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SUMMARY

The effective thermal conductivity kE of an isotropic composite material
is ill-defined unless the geometric arrangement of the phases is suffic-
iently well specified. Nevertheless, Hashin and Shtrikman have obtained
rigorous bounds of practical use provided the component conductivities
are sufficiently close. For a two-component system, these bounds are
the familiar Maxwell formulae. Effective medium theory gives an estimate
of effective conductivity ignoring connectedness; it is the formula of
Bruggeman.  This appears to provide a further bound for characterising
debris beds.

INTRODUCTION

Some of the more commonly used formulae for the effective thermal con-
ductivity of composite materials are referred to in [1] or [2] which
provides a comparison with a range of experimental data from many dif-

ferent sources.  The often implicit assumption of such semi-empirical
formulae is that for a random mixture of materials, there exists an
effective thermal conductivity, independent of the details of the
material arrangement. We believe that this idea is mistaken; the geom-
etric arrangement of the materials is almost always important. However
1imiting upper and lower bounds can be specified which can be quite
close together. In some circumstances "effective medium theory" can
provide a useful estimate. It seems that this approach is relevant to
debris beds with an extended spectrum of particle sizes resulting from
fragmentation. Since convection and radiation are ignored here, the
components of the composite need not be solid; some can be in a (stag-
nant) fluid state.

UPPER AND LOWER BOUNDS

It is well known that the effective conductivity of composite material

must lie between the classical bounds:

<k 2 ko2 k1571 (1)
where <X> denotes the average of X. If the only information available
about the composite is the volume fraction of the phases, then (1) 1is
the best possible result, for each of the two bounds can clearly be
attained; they correspond to the familiar "in-parallel” and "in-series"
arrangement of the material.
If it is also known that the composite is randomly arranged and macro-

scopically isotropic, more restrictive bounds can be obtained. In this



case, Hashin and Shtrikman [3] have shown that
(+ {B/(]-B/3kL)} TR {A/(I—A/3ku)} (2)

where ku and kL are the conductivities of the most and least conductive

phase respectively and
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For the derivation, see the original paper or the c]eér account by
Beran [4], alternatively see [5].

For a two-phase system, a well-known formula (kM1) was obtained by
Maxwell [61, applicable when the perosity e is close to unity. This

can be written

1/(kM]+2k1) = g/(k 1t 2k1) (1 - e)/(k2 - 2k1) (5)
The dual Maxwell formula ( ), appropriate when ¢ is small, is
1/(kM2 + 2k = e/( + 2k ¥ L1 - s)/(k2 + 2k2) (6)

The Hashin-Shtrikman (H-S) bounds for a two-phase system are precisely
these well-known Maxwell formulae applied to the whole range of porosity
0<e <1, Specifically,

kM] < k k
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£ M2 if k2 > k] . (7)
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e < Kg < kyp 1 kg > kg (8)

These bounds are closer than the classical bounds and are the best
possible bounds for a two-phase system if no geometric information
other than randomness and isotropy is available, as was shown by Hashin
and Shtrikman using a simple constructive algorithm. This exemplifies
the general principle stressed by Beran [4] and Ziman [7] that the
macroscopic properties of a composite can be extremely sensitive to the
geometry and topology of the boundary surfaces between the phases. A
measure of the usefulness of these bounds is their separation. If Akc
and Akm denote the difference between the classical bounds and between
the H-S bounds, evaluated at e = %, then for

ky = 2k, sk = 0.166(kq-ky) ak

= 9k

0.026(kq-k,)

5 0.400(k;-k,) 0.199(k;-k,)

[t follows that for k]/k2 < 2 the classical bounds are adequate for
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practical purposes, and the H-S bounds similarly for k1/k2 < 10 (and
correspondingly for k1 > kz).

EFFECTIVE MEDIUM THEORY

When some of the constituent thermal conductivities differ by more than
an order of magnitude, the H-S bounds are sufficiently far apart for a
better estimate of kE to be required. This is only possible if addit-

ional geometric information is used.
If kC is the conductivity of the continuous phase, then in general,

ke = ko - 1 e (ke = ki) Ay (9)
where € and ki are the volume fraction and conductivity of the ith
particulate phase and Ai is the ratio of the mean temperature gradient
in the ith phase to the mean overall temperature gradient.
We seek a formula appropriate for a debris bed which has a wide spectrum
of particle sizes, such as the log-normal distribution predicted by
Kolmogorov [8] in 1941 for fragmented debris. For such a size distrib-
ution we argue that 11 can be usefully approximated by considering
single spheres of particulate in a uniform medium with smeared conduc-
tivity kE. This leads to

Ay o= 3kp/(2kp + k) (10)

One would expect this approximation to be better for a wide spectrum of
particle sizes than for roughly equally sized particles: for in the
former case a particle of any scale other than the smallest will be in
contact with many others and will perceive a much more uniform immediate
environment.

Equations (9) and (10) can be combined to give

1>
kE+ng - kc+§kE + ] E;:%EE = (1%
which has the same structure as the 'in-series' classical formula, but
with each k augmented by an effective medium contribution (cf.eqs.(5)&
(6). This formula is equivalent to the theory of Bruggeman [9] which
implies an additional approximation of the form (10) for the continuous
phase. Thus all phases are treated equally and the connectedness of
the continuous phase ignored. This is plausibly so in a debris bed
with a broad spectrum of particle sizes, because the filling of the
necks with smaller particles drastically reduces the significance of
the connectedness. Below we denote the Bruggeman estimate by kB‘ It
roughly bisects the region between the HS bounds. For real debris beds



the difference in thermal resistance between necks in the continuous
phase and particle contacts introduces an asymmetry between the phases.
Hence we expect for two components that if kp & kc’ then kB < kE < kM1;
whereas if kp > kc’ then kB > kE > kM]‘

ILLUSTRATIVE CALCULATIONS

We begin with a three-phase example. Consider a bed composed of
U02(k=kc/20) and steel (k=kc/3) particles in a liquid sodium matrix
(k=k.).  For simplicity let the volume fractions be equal 1.e.ei=L%=eC.
Then the classical bounds are 0.46 > kE/kC > 0.17; the H-S bounds are
0.4 > kE/kC > 0.22; the Bruggeman formula gives kB/kC = 0.29. This
formula applies for an unstratified, random isotropic bed with a wide

particle spectrum.

Figures 1 to 4 show some illustrative examples for two-phase systems.
For fig.1, kp/kc=6, illustrative of UO2 and water; for fig.Z,kp/kC=1/7,
illustrative of a UOZ/sta1n1ess steel cermet. In cases such as these
the HS bounds are so close together that it is unlikely that they could
be reliably improved upon. Fig.3 shows the case kp/kc=40, illustrative
of UO2 and sodium vapour; 1in Fig.4, kp/kc=1/20, illustrative of U02 and
Tiquid sodium. Note that the Bruggeman estimate asymptotes at large
and small porosity to the Maxwell formulae, appropriate on physical
grounds.

DISCUSSION

For isotropic media, equation (9) is valid and the differences in the
many formulae in the literature depend on the choice made for Ai.
However, the H-S bounds do apply and any formula which fails to fall
between these bounds must be rejected.

The Kampf and Karsten (KK) formula [10] is widely used in debris bed
studies (e.g.[11]1), and is based on a semi-empirical rectangular
series-parallel model. If the particulate phase is more conductive,
then the KK formula falls outside the HS bounds and so is inappropriate
(see Fig.3). Secondly, when very little porosity is present the KK
formula is erroneous; it tends to the wrong Maxwell bound.(See Fig.4).
For a highly conducting coolant, KK falls slightly below the upper H-5
bound and is quite close for 0.3 < e < 0.7; it should not be used

where it falls below kB.
The Schulz estimate [12] for spherical particles approximates to the
Bruggeman formula for high porosities; 1t always satisfies the H-S
bounds and lies on the expected side of kB. It is a more robust formula



than KK.
This paper has been concerned with isotropic media, but the approaches
considered here are capable of generalisation to allow for anisotropy,

such as channelled beds.
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Key to figures:
k, : Classical upper bound, eq.(1).
k;, : Classical lower bound, eq.(2).
kyy © Maxwell formula, eq.(5). H_8 bounds
Kyp ¢ Dual Maxwell formula, eq.(6).
k; : Bruggeman formula, Eq.(11).
kxg : Kampf-Karsten formula, ref.[10].
kg : Effective thermal conductivity.
klJ : Thermal conductivity of particles.
k, : Thermal conductivity of continuous phase.
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Pnrosxty Volume fraction of continuous phase.












