowers and Lamb (1982) have used the principle just
discussed to build a CO2 laser quadrature interferometer
for use in reverse field pinch plasmas, in which the
intermediate frequency is 40 MHz , and incorporating a
subsidiary common path HeNe laser interferometer for

vibration compensation.

The experimental layout is essentially a Michelson
configuration, as shown in Figure 8 . The 5 W 10.6 pm
gaussian laser beam is divided in two by the Ge acousto-
optic modulator (Bragg cell), and the undeviated zero
order traverses the plasma twice before combining with
the first order frequency-shifted reference beam on a

liquid nitrogen cooled 100 MHz bandwidth CdHgTe infrared

detector.

By coaxially aligning the zero and first order HeNe
laser beams diffracted in a dense flint glass Bragg cell
with the two 10.6 HWm beams, and by using optical components
compatible with both visible and IR wavelengths, i.e.
ZnSe for beam splitters and Au-coated mirrors, a second
simultaneously operating interferometer at 0.63 Km wave-
length was formed. Using almost the same optical path
for both visible and COB interferometers allowed vibration
occurring almost anywhere in the interferometer assembly
to be compensated, since the shorter wavelength is relatively
much less sensitive to plasma phase shifts, and much more
sensitive to vibration than the longer wavelength. Figure 9
shows the guadrature waveforms obtained from the 10.6 um
system and also those from the visible, and Figure 10a

shows the total phase change computed from both systems.
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Finally, Figure 10b shows the result of subtracting the
corrected visible phase changeattributed to vibrations,
from the total 10.6 um phase change, leaving the plasma
phase change part alone. This has been converted, in
the Figure, to electron density integrated along the line
of sight.

3.(vi) Phase Comparison Double Interferometer

Double interferometers utilizing an intermediate
frequency but replacing quadrature by a phase comparison
technique have been used on TFR by Veron (1974), Veron
et al (1977), Veron (1979), and on ALCATOR by Wolfe et
at (1976} These systems, shown schematically in Figure 11,
differ principally in the means adopted to generate the

shifted freguency.

Veron utilizes Doppler shift obtained by reflecting
a beam in the subsidiary interferometer from a rotaﬁinq
cylindrical blazed grating. The change in frequency 1is
Aw = k v , and for reflection at nearly 180° at an angle B

0 the radius r of the cylinder (Figure 11a)
Aw = éxﬂ v sin B = 8 ™ A 'r N sin B

where N is revolutions per second . With B = 54°,
A\ = 337 um (HCN laser), r = 6 cm , and N = 5 rev st
(Veron et al 1977) this gives shifts of about 10 kHz .

The two detectors produce signals Sﬁ? cos 4w t and
S ~ cos (Aw t + @) , and the elapsed time At between a
positive slope zero crossing of SR and the nest positive
slope zero crossing of S determines the plasma induced
phase difference through ¢ = At A® , as shown in Figure 12 .
When the phHase difference between 5 and SR passes 27, the
elapsed time reaches a maximum equal to the period om(hw) ™t
of the intermediate frequency oscillation, then drops to
zero and starts again. If one plots elapsed time as a
function of real time during which the excursion of @
exceeds 27 , the display looks like the sketch in Figure 18
Maximum sensitivity of Veron's instrument is limited by

detector noise to about 0.01 fringe .

If plasma conditions are to remaln comparatively
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static during one period of the intermediate frequency,
the latter must satisfy 4w >>,%ﬂ‘§%e 5 As indicated
above, the rotating grating offers typical frequency
shifts of about 10 kHz. To procure the substantially
larger frequencies near 1 MHz needed to measure much
more rapidly changing plasma, Wolfe and his colleagues
at MIT used a pair of 1 metre optically pumped 119 um
methyl alcohol lasers. Controlling their cavity length
difference to better than 1 um by a feedback mechanism,
this group succeeded in stabilizing their difference

frequency to about * 2% .

3.(vii) Multiple Beam Interferometry and Data Interpretation

Multiple beam interferometry such as that performed
by Veron (1979) on TFR, produces a set of line integrals
from which one can recover the two-dimensional distribution
whose projections along the probe bsams are the data. For
an array of parallel beams and a circularly symmetric
density distribution, the required inversion is the Abel
Transform (Bockasten 19671, Bracewell 1965). Distributions
having higher order symmetry or no symmetry at all, such
as the quasi-D shapes predicted for JET, call for more
advanced methods (Sauthoff and von Goeler 1979).

Williamson and Evans (1982) have discussed this
question in terms of conventional matrix inversion. They
consider optimizing the location of the probe beams by
maximizing their individual freedom from redundancy, and
show that an asymmetric arrangement always leads to better
reconstruction accuracy than a regular array. They
introduce smoothing, and deal with its effect on resolution,
channel redundancy, and reconstruction accuracy, and
they argue that smoothing should be increased until the
natural negative statistical correlations between adjacent
picture elements of the two-dimensional source just vanish.
They also demonstrate that source function shape can be
identified rather sensitively with as few as ten channels
provided it conforms to a set which is a member of an already

known family.
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4, THOMSON SCATTERING

4.(i) Scattering by an Electron Gas: Scattering Form Factor

Laser radiation scattered by the free electrons in
the plasma conveys spatially resolved information about
electron and ion temperatures, impurities, magnetic field,
and microturbulence. Thomson scattering has been the
subject of numerous reviews, e.g. Evans and Katzenstein (1969),
DeSilva and Goldenbaum (1970), Evans (1974), Segre (1975),
Sheffield (1975), Evans (1976), Luhmann (1979), and Magyar (1981).
Bernstein (1964) gives a thorough account of the plasma

theory involved.

Every charged particle in the plasma scatters radiation,
but because the scattering cross-section is inversely prop-
ortional to particle mass squared, the contribution from the
ions is negligible except in so far as they influence the
electrons' motion. Radiation scattering by individual
electrons is dipole, and where ¢ is the angle between the
incident radiation electric vector and the direction of the

scattered ray, the differential cross-section is

do 2 _. =2

gn = Fe sin"o .
Integration over solid angle d = 27 sing do results in
o = % mre® = 6.65 x 107°° cm”.

The electric field radiated to a detector by an electron
undergoing acceleration in an incident laser beam is calc-
ulated using the Lienard Wiechert potentials of classical
electromagnetic theory. Calculation of the field's phase
factor using the retarded time and the approximation of
rectilinear motion over very short time periods leads to
the emergence of the differential scattering vector
k = ks - 50, and the Doppler shifted freguency &w = k-Vv ,
where k and kg are the wave vectors of the incident and
the scattered radiation, and v is the instantaneous electron
velocity. The power spectrum of the scattered Poynting
flux is found by taking the Fourier transform of the auto-
correlation of the field at the detector (Wiener-Khinchine

theorem), which results in

T = IOre2 sin®e nas 4 S(k,w) . g o 5
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Here, IO is the incident laser power (watts), n, the
electron density, and 4 the length in plasma over which

scattering occurs.

The factor S(k,w) is given by

1 2 i(w—wo)r R
S(k,w) = m I e <N (k,t) N(k,t+7)> dar

- « wa LB

where V is the scattering volume, and N(k,t) is the Fourier
transform of the point density of the electrons in that

volume,

=

N(u,t) = £ ofu- uj(e)] .
j=1

Note that the integral of S(k,w) over the freguency spectrum

1is
1 <Ink,e) B >

S(k) = — = . eea(9)

The simplest case for which S(k) can be evaluated is
that of Raman-Nath scattering, i.e. scattering by a mono-

chromatic density perturbation represented by
n(r) = ne + fe cos k°r .

The Fourier transform of this is

n(k) = Ee V. , giving
~ 2 2 ool
. Na- V _ _Be
S(k) = —=; e * o ¥

Substituting the above into equation (7) and assuming
scattering in the dipole equatorial plane (sing = 1)
results in

I="I x>0 °24vVa,

where Q , the collection solid angle, has been introduced.
The scattering volume V and the solid angle { are evaluated
from the scattering geometry. Assuming gaussian optics
and scattering taking place at a beam waist, half-width Wo |,
the scattering volume becomes V = m Wo° £ , and the solid
angle Q = %(A/2Wo)2 . The scattering intensity therefore

becomes

~

I =% Tor.” A% 4% 7.2 s w/k T
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which is the well known result given by Brillouin's

theory for scattering on ultrasonic waves.

4.(ii) Thomson Scattering as a Consequence of Refractivity

It was remarked in the Introduction that Thomson
scattering, like interferometry and Faraday rotation, is
an effect of refractivity. As a striking demonstration
that this is so, it will now be shown, following Evans
et al (1982), that the Raman-Nath result derived above
from scattering theory, could equally well be obtained

from considerations of refraction and diffraction alone.

A basic theorem of Fourier optics (Goodman 1968),
stemming from the fact that the propagation of radiation
can be completely described in terms of diffraction
integrals, is that the amplitude distributiocns in focal
planes on either sids of a lens are Fourier transforms
of each other, viz

+e 2W, -
—l-}\—f-(}_{*{, + y'r])
UlE,m & § Ulx,y) e ax dy .

-
Consider a gaussian beam with a beam waist at each focal
plane. Let one waist lie in the plasma where a mono-
chromatic wave or phase grating of the form &p sin(Kx-Qt)

is travelling perpendicular to the optical axis and so
imposes phase shifts on the radiation passing through it.

The form of the phase shift depends on the varying refractive
index, and is the same as that used in discussing the

interferometer, namely Ap = 27 ATIL M o= re A L ﬁe for

plasma. Thus the gaussian beam having undergone refraction
by the phase grating, can be represented by
2.2 o
i Ap sin(Kx-Qt) B if(Kx-Qt)
U(x,y) e _Ho_ o 2 W™ 5 g (ap) e
’ ~ T Wo b L0 ’

where thé phase factor has been expanded into a sum of
Bessel functions. The Fourier transform of this expression
is performed to obtain U(E,n) and the latter is multiplied
by its complex conjugate to produce an intensity. Finally,
under the assumption that phase shift Ap is small, the
Bessel functions are replaced by their small argument

approximations, and the outcome of this whole procedure
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is the following expression for the intensity distribution

of the beam in the front focal plane of the lens:

~u
I(u) = 7E£%——-{e [1 - 1(ap)?]
& “Av®  —(u-3v)? ~(u+dv)?
+ Ap e [e - B ] ces Ot

i) ® (e )®
+ (389)% [e + e ]

¥ e } . wswl(11)

Hepes, Wf is the beam waist in the front focal plane,

u = §/Wf is the front focal plane coordinate normalized
to Wf, and the dimensionless parameter v relating spot
size at the beam waist in the plasma, Wo, to the wave
number K of the phase modulation, v = K Wo , has been

introduced.

The first term above is time-independent and describes
the undeviated but slightly attenuated transmitted beam.
The small attenuation can be understood as the loss to
the main beam of the radiation that appears in the third
of the three main terms above. The latber is prepoctional
to (349)% = 4 r° A% 12 ﬁeg , and can be recognized as the
Thomson scattering of a gaussian beam by a monochromatic
electron density wave. The spatial profile of this besmm,
given by the expression in square brackets multiplying 1it,
consists of two gaussian maxima disposed symmetrically
on either side of the main beam, and centred at u = * v
respectively. The equation u = f v can readily be
shown to be equivalent to the Bragg relation K = 4m A" 'sin %
for small scattering angle 6 . We emphasize again that
this term has appeared spontaneously in a treatment based

exclusively on refraction and diffraction.

4.(iii) Form Factor for a Field Free, Cool, Thermal Plasma

A general expression for the form factor S(k,w) for
a magnetic field free thermal plasma was calculated using
the Nyquist dissipation theorem by Dougherty and Farley (1960),
and using methods of plasma kinetic theory, by Akhiezer
et al(1957), Salpeter (1950), Fejer(9160), and Hagfors (1961).
They showed that in terms of the dielectric susceptibilities
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of the electrons and the ions, Ge and Gi’ respectively,

the form factor can be written

l1-6,]® F_ + z|6_|® F,
— E ... (12)

S(k,w) = =
|1 - 6_ -Gl
a i

where Fe and F. are the Maxwellian velocity distributions
i

of the electrons and the ions. Moreover Ge and Gi are

both proportional to the Fried and Conte (1961) plasma

dispersion function (Figure 14)

t —-X
e dt - 1 &m x e

-X
Wix) = 1 - 2x e

2 X 2 2
0
with G_ = - @®W and G, = - 2 (T_/T.) a°W .
e i e’ i
Here Ze 1s the ion charge, Te and Ti the electron and ion
temperatures, and @ = (kKD)_l is the ratio of the scattering

1

scale length k~~ to the plasma Debye length kD. The variable

x = w/k v , v being the thermal velocity.

The form factor frequency distribution has the general
character illustrated in Figure 15, the wide low intensity
part coming mainly from the first term in equation (12)
and the narrow high intensity central maximum coming
from the second term. These have been called the electron
and ion terms respectively. When the parameter o << 1
the ion term is virtually absent and S(k,w) =~ Fg . When
@ & 1 the susceptibilities no longer vanish and the ion

term dominates the spectrum.

=
o -1
Z(Te/Ti) < a5 B3

1+a® Re[W(x)] .
. min

Provided Bai

the form factor can be approximated by

Q,E

)2 T (%)

S(k,w) = aeFa(aex) + 2( 5

1+

which is the approximation due to Salpeter (1960). 2
2 _ B 2 -2

Here a_®=(m /M) (T,/T.) and Ty gu) = |1+ (e,8)2w )72 e

with x = w/kvi . Figure 16 shows how the spectral

distribution of the ion term varies with the parameter B.

With B small it is almost gaussian with width kvi being
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a measure of ion temperature Ti' If B lies in the range

1 < B < +#3.5 the ion feature has maxima at the ion plasma
frequency * o ; for @ ~ 1, and goes over into ion acoustic

1
waves at frequency k [KTeZ/MJ2 as @ increases.

For more than a decade, experiments using giant
pulse ruby lasers have confirmed the details of the
thermal theory, in particular with respect to the
collective ion feature. Most are summarized in
Sheffield (1975). Recent advances have entailed the
use of pulsed COz lasers e.g. Pasternak and Offenberger
(1977) and Peebles and Herbst (1978). Massig (1978)
even succeeded in measuring the thermal ion spectrum

of a hydrogen arc using a 20 watt CW COz system.

Representative single discharge ion features
measured in the Culham plasma focus with a pulsed ruby
and a gated optical multichannel analyser (OMA) are

shown 1n Figure 17 (Kirk 1982).

4.(iv) Impurities

The theory is readily extended to describe plasmas
containing more than a single ion species, i.e. impurities,

and the form factor for scattering then becomes (Evans 1970)

1- 6. ]% P + | 12— £z.®N.F.
[ | Fg o+ |

S(k,w) = J =t Be ] _J ] ... (13)

-

]1 -G - LG.IE
e J

where now Gj is the susceptibility for ions of type j.

N. is the number of j-type ions, and Fj is thelr velocity
distribution. Modest impurity levels can produce striking
changes in the frequency spectrum, for example that of

a hydrogen plasma contaminated by 5% fully stripped oxygen
will be dominated by the oxygen. Stamatakis (1981) has
used the above expression to calculate spectra for a
hydrogen-deuterium plasma is which the relative abundance
of the two components varies from pure hydrogen to pure
deuterium. The result is shown in Figure 18. Because
the effective charge Z = ZZjeNj/ne appears explicitly,
collective scattering may offer an attractive alternative

to spectroscopy as a means of making a localized measurement
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of this important quantity (Evans and Yeoman 1974, Bretz 1976).
Kasparek et al (1980) and Kasparek and Holzhauer (1981)

have measured ion features in a hydrogen arc with admixtures

of helium, nitrogen, and argon. Their results (Figure 19)

are the first unambiguous experimental confirmation of the

theoretical model just outlined for a multi-constituent plasma.

4.(v) TIon Temperature in Fusion Research Tokamaks

Determination of ion temperatures near the centre
of fusion research plasmas using the conventional charge
exchange neutrals technique will meet difficulties in the
new generation of large tokamaks whose dimensions (typically
< 1 metre minor diameter) will inhibit the escape of neutrals
from the central regions. Collective Thomson scattering
offers an attractive alternative, and pilot experiments
at 10.6 mm on PDX (Taylor and Bretz 1981) and at 385 um
on ALCATOR C (Woskoboinikow et al 1981) are currently beilng
conducted. Detection in both cases exploits the advantages
of heterodyne receivers, including discrimination against
stray radiation at small scattering angle, and the capacity

to extract weak signal from noise.

The theory of heterodyne detection (Cummins and Swinney
1970) shows that when a weak optical field having its
intensity distributed over frequency according to some
function Is(v) and a strong local oscillator at a fixed
unique frequency Vyo 3re superimposed on a sguare law
detector under conditions that meet the requirements of the
van Cittert and Zernike coherence theorem (Born and Wolf, 1964),
the resulting detector current 1 has a power spectrum
Pi(v} proportional to iﬂo’ the detector current due to
the local oscillator alone, and to Is(v"vﬁo)’ the intensity
spectrum of the weak radiation transposed to the beat

freguency V=V .

That this is plausible can be seen by taking the beat
frequency component of the detector current to be proportional
to the square of the sum of the electric fields associated
with the signal and with the local oscillator, i.e.

ey =2 _ - i
i ES+ Eﬂo = IS + Izo + 2v(IS Iﬁo) cos 2m(wv vbo)t .
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The frequency analysing network in turn generates an
output which 1s proportional to the square of the beat

frequency term:

. . 2 .
lout i Iﬂo Is lﬂo Is s

The power spectrum is given by (Cummins and Swinney 1970,
equation 2.19)
. . 2
Pi(v) = e ig + 2m 1o &(v)
o 2ni(v+vﬂo)7

v ig<i > [ le

-0

g;(T)

2ﬂi(v—vﬂo)7
+ e g;(w)*] dr...(14)

In this expression g;{T) is the normalized first order
autocorrelation function of the weak radiation field,

defined by

. <E:(t)E_(t+r)> e n <EX(£)E_(t+1)>
gi(r) = - - €oc .
<E (t)®> h v <i >
S S
e'r] en
since <i(t)> = — <I(t)> = — eqc <E(t)%> .
hv hv

Here, iS is the detector current due to the weak field
alone, E_(t) is its time-dependent electric field, n is
the detector quantum efficiency, and the other symbols:
have their usual meanings. Substituting g;(T) into the
integral term of Pi(vJ and dropping the first part of the
integrand which is at the sum rather than the difference

frequency and is generally physically unobserable for that

reason, yields - :
- en 2mi (v Vﬂo)T . .
i €ocC e <E*(t)E_(t+r)>* dr
Lo— s S
hv
-
en
which = 1, — Is(v—vﬂo) by the Wiener-Khinchine theorem.
hv

The first term in equation (14) represents shot noise,
the second, of which a factor is the Dirac delta function,
is absent except at zero frequency, and the third is the
heterodyne spectrum. The latter can now be seen to be
an exact replica of the optical spectrum, but centred at
a frequency equal to the difference between the weak field
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and the local oscillator frequencies. It is this power

spectrum that one seeks to measure.
Using equation (14), the signal-to-noise ratio s 1in
the detector photocurrent can be written
smal lzo(eﬂ/hV) T ey )

5 = " = =
noise ; . .
e lﬂo + electrenics nolise

The foregoing expression shows that if the local oscillator
is so strong that the first term in the denominator e iﬁo’
the shot noise, dominates other noise contributions, then

s becomes independent of the local oscillator current izo

and is given simply by

5
hv/n
In these circumstances, the detector noise equivalent
power (N.E.P.), that is, the value the signal must take

to make s = 1 , is precisely hvw/n .

The detector current 1 1is either processed by
an electronic spectrum analyser (for details, see Sharp
et al 1980, Appendix) or digitized and processed numerically
(Green et al 1980). In either case an output proportional
te Pi(v), the detector current power spectrum, is generated.
It is this output current that is actually measured, and
it has both signal and noise components. The signal-to-noise
ratio S in this output current is related to that of the

detector current, s , through

s
5 A
T 5 (1 o+ Av T)

g =
where Av is the bandwidth of the detector channel resolution
interval and T is the integration time, or pulse length in
the case of a pulsed laser experiment. Clearly output
signal-to-noise S depends strongly on s only if the latter
is less than one. If s >> 1, S~ &/(1+Av T) and is
consequently independent of input signal-to-noise. Lt is
then determined exclusively by the parameters of the frequency
analysing circuit and the pulse length, and no significant
improvement can be effected by increasing the input signal-

to-noise.
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The value of S5 required to enable ion temperature to
be determined to any desired accuracy has been investigated
by the Lausanne group (Green et al 1980) and by Sharp
et al(1981) . In both studies, Monte Carlo techniques
were used to generate numerical simulations of noisy
spectra, and the best fits between simulated and theoretical
distributions were identified by chi-square testing. It was
concluded that ion temperatures could be measured to an
accuracy of a few 10's of per cent if S & 2 , and if 5 = 10 ,
the accuracy of Ti could approach 10% . Estimates of
impurity contamination were very much less accurate, but
the presence of up to 2% fully stripped oxygen had no
adverse influence on the temperature estimate. Perhaps
the most important conclusion was that the required values
of S could be achieved in the new hot tokamak plasmas
only if laser pulses could be sustained for up to a few

microseconds.

4.(vi) Hot Plasma Electron Temperature: Relativistic
Treatment

Incoherent scattered radiation for which the form factor
is simply the electrons' one dimensional Maxwell velocity
distribution has served for many years as a routine and
reliable means for measuring plasma electron temperature.
While temperatures remained below a few hundred electron
volts only imperceptible errors resulted from ignoring
relativistic effects. But even by 1978 the PLT plasma
temperature had reached 5 keV (Eubank et al 1978), and
much higher temperatures are anticipated in the new gen-
eration of fusion research assemblies now under construction
or being contemplated. Revision of elementary theory to
take relativity into account has been necessary to predict
correctly the scattered radiation frequency distributions

expected in these plasmas.

The relativistic expression for the frequency spectrum
of radiation incoherently scattered by a hot plasma is found
by integrating the contribution from a single electron over
the relativistic Maxwell velocity distribution. For a single

electron, the scattered electric field at a detector remote
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from the plasma can be shown to be
V(1-8%)

E-r———
e(l—BS)au

Ei [B;(l—cose)—(l—ﬁi)(1—85)]

where the electron velocity v = Bc , and Bi’ B, and BE are

components of B in the directions of the incidint beam, the
scattered beam, and the incident beam electric field vector
respectively. The symbol & represents the scattering angle
between the incident and scattered beam directions, and
incident and scattered beams are polarized perpendicular

to the scattering plane. The u in the denominator is the

distance from the electron to the detector.

We define the scattering cross-section per unit solid
angle %% as the rate at which energy reaches the detector
during a finite period of electron acceleration, divided by
the incident Poynting flux EGCE? . Following standard
treatments, e.g. Jackson (1962) p.472, Panofsky and Phillips
(1955) p.302 , Landau and Lifshitz (1975) p.194 , we note
that the energy reaching a detector from an electron under-

going acceleration from retarded time T1: to Tz is

u(Tz)

Talg =——= Ta
s 2 = 2 =2 dt
I g CE U dft 4t = I eocE~u”da aT dt?
t=T1+EiELl £ =T

where t'=t- Eéﬁll is the retarded time, and %%, = 1—BS .
Accordingly

8% o ¥ i (B2 (1 8) - (1-8,)(1-8_)1% (15)

an = Te — [Bgli-cose) - {1-p; )T1-8,0 1 e

(1—BS)

The foregoing expression differs from what one would
calculate using simply the Poynting flux associated with
the field E at the detector, by an extra factor (1-8_) in
the numerator. Pechacek and Trivelpiece (1967) drew
attention to the need to include this factor and subsequently
offered experimental evidence in support of their argument
(Ward et al, 1971; Ward and Pechacek, 1972).

The relativistic Maxwell distribution, normalized
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to unity, is (Watson et al 1960) 2

c
2 243—1
c -2 —(1-B%)
2, 2y7-1 2,=-5/2 3
f(B) = [2ﬁK2(2c /ve)] = (1-8°) e i
e
a

where v_ = (2KTe/m)2 , and Ka( ) is a modified Bessel

function of the second kind, of order 2 (tabulated in,
for example, Abramowitz and Stegun 1965) . It is easy
to verify that the Doppler shift experienced by the
radiaticn can be expressed as

w 1—Bi

5
w, 1—65

1

where W and w, are frequencies of the scattered and
incident radiation respectively, so the scattered radiation

frequency spectrum should be

2 S0 ) -[ dg (o) 5( S ok B
Te s’ T [519] o, T T-B 8 .

A first order approximation to this integral was obtained
by Sheffield (1972), and Matoba et al (1979) have published
a second order formula. By taking a mean wvalue for the
polarization term

(1-cos6) 212 < 4

q = [1- 7= = B (see equation 15
(1-B; ) (1-8_) "E

above)

Zhuralev and Petrov (1979) have succeeded in expressing the
integral in closed analytic form, and Selden (1980) has
reduced this to a result suitable for routine experimental
analysis, viz

—(2c2/v2) B(e,s)
S(e,8) = g [2K2(2c2/v2) Ale,0)17t e

w,
where e = Ei -1
s
i
Ale,8) = (1+e)®[2(1+e)(1-cose) + €° ]2
B(e,8) = [1 + €® {2(1 + e)(i—cose)} _1]% .

Figure 20 shows frequency distributions calculated with
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this expression for plasmas with temperatures up to 50 keV .
They display the characteristic blue shift of the maximum
associated with the forward bias in the radiation pattern

of the relativistic electrons.

Hot plasma incoherent scattering has receilved so much
attention because of its practical importance for measuring
‘electron temperature. = By contrast, the role of relativity
in collective scattering has suffered neglect on the grounds,
presumably, that the small frequency shifts involved correspond
to subrelativistic phase velocities, ignoring the fact that
the electrons actually doing the scattering may be very
relativistic indeed. This is an area that would repay

attention at the present time.
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Fig.1 Vibrational ellipse for electric vector of polarised wave, specifying y and x, from which the Stokes
parameters S, , S, and S; are calculated, defining a point on the Poincaré sphere. H = horizontal,
V = vertical L and R = left and right hand circularly polarised.
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Y

Fig.2 Characteristic waves in magnetised plasma. Radiation propagates in +z direction.
Magnetic field B lies in y—z plane at angle 8 to +z axis.

incidént

(a) (b)

Fig.3 Half shade method for Faraday rotation measurement. Analysers are set Yz¢ radians away from
perpendicular to incident beam polarisation.

(a) no rotation

(b) rotation through small angle 6.
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E=1°

Fig4 Analysis of half shade angle method. I, and I, are intensities transmitted through the two analysers,
set at angle J2€. Angle 0 is rotation undergone by probe beam polarisation.

Beam
Splitter
Plasma
Laser
A Mirror
$(t)
v y €°8 wt + (1)
i« cos ¢(t)
—> i -
Mirror cos wt \
Beam
Splitter

Fig.5 Primitive Mach-Zehnder interferometer. Probe beats with reference on square law detector to
produce current proportional to cosine of phase difference introduced in probe by plasma.
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Fig.6 Raw interferometer output and zebra-stripe display of a similar plasma discharge, from Gibson and Reid (1964)
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Plasma

Wollaston

Prism
Fig.7a Phase quadrature arrangement, after Buchenauer and Jacobson (1977). Retardation plate (%))
circularly polarises reference beam as it enters the Wollaston prism. Probe remains plane polarised. The 15\
plate compensates residual ellipticity of reference beam induced by beam splitter and mirror.

2 r T T
H I-"‘ PN\, M Y I-\’\J’-‘\J""."-‘
.yt / “ i\ /
L4 vy v
X
I ;'\‘
Y5 \ ' P
IS L a4 N had PR AN W ML

MO

~

’ -
VAL S A W

Intensity (arb. units)

0 4 8 12 16 20
Time (ps)

Fig.7b Signals in quadrature produced by the pair of detectors above.
Short dashes are calculated fringe envelope extrema. After Buchenauer

and Jacobson (1977).
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Interferometer Schematic

Fig.8 Vibration compensated quadrature interferometer of Gowers and Lamb (1982).
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Fig.9 Quadrature waveforms cos (gopl +¢,;p) and sin (¢ o1 i) for 10.6um
interferometers. From Gowers and Lamb (1982).
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Fig.10a Total phase change (q: +¢,;p,) in degrees for 10.6 ym and
0.63/10.6 (‘ppl +o, b) for 0. 63;.1111 Gowers and Lamb (1982).
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Fig.10b Phase change due to plasma alone given by the difference between the phase
changes above. The result is converted to line electron density 1, =7 / n, (%) dx.
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Fig.11 Schematic of phase comparison double interferometer. Main
interferometer signal S is compared in phase with reference signal S .
Fig.11a Frequency shifter in the Veron (1974) version is a rotating
cylindrical grating giving shift Aw = (4mf\) v sing.
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Fig.12 Analysis of the phase comparison interferometer signals S ~ cos(Acwt + ) and
Sg ~ cos Awt where Aw is the frequency shift.

Time elapsed between a positive slope zero crossing of Sg and the next positive slope
zero crossing of S is At. The plasma-induced phase shift ¢ = At Aco. After Veron (1979).
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Fig.13 Display from phase comparison interferometer. Lower curve shows actual
phase shift ((t) and upper, the interferometer display. After Magyar (1981).
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Fig.14 The real and imaginary parts of the plasma dispersion function W(x).
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Fig.15 Frequency spectrum of scattered radiation from a thermal plasma.
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Fig.16 Collective scattering ion term illustrating
its dependence on « and temperature ratio T, /T;.
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Each dot represents one channel
=0.18A of the OMA

6 = 8  k parallel to |
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k = 126 x 10% cmi!
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Fig.17 Single discharge ion features measured in the Culham plasma focus with a
pulsed ruby laser and a multi-channel gated optical analyser (OMA).

UPPER: scattering vector k parallel to plasma currentJ . Scattering angle 6 = 8°.
About 30x thermal intensity. Scale is 1 Angstrom unit per division.

LOWER: k perpendicular to J. § = 45°. Intensity approximately thermal.

Scale is 2.4 Angstrom units per division. After Kirk (1982).
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Fig.18 Ion features for plasmas composed of hydrogen plus deuterium. Relative
abundance of two components varies as shown. After Stamatakis (1981).
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Fig.19 Spectra of composite plasmas after Kasparek and Holzhauer (1981).
(a) hydrogen alone,
(c) hydrogen plus nitrogen, (d) hydrogen plus helium.
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Fig.20 Spectrum of radiation incoherently scattered by relativistic plasmas.

After Selden (1982).

CLM-P 675












