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1. INTRODUCTION

In this report we describe an electronic averaging device suitable for the measurement
of the mean value of a fluctuating signal and of its mean deviation. Such a signal might
represent, for instance, the random velocity of a turbulent fluid, or the electric field

fluctuations in a high current gas discharge.

The device consists basically of two diode rectifiers followed by long time constant
integrators; the outputs of the diodes represent the positive and negative-going parts of
the signal, with respect to an adjustable zero level. The integrators are simple RC cir-
cuits enclosed in feedback loops which simultaneously make the effective time constant very
long and provide a means of measuring the voltage on the capacitor, from which we obtain
estimates of the time averages of the positive and negative going parts of the signal.

Using the theory developed in section 2 we can then estimate the mean level of the signal
with respect to the adjusted zero level, and the r.m.s. deviation from the mean. In
principle, we need to know the probability distribution of the signal, but the theory shows
that the results are not very sensitive to the details of the distribution, which can

usually be assumed to be Gaussian without serious error.

The theory is developed in two stages. First we assume that the time averaging is
carried out over an infinite time, and that the random signal is stationary in time. The
values of the averages are then related only to the probability distribution and the charac-
teristics of the rectifier. Next we estimate the errors introduced by averaging for a

finite time, and using the results as estimates of the infinite-time averages.

A common requirement in the study of random signals is to measure the correlation
coefficient between two such signals., To obtain this we require the average of the product
of the signals. Since the sum and difference of two signals can be obtained electronically
more easily than the product, it is convenient to use the 'quarter-square' method: if x(t)

and y(t) are the two random signals, then

Xy =£[<(x+y)3>—<(x-y)2>i| e (101

where brackets < > denote infinite time averages. The correlation coefficient ¢ is then
defined by
Xy
= wi s (a2
@ %—;y )

where

£ 2 !ﬁ e 2 ]ﬁ

x= ()% 3 = (D) ves (T8
and we assume that <x> = <y> =0. In section 3 we discuss the errors in estimates of

¢ derived from finite time averages, and show that these depend on which, if any, of the



four quantitics (x + y)*> , {x - y)® , X,9 are measured simultaneously, The device
which we have constructed contains two measuring channels, and in particular therefore we
discuss the errors when pairs of signals are measured simultaneously, and compare the two
possible distinct pairings of signals, We show that it is in general more efficient to
measure {(x + y)®> with X, and {(x - y)®> with 3, than to measure dx + y)®> with
Ax - ¥)®> , and X with v.

In section 4 we describe in detail the instrument which has been constructed lor the
measurement of fluctuations of electric and magnetic fields in the ZETA discharge (Butt et
al, 1958). In this case, casual inspection shows that the amplitude of the fluctuations
varies with time alter the initiation of the discharge. Accordingly, the theory developed
here is not applicable since the signals are not stationary, The appropriate average is
then that taken over the ensemble of separate discharges at a fixed time in each. We
therefore use an electronic gate to sample the random signal at a fixed time, and integrate
over many discharges. This leads to a proper ensemble average il the gate is open for a
time so short that we obtain only one effectively independent reading per discharge, in the
sense defined by Rusbridge (1962). More commonly, however, we use a longer gate and obtain
several effective readings per discharge to conserve experimental time (since we can then
average over fewer discharges); this is justifiable as long as the gate is still short

compared with the discharge pulse length.

The main requirements on the design of the instrument are (1) the time constant of the
integrator must be very long compared with the interval between discharges (about 30 sec),
(2) since the gate is open typically for only 1075 of the time, any signal (due, e.g. to
thermal noise, ripple at the mains frequency, etc.) entering the integrator when the gate
is shut must be much less than 1072 of the typical signal measured, and (3) the leakage
current must be sufficiently small to produce a negligible change in the integrator output
between pulses. An earlier version of this instrument was referred to by Rusbridge et al

(1961); this version, however, did not satisfy these requirements and could not be used

on ZETA.

Also in section 4 we describe a modification to this instrument to introduce an effec-
tive time delay into one measuring channel, so that delayed correlations or auto-correlations
can be measured. The principle of this device is the following. Consider a typical ran-
dome signal x(t) (Fig.1(a)), and consider also the signal x,(t » tg, it)  defined by

xg (t,ty, 8t) = x (nat + ty)

whzre n 1is such that

(n+1) At > t - ty > nit,



and t, is an arbitrary time. This signal is
shown in Fig.1(b). Since the change from X

(b) to xs; corresponds merely to sampling x at

discrete times, we have clearly

oy = D

- T t-_ (c) where, as before, brackets < > denote infinite

time averages; and if from a second random

S — signal y(t) we obtain y,(t, ty, At) in the
(d) same way we have
Xy = {xyp
ji.e. the correlation coefficients are unaffec-

ted. Moreover, it is clear from the results of

@
—i —

T M time average is unaffected if At is small

Rusbridge (1962) that the accuracy of a finite

Fig. 1 (CLM-P68) enough compared with the characteristic time

The principle of the time-delay system. (a),(d)
Input random signals x(t), y(t) respectively (white
noise filtered to pass a band of frequencies 14-20

of variation of x(t).

ke/sec). (b) The sampled signal x; (t, t5, AD. Now suppose we repeat the process, samp-
(c) The delayed version of (b), x|, (t,ty + 7, At).
(¢) The sampled version of y(t). ling the signal x,(t,ty,4t) and obtaining

the signal X44(t, tg + ©,At) shown in Fig.1(c) and defined by
X11(t, tg + T,0t) = Xa(ng At + to + T, Ly, At)
where n, is such that
(ny + 1) At > t - tg - T > ng 4t .
We see from Fig.1(c) that ﬁhis signal is simply x. delayed by an amount < (provided
T < At). Finally we sample y(t) once, forming yi(t,ty + T, 5t) (Figs.1(d) and 1{e)),
and measure the correlation between x;; and y,; in the normal way. It is then easy to

see that

Cxaalt ,to + 7, 88) ¥y (t,tg + 7 )y = <&xlt - 1)y ()

so that we have generated the delayed correlation that we require.

2, THEORY

In this section we shall use the symbol x(t) to denote a random signal, and x to
denote any instantaneous value that x(t) may take. We assume x(t) to be stationary in
time, and define its probability distribution f(x) by requiring that f(x)dx is the

probability that x(t) takes values lying in the range X to x + dx.

-3 =



The signal x(t) is passed through a detector whose output is assumed to depend only
on the instantaneous value of x(t) and may therefore be denoted by d(x). Then the aver—

age value of this output over all time is given by

0

I d(x) f(x) dx .

]

= o0

In the case of a square law detector, for example, d(x) = x®* and I = o®, the variance

of x(t).

We shall assume that f(x) is symmetrical about the mean value of x, which for later
convenience we shall denote by -Xg » and we shall usually require ]xol « g. We may
write [(x) = ['(|x + x4[) , say ,and it is convenient to change the variable to

X =X+ Xo
so that the expression for I becomes
J{.m
L=| dlx' - xg) £ ([x']) ax’' . vee (201)
-
We shall discuss particularly two forms for d(x):
d(x) = [X, vee (2.2)

which represents an ideal full-wave rectifier, and

d(x) = |x| -% (1 - e"clxl) sis (2.3)

which allows a rather better representation of
the behaviour of a real rectifier. We shall

assume that 1/c is small, or more precisely

1/oc« 1. These functions are shown in Fig.2.
We see I'rom the transformation above that P
the value x = Xg can also be regarded as the (a)

point about which the diodes are biassed to
rectify. In this sense, the value of Xg 418 d
controllable in our apparatus and we shall

treat it as an independent variable.

Consider rirst the ideal rectifier given

by (2.2). Substituting in (2.1) and dropping
_1 L x
the dashes we have X €
i © (b)
E(xO) = 2 xf(x)dx + 2x5/ f(x)dx (2.4) Fig. 2 {CLM-P48)
Xo o (a) The detector function d(x) = | x ’

(b) The detector function d(x) =[x |- é (1- e‘cl X ,)
or for the particular case Xg = 0,



Z(o) = 2

the mean deviation of x. We shall denote

bution given by

fnxf(x) dx,

o

Z(o) simply by Z. Thus for a Gaussian distri-

-
f(x) - —— ex/2°2 wis (Z:8)
o/2x
we obtain the well known result
5 = oJ/Z/% = 0.796 0
(see, e.g. Kendall and Stuart 1958).
Differentiating (2.4) twice with respect to Xo Wwe obtain
d?2(xg,)
—=2 = 21(xp) .o (2.8)
0
and using this we expand ZI(x,) for small x, to obtain
B(x,) = 21 xf(x)dx + ng‘(o) + O(XS) eee (2.7)
When f(x) is Gaussian this becomes
M2 o
I(x,) 20 |= + —%
0 e oV2Tm
x2
= 0.7960 + 0.398 —GQ .. (2.8)

In this case the integrals in 2.4 can be

I(xq) = o’\/_?%

05 |-

X5

Fig. 3 (CLM-P é8)

Mean value of detector output, =, as a function of

the bias level x, for a Gaussian distribution of
the input signal with variance o2=1.

evaluated exactly to give

X0
o/ 2

This function is shown in Fig.3 for o = 1.

2
-X
e /20° + erf vee (2.9)

Xo

The approximate form (2.8) is accurate to
within about 3% for xy/o < 1.

. Now, recalling the brief description of
our averaging device in section 1, we note
that the output is in the form of two quanti-
ties which (assuming as usual

I, and I,

averaging over all time) are given by

Is =f (x - x5) f(x) ax wis (2,10)

Xo

. |

0

and from these results it can easily be seen

(xo - x) f(x) ax

that I, +1Ip

Ts ~ Iy

Z(xo) =

X0=

eee (2.11)



We shall show below that to obtain an accurate measurement of o from (2.8) we require

xg « EQ; in this case the second term in (2.8) is small and we can write approximately

N 2 0.796
E(xo) ~ 0.796 o + 0.398 xg Tx,)
thus 5
2(xp)  0.398 x_
~ - wee {20123
0.796 Z(xg)
iz R Y (1 -1)%
SRR L4 R e Bl L eee (2.13)
0.796 T (I1+1,)

in terms of the actual measured quantities. Thus quite large differences between I, and
I, have very little effect on the derived value of o; for '(I2 - Il),/(I2 + I,) < 1/3
or 0.5<1,/I,<2 the value derived for o is altered by less than 3% by including the
correction term, which may therefore often be neglected since the random errors in the

determination of o will usually be larger than this.

We have investigated the effect of distribution functions other than Gaussian. For
each distribution we obtain an equation analogous to (2.8) representing the first two terms

of the expansion of I (xg)

&o

Bxg) &= ao+ P . eer (2.14)
The coefficients o and B are given in Table 1 for a series of distributions from

exponential to square. We write the distribution function in the form
f(x) = —I' f ('JS)
o 1o

and tabulate the functions fy(u).

Table 1
Distribution fi(u) a B
Exponential J e”'”,’/i 0.707 0.707
75 . "
112
Gaussian L w2 0.796 0.398
vV 2T
; 1 lul
Triangular = (1-1&) . |u] £/F | o0.818 0.409
gu /-é' ‘/-6— ’ l x
3 u?
Parabolic —— (1-=), |ul £,5 0.838 0.335
1
Square —y u| £ /3 0.866 0.289

(f, is understood to vanish outside the ranges specified for u)

This sequence of distribution functions covers a range much more extreme than any
which we might expect to meet in practice, yet the value of o varies by less than 12%

from the value for a Gaussian distribution. In addition, we have measured the value of



a for a series of records of electric field fluctuations obtained from the ZETA discharge,
obtaining a value of 0.792 * 0.007. The absolute value of o is seldom required with
great accuracy, and in any series of measurements of the same quantity the distribution
function isAunlikely to change so much that the variation of a will be significant. The
change of B may be larger, but as we have seen the term containing p must always by a
small correction in an experiment designed to measure o. We do not, therefore, believe
that the dependence on the distribution function is a serious objection to the use of this
method to obtain estimates of o. In the remainder of this report, and where necessary in

experimental work, we use the values appropriate to a Gaussian distribution.

However, we note in passing that an exact expression for o? can be obtained in the

form &

o2 =2 J (Z(xg) = xg)dxg ve. (2.18)

This relation can be verified by substituting the value of Z(xg) from equation (2.4) and
changing the order of integration. Higher moments of f(x) are given by similar rela-
tions. For large Xg, however, equation (2.16) involves the difference of two large quan-
tities which in the limit are equal, and it is therefore not likely to give an accurate
result in practice. An attempt to determine f(xo) itself by the use of equation (2.6)
would encounter similar difficulties.

We shall now quote without detailed derivation the results obtained for the non-ideal
rectifier given by equation (2.3). We obtain an expression for Z(xg,) expanded in powers

of two small parameters x,/o and 1/oc in the form

2
Eﬂfgl = 2 j'ufi(u)du - éE +f4(0) EB + ;ﬁ%g cue 02017)
[o]

where fi(u) is defined by (2.15). For the Gaussian distribution

Z(xo) 1 v
_?—=0.796—E+0'398 §+0_—r05

and o is given by an expression analogous to (2.12).
1 2 2
I(xg) + g 0.398 (xo + Eg)

0.796 2(Xg)

o = - as s (2-]8)

The two measured quantities I, and I, are now given by

(==}

i[(x - xg) m 2 (1 - e‘c"‘""o))] £(x) dx
(o]

Xo
f Exo—x) -(13 (1 - e_C(XO-X}):| f(x) dx

I,

Iz



and while Z(xo) is still given by (2.11), it is no longer exactly correct to write
x0=12—11.

We obtain instead

2¢(0
Xq ® (I3 - I4) (I+%‘—C—)—)
21
2(12—11)(14‘;’[5—6 »
where we have substituted the first approximation for o. However, since xg itself

occurs only in a correction term in equation (2,18) its own correction term can be ignored

and we Tinally obtain

2
I, # I +4 0,398 (I, - T)® + —=
C c
& = - een (2.19)
0.796 Ii + I
We now have to consider the effects of averaging over a finite time. We use the

results obtained from such averages as estimates of the averages over all time. The esti-
mates obtained by averaging over separate non-overlapping periods of time are independent
and randomly distributed, and provided the time period of each average is great enough the
distribution will be normal with mean value approximately equal to the infinite time
average. 'Great enough' here means that the effective number N of" independent readings
in each averaging period, as defined by Rusbridge (1962), must be 2 100 (cf. Kendall and
Stuart 1958). We shall calculate an estimate of the probable error of a single average
considered as an estimate of the infinite time average. We consider first the ideal rec-

tifier for Xg = O, The variance 0% of the output of the detector is given by

= 2
02 =f |:d(x):|2f(x)dx -[ fmd(x)f(x)dx]

[d(x)]? = ([x])? = x®

and since

we see that
0% =o° - 2*? oo (2.20)

For a Gaussian distribution this gives
0 = 0.6050 cee (2021)

The p.e. of the mean of N effectively independent readings is then given by 0.6745 Q/N 3

The ratio of the p.e. to the mean is 0.6745 g/4/N where

e=%:0.757 eo (2432)
so that for N = 100 the p.e. is about 5%.
The corresponding result for small x, is derived in Appendix I. It can be written
in the form
2
*o
e=egy (1+7 = ) oie (2o28)



where for a Gaussian distribution ¥ = 0,635, and &g = 0.757 is the value of e given
by (2.22) for xg = 0. Recalling that x5 =15 - Iy, £ =1, + I, we find that (e - g,)
is less than 10% of e, as long as

I
0.43 < /Iy < 2.3 e (2224)

This condition is easy to satisfy.

For the detector defined by equation (2.3) we shall consider only the case X5 = 0.

The result, also derived in Appendix I, is

2Y
E:so(] +E§E§) vos (2:25)

where ¥ is the same quantity that appears in (2.23). Thus (e - g5) is less than 10% to

€, @as long as
%c > J20Y = 3.6

or if I, ~I,, as long as
"I, > 1.8 % 5 e.. (2.26)

Again this should be very easy to satisfy.

Finally, we summarize the limitations on the values of I, and I, which have been
derived above:
(1) The correction term in equation (2.13) is less than 3% as long as
0.5 % Iu/ls $2 &
(2) For I, = I, the corresponding correction term in equation (2.19) is less than 3%

as long as
3
Is > =

/2

(3) The error estimate given by (2.23) increases by less than 10% as long as

2.1
=l

O l=

0.43 < e/, 2.5 .

(4) For I, = I, the error estimate increases by less than 10% as long as

.8
I, > lE— .

3. THE ACCURACY OF MEASUREMENTS OF THE CORRELATION COEFFICIENT

Suppose the random signals to be correlated are denoted by x(t) and y(t), and write

n(t) =x(t) +y(t)

sigs KB )
u(t) =x(t) - y(t) .
We shall assume that x(t) and y(t) have zero mean, and then so also will =(t) and

p(t). As in section 1 we define

- [¢xP(e) > 18 ven (3.2)

3

with similar definitions for ¥y, % ,ﬁ. Then from equations (1.1) and (1.2) the correla-

tion coefficient ¢ between x(t) and y(t) is given by



£3 iAo
9 = il wiip, (B63)

4 Xy
In practice we make estimates of the quantities x,y,= s 4 Dby averaging over a
finite time =<, and Rusbridge (1962) has shown that this is equivalent to making a certain
number n of independent measurements and averaging over these, where n is a function of
T. Let us suppose therefore that we have made n independent measurements of x(t) and
denote these by Xj,i=1...n, The operation of the integrator gives an estimate ;‘n

of X which is approximately equivalent to

AR
Xn—- 2 n xi.
i

It is however, mathematically simpler to discuss first the case of a true square-law detec-

A I:l 21ﬁ
w-[4T 4]
i

and afterwards to give the modifications required for the case of the rectifier which are

tor for which

numerically small in all cases. Now X, 1is not quite an unbiassed estimate of X; it
can be shown that the mean of )"cn » taken over all independent samples of size n, is given

approximately for large n by

a A 1
xn_x(l—zm

but since we deal in all cases with values of n > 100 the correction is negligible, and if

we write

we may assume 6;(“ = 0, while the variance is given by the well-known formula (Kendall and

Stuart 1958)

a2
a2 X
6x.n=§-l:l i vee (3.4)

~Q nZ
F Tn = Hn
n ~ H

4Xn ¥n

and we write 6Fn =F, - ¢. We suppose, as is always the case in practice, that n is
sufficiently large that Bin « ;‘n so that in expressions for &F, and 6F1?1 we may

replace ?cn by 5':, F, by ¢, etc. Then

a2 a2
1 A oA P n - A o AoA
OF, =~ —= | 2 (% &% - 06 4,) - Tt (§ &%, + %63 )
" 4 xy n n Xy n B

- L [_.___" M- B0, Gag . R as(n)]
y 2 :

5>

and



Gr> = e H [ﬂ GRES - 235 By Bhnd + B° < ,1;>]

‘o [5,2 C62> 42 35<0ky 5> + X7 <a§n>]

o | yr {o%y Omy> - 30 8% Biin > + x7<8yn &%n)

% G0, 8D ] ] : e (5.6)
Within our approximation {8F,> =0, i.e. F, is an unbiassed estimate of ¢.

The details of the evaluation of equation (3.6) are given in Appendix II. Here we
simply quote the results. We distinguish four cases differing practically in the method
of sampling and mathematically in the selection of 'cross-terms' to be retained and evalu-
ated in equation (3.5).

Case 1: The quantities ;‘n ,Srn , etc. are obtained from independent samples of n measure-

ments., Then all the cross-terms disappear and we obtain

a2 AD
s =3 (Eog) - rene]. e (520

The minimum value is given by X =y and is

5]

COFRy =1 (1 +2¢%) . ... (3.8)

Case 2(a):The quantities ;‘n and S'(n are obtained from averages over the same period of

time and are therefore in general correlated. ;cn and ﬁn are similarly paired. Then
2 _1 2,2
(Fpy =4 (1+97)" . s g GO0

Case 2(b): Now we measure X and ;‘n simultaneously, followed by the other pair §n and

sFS =l f d X 5‘fi\+1- x i) (1 2) ' (3.10)
<n>"2n2r§+§¢2) y % prl=e ) e

When y = x this reduces to

ﬁn . Then

CoFE> =1, e (3.11)

By minimising <8Fn> Wwith respect to %/y for each value of @ we can in principle improve

on (3.11), but the absolute minimum value of <6Fﬁ> , attained for

I%>

=1.21 (or ¢ =~ = 0.83) is
VE

i
3’y

S
I
al-
L<:I><>

2 26 1
<5Fn> =37 "1 . cen (34612)

so the improvement is negligible.

- 11 =



We can also evaluate the limits within which ;c/fr must lie if <6Fﬁ> is not to exceed
the value given by equation (3.11) by more than 10%; for =0 or * 1 they are

0.74 < x/y < 1.36 cee (3.13)

Case 3: All four quantities Xp, ¥n, %y, fin, are measured from averages over the same
period of time and are correlated, so that all the cross terms must be retained in equation

(3.6). This gives the result usually quoted (Kendall and Stuart 1958)
1
<5Fﬁ> = (1= ¢%)°% . vee (3.14)

With only two measurement channels on our device we are restricted to the first three cases,
and it is clear that in general Case 2(b) represents the most efficient arrangement provided
that the ratio X/¥ is sufficiently under our control to be kept within certain limits
which depend on ¢ . For example, with our arrangement §/§ can be kept within limits

0.89 < ﬁ/fr < 1.12 by suitably choosing attenuator settings, and if we choose, for example,
X/y = 1.12 then Case 2(b) is more efficient for all ¢ outside the range 0.05 > ¢ > - 0.1,
Even within this range, although case 2(a) is theoretically more efficient, the difference
is negligible and it is preferable to use the arrangement of case 2(b), because the signals
n(t) and p(t) can be measured on the same channel, so that the effect of any systematic

differences between the channels is minimised.

The case of the full-wave rectifier is also considered in Appendix II. In general
the results cannot be given analytically, but approximate forms valid for ¢ < 0.6 can be

given for cases 1 and 2(a):

Case 1: (oF> = (& - 2) 1—11 (1 + 2¢%) _ wos (3.18)
Case 2(a): s> sok| 223( X B (= 1) +4 (x-2) ¢ + 2 ¢ (3.16)
ase 2(a): <F">"§E 5 :;}2+;{2 +(n=-1)+4(n=-2) 9% +2¢ veo [3u

Note that replacing = by 3 reduces these to (3.8) and (3.9) respectively, and provided

X/y = 1 the effect is to increase {6F2> by about 14%.

We have evaluated {&F.> for Case 2(b) numerically and find essentially the same
result; over the whole range of ¢, <6Fg> differs from (n-2)/n by less than 3%, for
X/y = 1. The result that the arrangement of case 2(b) is in general more efficient there—

fore still holds.

- 12 =



4., CONSTRUCTION AND OPERATION OF THE APPARATUS

There are two basic systems in the apparatus, the signal system and the control system.
Block diagrams of these systems are shown in Figs.8 and 9 respectively, Most of the blocks
represent conventional or straightforward circuits which do not need individual description,
but the long-period integrator (l.p.i.) itself and the time delay unit must be described in

some detail before we discuss the functioning of the two systems.

(a) The Long-period Integrator

The circuit diagram is shown in Fig.4. The signal to be measured charges the capaci-

tor Cl through the diode V4, so that only the negative going part of the signal is effective.

V3 va V5 Ve

vi
Cv40id cv753 cv432 §Cva024

cv40I1a

+ 300 VOLTS

22M 180K
1-8M | -+
= 1 — ~| outPuT
- TO METER
Qj B 18K - 100K
10k 1 Rl =
33K $I0M
3-30p | ouTPUT TO
220K K = 220K 560 =m0 3220K CHART RECORDER
2.5k 100
3 SET ZERO
RVI 1
5K -
BALANCE 22K i
220K
- 300VOLTS
¢l c05
1L
L1
=13 S|
READ/SET ZERO ifp
(tig.9)
Fig. 4 (CLM-P 68)

Circuit diagram of the long-period integrator.

The integrating capacitor Cl is enclosed in a feedback loop formed by V5 and V6; the grid
of the electrometer valve V5 is a virtual earth and the voltage across the diode remains

constant as the charge on the capacitor increases. This loop also provides means of

measuring the capacitor voltage.



There are two important design criteria. The device is required to integrate signals
gated for short periods occurring as rarely as once in half a minute over a period of up to
30 minutes, so that the leakage time constant of the capacitor must be several hours. The
gate periods may be as short as 50 psec, but are more usually set at 500 psec, and for our
applications we required that the capacitor should be fully charged by an input sinusoidal
signal of 10 volts peak-to-peak applied over a total time of 5 millisec, i.e. 10 pulses of

500 psec, or 100 of 50 psec.

It is desirable for convenience that the diode should have a linear characteristic,
although as ﬁe showed for a specific case in section 2 small departures from linearity can
be tolerated and corrected for if necessary by approximating the characteristic by some
simple analytic form. It is more important that the diode have a high reverse resistance

and low leakage.

The electrometer valve V5 is a CV432 for which the reverse grid current is about 10-12
amps, and Cl1 is a polystyrene capacitor of high leakage resistance. With these components
the principal source of leakage was in fact the diode reverse current, but this could be
balanced out by adjusting the cathode potential of V5 by RV1, When the balance is correct
the charge on C1 remains steady within a few percent over several hours. With this correct
setting, however, thé diode characteristic would be similar to that shown in Fig.2(b), with
the linear part effectively biassed about 1 volt positive. We therefore add a pedestal to
the signal during the gate period to cancel out this bias. Besides reducing the leakage
current this arrangement has a further advantage, in that in the long intervals between
pulses small signals due to amplifier noise, ripple at the mains frequency, etc, are com-
pletely excluded from the integrator, i.e. the system of biassed diode and pedestal forms
an additional gate. This is necessary because the ratio of the period for which the gate
is open to that for which it is shut may be as small as 1/50,000, so that a continuous sig-
nal entering the integrator of even a few millivolts would produce an effect comparable to

that of the signal to be measured.

The equipment preceding the integrator is capable of handling signals up to a maximum
size of the order of 10 volts, and if we assume that the input signal is Gaussian, the
r.m.s. level must be less than 4 volts if this maximum size is to be exceeded less than 1%
of the time. Since the cut-off of the diodes occurs over a range of about 1 volt we could
not neglect the curvature of the diode characteristic if we fed the signal straight into
the diode. From the discussion in section 2 we know the form of the corrections, but it

would clearly be more convenient to be able to assume a linear characteristic at least as a



first approximation. We have found it possible to do this by inserting a feed-back ampli-
fier with a gain of 10, so that the signal at the diode now has an r.m.s. level of up to
40 volts. The values V1 -V3 form this amplifier; V3 is a cathode follower which also

drives the integrator.

The frequency response of the amplifier was deliberately limited to about 1 Mc/sec.
At higher frequencies we encounter two limitations on the rate at which the integrating
capacitor can be charged: .
(1) The charging rate is limited by the rate at which the cathode potential of V3
can change, which in turn depends on the stray capacity and the value of Ri (cf.

the situation in counting rate meters, Millman and Taub, 1950).

(2) It is also limited by the stray capacity of the anode of the diode which takes
a finite time to discharge into C1 through R1. As a consequence the diode may
cut-off prematurely if the cathode potential rises too fast. Both these effects
can be reduced and the frequency response increased by reducing the charging
resistor R1, but when this is done the overall characteristic tends to become
less linear. Since we intended to use the instrument chiefly for the investiga-
tion of phenomena in the frequency range 10 - 100 kc/sec the limit of 1 Mc/sec is
quité adequate. The overall frequency response curve is shown in Fig.5. We

shall show below how this frequency response can be improved.
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Fig.5 Overall frequency response.  (CLM-P¢8)
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(b) The Time-delay Unit

This unit realises the method of obtaining a time-delay described in section 1 by
generating the signals shown in Fig.1. At time t = O the first input, representing the
signal x(t), is sampled and its amplitude stored as a voltage on a capacitor. After a
variable time delay =, the second input and the stored version of the first input are
sampled. The process is repetitive with frequency 1/6t where we require At > 7. The

outputs from the second sampling are the signals to be correlated.

Fig.6 shows the arrangement of the system and Fig.7 illustrates the timing and gating
wavefoﬁns. The time delay between the gating pulses A and B can be adjusted from zero
to about 60% of At by adjustment of the Schmitt trigger voltagé V. When each gate is
open the signals charge the capacitors C to the signal voltage through an emitter follower
with output impedance less than 100Q . The capacitor voltage is sensed by a second emitter
follower with input impedance greater than 1 MQ. The time constant of the capacitor with
the gate shut is about 50 millisec, and this determines the maximum storage time. The gate
pulse is 1 psec long. The repetition time At is variable from about 5 psec to about

250 psec., which covers the range of maximum delays required for our experiments.

The sawtooth sweep is just over 2 volts peak-to-peak amplitude, and the Schmitt dis-
criminators are adjustable from -1V to +1V. The emitter followers, gates and ampli-

fiers are designed to handle signals from -1 to +1V, and the entire unit runs off a +5V
supply.

The time required to charge the storage capacitors, which are 0.01 pF, when the gate
is opened, limits the frequency response of the original unit to about 500 kc/sec. This
could be improved by reducing the size of the storage capacitor. This would of course
reduce the maximum storage time. It would, however, provide a means for increasing the
effective overall frequency response of the integrator system, since the signal after samp-
ling and storing, though now a low frequency signal which can be measured by the integrator,
contains infommation describing the original high frequency signal. The obvious cost is

that not all of the information can be transformed in this way, so that there is a loss of

statistical accuracy.



(c) The Signal System

The signal system (Fig.8) consists
of two channels, identical apart from

the time-delay unit. In each, the
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Fig.8 Block diagram of signal system. (CLM-P48)

Position Qutput 1 Qutput 2
1 x(t) y(t)
P x(t) + y(t) x(t) - y(t)
3 x(t) + y(t) x(t)
4 x(t) - y(t) y(t)

By selecting successively positions | and 2 we realise Case 2(a) of section 3, while Case

2(b} corresponds to positions 3 and 4.

The outputs are further amplified and passed through six-diode gates (Millman and
Taub, 1956, p.445). At this stage the signals are still balanced, but during the open

period of the gates an adjustable pedestal of height about = 0.1V is added to each side
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of the signal, When this pedestal is amplified in the l.p.i. it suffices to cancel the
bias on the diode mentioned above. After the gate each side of each balanced signal is
taken to a l.p.i., so that a pair of 1.p.i's measures the positive and negative going halves
of each sigrial. The outputs of the l,p.i's are recorded on a chart recorder at the end of
a run.

The overall gain in the signal system

can be up to 104 {excluding the amplifiers

TRIGGER /P
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r.m.s. can easily be detected and clearly DELAY
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generator units; the gate generator is a N1
READ/SET ZERO
standard phantastron circuit producing a ("g. 4)
negative going square pulse of height 20V,
whose length can be varied from 35 psec to Fig.9 Block diagram of control system. (CLM-Pé8)

2,8 msec.

The delay unit also operates a fast relay. The output pulse from this relay operates
a uniselector in the 'stopper box', which terminates the measurement after a preselected
number of pulses. When this number is reached further trigger pulses are interrupted, the
uniselector resets itself to zero, and a pulse from the 'stopper box' starts the chart
recorder. This moves on one inch of chart and is successively connected to the outputs of
the four l.p.i's. When this is complete, the final operation of the stopper box is to
reset all the l.p.i's to zero by closing a relay in parallel with the switch 81 (Fig.4).

A measurement is started by a push-button which opens this relay and closes the trigger



control relay. Further push-button controls are provided to stop a measurement before the
preselected number of pulses, either with or without operation of the chart recorder,
(e) Calibration

Calibration is conveniently carried out using a sinusoidal signal of known amplitude,
and measuring the output of the integrators as a function of amplitude for a fixed number
of pulses at fixed gate width. A pulse generator provides a source of trigger pulses at
a rate of about 1 per sec. A typical calibration curve is shown in Fig.10, for 20 pulses

and a gate width of 500 psec.

INTEGRATOR OUTPUT (ARBITRARY UNITS)

INPUT (ARBITRARY UNITS)

Fig. 10 (CLM-P 68)
Overall calibration curve for long period integrator. Sinusoidal input

For absolute calibrations we have to take account of the distribution of the signal as

shown in section 2. For a sinusoidal signal x(t) with amplitude x. this is of the form

8]

1

2 —
7/ X5 x?

f‘(x) =

and is very different from a Gaussian, For this distribution

Xo
%= 2 _/ 2 d 2%
= _ dx = —=
: n,/x"’o - X2 o

Thus for a Gaussian distribution, the value of ¢ giving the same value of I as the sinu-

2
g = TCXO.

The calibration curve is approximately linear over most of the range; for small sig-

soidal signal is

nals however it can be represented by a form such as 2.3, but the constant 1/c can be made
small by adjusting the pedestal height, which has the effect of moving the whole curve

parallel to the absicissa.
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5. CONCLUSION

The apparatus described here has been operated successfully for many experiments on
fluctuations of magnetic and electric fields in the ZETA discharge (Butt et al, 1958). We
have compared it with the only alternative method available to us, that of photographic
recording of the fluctuating signals. In principle this is preferable because it retains
more information per discharge - in general less than half the number of discharges is
required to give accuracy comparable to that obtained with the integrator. In practice
however we have found this advantage to be overwhelmed by the convenience of having the
data presented immediately, in a form which enables at least a preliminary estimate of the
experimental results to be obtained as the experiment proceeds. This allows a degree of
control over the course of the experiment which cannot possibly be obtained with the photo-
graphic method when the results are not known until after the experiment because of the
time required for analysis. We have usually found in this case that either the experiment

is incomplete and must be repeated, or the results contain a large amount of redundant

material.

Since the apparatus was constructed squaring and multiplying circuits have become
available and could in principle be used in conjunction with our integrator to measure
either the r.m.s. level of a signal or the mean product of two signals directly. This
would give a slight improvement in statistical accuracy and remove the possibility of
systematic error which arises if the distributions are not Gaussian. At the same time it
would increase the complexity of the device (note that the diode cannot be eliminated from
the integrator even if the functional non-linear device is elsewhere in the circuit) and
remove a valuable feature of the present apparatus, that it contains a check of the quasi-
d.c. level of a signal which might arise from electrical pick-up even after filtering. If
such a d.c. level should exist, the outputs of the two integrators measuring a given signal

will differ systematically, as shown in section 2. Accordingly we have not attempted to

modify our original scheme.
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APPENDIX T

Expression (2.22) gives the ratio of the p.e. of an estimate of Z to the mean value,

Z, in the form

2
=)
2
e,
@
o

vee (ALL1)

=

where

0]
]
[clle]

We shall call (AI.1) the fractional error in . When o « Z, as in the case of the ideal
rectifier with x4 = o, the same expression gives the fractional error of the estimate of

o derived from the initial value of I. In the general case, the fractional error of o

is given by (AI.1) with
a9 ve. (AL.2)

(we assume of course that N is large and the actual error small).

When x5 # 0, equation (2.20) becomes
2® =0 + x3 - [E(x)]* . ... (AL3)
We now substitute the general expression for B(xo) given by equation (2.14) for small xg,
in (AI.3), and retaining terms of order xg obtain
[2(x) )% = a?c® + 2apxd

02 = o2(1-a2) + x5(1 - 2ap)

whence 7
2
_ _ 42 1 Xo I—ZCLE].
Q'“’—\F a[1+202 1 - a2
Also
dz _ *o
o—dcr‘w_ﬁa
2
S g Xo
dr ~ ao (]+0. 0'2) ¥
e
do
Thus

o35

or, substituting for o in terms of I

5=\E‘a’2-[1+[0,2 ,(_l__zgﬁl + aﬁ}fﬂ] vee (AI.4)

2 1 - a?

which has the form of (2.23) with

—@ ees (AIL.3)

By S

and
2 _ 4.8
yod-dapt2ap ... (ALB)
2(1 - a®)
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inserting the values of a and P for a Gaussian distribution from Table 1 we obtain the
values Y = 0.635 ,e5 = 0,757 quoted in section 2, For the detector defined by equation

(2.3) we have, assuming xg = o,

P e - 32
2 j‘(x e ¥E E )? f(x) dx - 22 .
)

02

The exponential in the first term makes no contribution to order 1/c?, and to this order we

have
QQ=O-2_2_CE+E]5_E2 ...(AI-?)

The appropriate expression for £ is obtained from equation (2.17) with Xg = O :

- 1,28
L= ao =+ 525 5 ... (AI,8)
Thus
1? = g?0® - 259--+ Jg + fﬁﬁ e.. (AI.9)
5] 5] c
and
d¥ 2
03 =00 -7 - ... (AI.10)

Substituting equations (AI.8) and (AI.9) in (AI.7) we find that the term in é vanishes

and we obtain

_ 2 1 = 1- 26@]
0=0/(1 -a )[:l + =y T .
From this and AII.10 we obtain

— 2 2 _ 3
€=—Q“-=Q.‘0‘|:]+Balcg {G' ZB(QL +2l30.]:|

gg 1 -a

% 4o
2y
s=€°<l+ﬁ5>

and ¥ are defined by AI.5 and AI.6.

which reduces to

where (2

Note that these results are largely independent of the detailed form of (2.3) near
X = o; this detailed form would influence only higher order correction terms. The impor-
tant quantity is 1/c, the intercept on the a-axis when the linear part of (2.3) is extra-
polated back to x = o, and any form for d(x) which had the same slope for the linear
portion and the same value for 1/c would be expected to give the same results to the

order that we have calculated.
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APPENDIX II

We have to evaluate averages of the form <&Xp a§n > where

65‘(n = ;‘n - X
and n .
o 1 a2 |2
Xn =| 5 Xj ve. (ATIL1)
1=
;(2 = <X2> .
Define .
8(xp) = X - X ... (AIL.2)
= 2x 8%
for small &%, . Thus .
" oy - 260
LU
and
] I Ll ~ H
8% &n> =773 <B(A) 8(37) > - ... (AIL.3)

Substituting from equations (AII.2) and (AII.1) and remembering that the individual measure-

ments  X; and y; are correlated in general, but x; and y; are independent for i # j,

we can reduce this to the form
' ~ a 1 A2 a2 a2
Gk, 8> = —a (KXY - 5§ . ... (AIL.4)
4n X y
¢x®y®> can be evaluated from results given by Rice (1945), or directly by integrating
over a bivariate normal distribution for x and Yy . The result is
a " 1 A~
{oxp ny = o 9 Xy ... (ATII.5)

It is now a matter of simple algebra to obtain expressions for the other cross-terms appear-

ing in equation (3.6). Thus, for example, defining Pr, 1 as the correlation coefficient

between the sum and difference signals m and p, we have

where e

a
I
N\
%
+
3
A4

and similarly

a2 a2 L ~Z
poo= -2 Xy + Y
and
o = > {(x+y) (x-y)

woxp E

a2 a2

- 2o ¥

Ly
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In just the same way we obtain

aAQ A N ~ ~
@ - + P Xy X+ QY
- L) = Y
e X% ﬂ
i— "
Pux = A
y
_JroeX
(P';w"‘ ,E
% -
Ry = p L il
u
and thus, to take an example,
s A 1 Y A A
(ory Xy = 3 Pnx T X
1 ~ Avz X
=50 (x+ 9y) -

Now substituting these and similar expressions into equation (3.6) we obtain the results

quoted in section 3 by straightforward algebra.

In the case of the full-wave rectifier we have
;cn:\f%-;]l-}il,xil.
The analysis runs parallel to that for the square-law detector in place of equation (AII.4)
we obtain
< 830> =2 ([3 <lavly -%5)
<[:cy[> is evaluated for a bivariate Gaussian distribution by Laning and Battin (1956).

From their result we obtain

Il
Sl=
S
w2
s

o, 5y,

o= [1- ¢ + g sin~! ¢ - 1

and the difference from the square law detector is contained entirely by the replacement of

where

* ¢®> by ¢* in equation (AII.5) and other similar expressions. o* is in fact very

2
close to ¢°/2 for small ¢, the difference being less that 3% for ¢ < 0.6, and reaches
a value of % (rn-2) for ¢ =1, so that, for example,

A

a2 X
<6xn> =i (= 2) 2n °
As we mentioned in section 3, the net effect is to increase the calculated value of <6Fﬁ:>

by a factor of about (m - 2).

i DG









