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ABSTRACT

The physical scaling and cost scaling of a modular stellarator reactor
are described. It is shown that configurations based on 2 = 2 are best
able to support adequate beta, and physical relationships are derived
which enable the geometry and parameters of an ¢ = 2 modular stellarator
to be defined. A cost scaling for the components of the nuclear island
is developed using Starfire (tokamak reactor study) engineering as a
basis. It is shown that for minimum cost the stellarator should be of
small aspect ratio. For a 4000MWth plant, as Starfire, the optimum
configuration is a 15 coil, 3 field period & = 2 device with a major
radius of lém and a plasma minor radius of 2m, and with a conservative
wall loading of 2MW/m2 and an average beta of 3.9%; the estimated cost
per kilowatt (electrical) is marginally, (7%) greater than Starfire.
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L INTRODUCTION

There has been recently a renewal of interest in the stellarator as a
possible fusion reactor configuration, particularly as the engineering
advantages of true steady state operation have been realised (even for the
tokamak) . This paper describes a study of the physics and costs of a fusion
power plant based on the modular coil stellarator confinement system.

The use of stellarator and stellarator type devices in reactor appli-
cations is discussed in a number of publications. Unlike the tokamak, where
there is a large measure of agreement on the most likely design, there is no
concensus in the stellarator field on the best choice of configuration for
a reactor. For modular devices, torsatron [1], stellarator [2-4] and
advanced stellarator [5] concepts have been put forward. Devices with cont-
inuous helical windings such as the torsatron [6] and Heliotron [7] are also
being advocated. In these publications, emphasis is placed either on the
physics of the confinement system or on the engineering of the coil config-
urations, with little weight given to the cost economics. Costing studies
have, in fact, played a major role in guiding tokamak reactor designs towards
modularity, small aspect ratio and steady-state operation [8,9]. We might
expect this to be true also of the stellarator [10].

In the work reported here, we have taken the modular stellarator concept

i I Assessed the relevant confinement physics in order to decide on the
optimum flux surface geometry.

2 Developed a set of physical scaling relationships which enable the para-
meters of a device with a prescribed aspect ratio, wall loading etc. to
be designed.

3. Developed a cost scaling for the major components of the nuclear plant,

using Starfire [11] engineering as a basis. (Starfire, being a design



study for a steady-state tokamak, is particularly useful here as the

engineering used can be applied with reasonable ease to the stellarator).
4. Used the parameter and cost scalings to explore parameter space and

optimise the stellarator for minimum cost.

It will be shown that systems based on £ = 2 with a high transform per
field period and a small external vertical field are best able to support
the beta required for a reactor. The minimum cost device has a small
plasma aspect ratio (v 8), and for a 4000MWth plant, which is the same as
Starfire, the cost, measured per unit generating capacity (l200MWe for
Starfire, 1350MWe for the stellarator which does not require 150MW for
current drive), is within a few percent of Starfire césts. The 'best case'
design is a 15-coil 3-field period & = 2 stellarator with a major radius of
16m and a plasma minor radius of 2m. It has a modest average beta, 35 9%
and a neutron power flux to the first wall of 2MW/m2, which is at the lower
end of the range used in tokamak reactor studies. This configuration is used

as the reference case in the remainder of the paper.

2. PHYSICAL SCALING

The physical basis governing the choice of a modular coil stellarator
configuration for a reactor is discussed. Relationships are derived which
enable the stellarator to be modelled analytically, thus forming the basis

for a cost optimization.

L. The costs we quote are all derived from those given in the Starfire
report(ll). Our estimate as to the cost of the stellarator reactor is,
consequently, only as accurate as the Starfire costing allows. We shall not
discuss the basis for the Starfire calculations in this paper, as we are
primarily concerned with a comparison of stellarator and tokamak costs
rather than the magnitude of those costs.
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2.1 Modular coil configuration

The obvious choice of coils for a stellarator reactor is the twisted
coil system proposed originally by Wobig and Rehker [2 ]. Typical of more
recent studies are those by Anderson et al. [12] and chu et al. [13]. This
configuration can be regarded as the natural way of producing a stellarator
field as it repwoduces, at least gualitatively, the currents which would £low
on a virtual éasing enclosing the desired magnetic fields. Such coils are
capable of producing nearly all of the fields necessary for a reactor, a modest
vertical field system being required in addition for equilibrium near the
limiting beta (see section 2.3).

The main engineering constraint of modularity is easily satisfied with
this type of coil set. Wedge-shaped coils, with space allowed for the coil
thickness, support structure and vacuum dewar, provide a sound basis for an
engineering design. Fig. 1 shows an example of a 15 coil, 3 field-period,

2 = 2 set with a coil aspect ratio of Ac = 3. Although adding in Fourier
harmonics of a square wave modulation, e.g. cos 3(L6 + p¢$) and cos 5(29 + pé),
improves the quality of surfaces, we shall use the following winding law

for wedge-shaped coils

1 - Ryw/R

¢ = I—:—E;7E; §1 cos (L6 + p¢)
(1)
P = 682 cos (L8 + po)

Here, ¢ and p are the modulations in toroidal angle and radius from the minor

axis normalised to the coil mean minor radius rc), and 2 and p are the
numbers of poloidal and toroidal field periods. R is the major radius at a
point on the coil, Ro is the major radius of the minor axis, and Rw is the

innermost major radius which can be reached by the centre of any coil (see



Figure 2). Transform is produced principally by the modulation in ¢. The
modulation in p follows approximately the shape of the outer magnetic surface
of the plasma, with a roughly constant separation from surface to coil. This
term also serves to improve the integrity of magnetic surfaces particularly

near rational values of the rotational transform + (eg, 1/3, 2/5, 1/2 etc).

Figure 2 shows schematically the geometry of a coil, half of a module
being depicted with greatly exaggerated angular width. The R-dependent
factor in (1) arises for the following gecmetric reason: tc is the radius
of the superconducting coil and its wvacuum dewar. The centre of the coil
is thus constrained to lie within an envelope whose apex is at Rw'

Clearly R = tc/sin ¢c e tc/¢c, where ¢c is the half angle of the space
allowed for one complete coil module. ¢C is given by ¢c = ﬂ/Nc, where Nc

is the number of coils in the main (toroidal) coil set. ¢7(R) is the max-

imum permissible modulation of the coil centre at R; ¢g ¢1(RO) = §3.
The scaling factor (l-Rw/R)/(l—Rw/RD) in (1) ensures that the coil reaches

this maximum modulation when the trigonometric factor is unity.

It is possible to build such a coil set only if R, € R, - a. , where
a. = T, (L'+ 8,) is the coil semi-major radius.

Factors governing the production of transform in this type of coil set

are described in the next section.

2.2 Rotational transform

The profile of rotational transform in a large aspect ratio stellarator

with a single % component is given to lowest order by [L4 ]

9
22 -1 0.2 25-4
- ( )_3 p (2)
b

o is a dimensionless parameter of order unity characterising the helical

_2
field strength. p is defined by the ordering assumption p = D EC 73 to be



of order unity, Eé being the inverse aspect ratio of the coil. The radius
is normalized to the coil mean minor radius.

Thus, as is well known, % = 1 gives zero transform, & = 2 gives a flat
transform profile (except where p is large when higher order terms become im-
portant) and £ 2 3 gives zero transform on axis increasing as p2(ﬂ—2)towards
the plasma edge. Clearly as % increases above 2, less and less transform is
produced at lower radii, and‘in a reactor, where the plasma radius is of the
order of half the coil radius, the higher % values are unlikely to produce
adequate transform in the plasma and would support therefore only a low
equilibrium beta. We shall discusg this further in section 2.3.

Small aspect ratio, modular & = 2 coils do produce adequate transform
to support a reasonable beta. This is contrary to the commonly held view
that large aspect ratio with many field periods is necessary for high
transform [15}. For example, field-line following in a modular 2 = 2
system with Ac= 3, p= 3, Nc-= 15 and the maximum allowed modulation within
the constraints of the geometry (Figures 1 and 2) results in the vacuum
surfaces shown in Figure 3. The transform is just less than *o =% on axis,
falling to just above t, = l/é at the edge. Although lowest order analytic
theory predicts a constant 4, we have found that this behaviour of
decreasing 4 with radius is characteristic of small aspect ratio & = 2
systems, and not solely a feature of modular coils.

With a modular coil system of this type, it is difficult to obtain
satisfactory fields containing large amplitudes of more than one £ number.
Introducing a large amplitude modulation of say £ = 3 into 2 = 2 reduces
the allowable modulation on the £ = 2 component, and consequently the trans-
form on axis and beta. Therefore we choose not to consider combinations with
a large amplitude of £ 2 3.

Using results from [14] ( =g (l1) and (16)) it is possible to show
that for & = 2 the rotational transform on any magnetic surface is given by

4 = péz. Here, § is the deformation of the surface, defined by the expression



p~ 1+8(r) cos (28 + p¢) which describes the first order shape of the magnetic
surface. This expression for the vacuum transform is compared in Fig. 4
with values obtained by field-line following in a variety of configurations
(aspect ratios, coil types, etc.). It is seen that the analytic expression
is sufficiently accurate for use in reactor scaling work.

There is an upper limit to the amount of deformation which can be
applied to surfaces before they begin to break open to such an extent that
thevy are no longer suitable for plasma containment. In the remainder of this
paper we take 60 = 0.4 for surfaces near the plasma axis whilst 5r =~ 0,3 at the

plasma edge (corresponding to the fall off in transform towards the edge).(The
subscripts refer to values of guantities on axis and at the plasma edge respect-

ively.) These values of § are found, from field-line following, to be near the

maximum permissible values.

In order to calculate the transform produced in any coil set, it remains
to find an expression for the number of toroidal field periods p. We shall
show below that p can be rélated to the angular width of a modular coil,
which we take to be 2¢O (Fig. 2). Using results established in [14], we can
apply the 'virtual casing principle' to a casing which is circular in lowest
order in an inverse aspect-ratio expansion, representing the coils. The result

is an expression for the currents in the casing (and hence the coils):

R d¢ _b

. = T (3)
Je rcde b¢

34

The leading order terms for the normalized fields b, and b, are, for

o] )
L=2, [14]
23
be = _ﬂ___gc_. sin (28 + pd)
¥ (4)
b = 1
¢



Therefore, as p = p Ec and p = 1 at the coil
L d¢ _ -2 _.
Ec =Tl 5 sin (20 + p¢) (5)

is

26 = c (6)

From [14] we have a = 0.5p? 6OEC, and hence

- 2
o, = 8P €, (7)
Simple geometrical arguments can now be used to relate the angular
width to the number of coils. We see from seetion 2.1 that for wedge shaped
coils, ¢o = Tr/Nc - tc/Ro’ Thus we have the following expression for p
(which we take later to be an integer)
n/Nc - tc/RO

p < (8)
s €2
O C

Given p, we can now use the relation ty = 9602 and 60 = 0.4 to
estimate the transform produced in an % = 2 modular coil set. A

method for determining the number of coils is discussed in section 2.4.

2.3 Beta

In previous work [14,16 ] we have investigated theoretically plasma
equilibrium in stellarator geometries, using an inverse aspect ratio expansion
to find analytic eguilibria to relatively high accuracy. One result for

current-free plasmas was that £ = 2 stellarators are better able to support



high values of beta in equilibrium than % = 3 stellarators of the same
aspect ratio and rotational transform, because of the low value of 4 near
the axis in £ = 3. Within the range of validity of the analysis, no strict

equilibrium limits on beta were found, provided that an appropriate vertical

field Bv was applied to restore the outer flux surfaces. Nevertheless realistic
equilibrium limits on peak beta (set by requiring that the outer flux surfaces
should not be too distorted) calculated for guartic pressure profiles, represent
ative of an o-heated reactor plasma, are BO g 2t02€p for £ = 2 and BO ES %trzep
for 2 = 3. Figure 5 illustrates a computed equilibrium for £ = 2 with a trans-
form of ey 0.48 and a plasma inverse aspect ratio of Ep = 1/8. The peak beta
is BO = 5.8% and the applied vertical field is Bv = 0.04 Bo (BO is the strength
of the main field on the minor axis).

Calculations presented by Lortz and Nuhrenberg [17] based primarily on
equilibrium considerations show smaller values of limiting beta. Reasons why

their calculations lead to an overpessimistic beta limit were given in [14]; the

are:

1. They impose a circular magnetic axis, which implies a substantial
applied vertical field, exactly compensating the axis shift.
This will have a detrimental effect on the magnetic surfaces.
If the axis is allowed to shift from its vacuum position, it also

spirals: it is allowed to do so in our calculation [14].

2. The Mercier expansion which they employ is not of sufficient

accuracy near the separatrix.

MHD instabilities can in principle limit the maximum beta below the equil-
ibrium limit. In a current-free stellarator, the most important modes are those
driven by the plasma pressure. We distinguish two varieties of these, balloonir
modes and modes localised around a rational surface, and show that both should
lead to critical beta values comparable with or greater than the equilibrium

limit described above.



An approximate stability criterion for ballooning modes was given in
[18] as Bcs ch/Lz, where r is the pressure scale length, Rc the mean radius
of curvature and L the connectien length between regions of favourable
curvature. For a tokamak, r = rP (plasma radius), Rc od RO and L = qRo, and
the critical beta is-Bc o Ep/q2 = *ZEP' In a stellarator with a large
helical modulation, the connection length is of the order of a field period
and the field line curvature is dominated by the helical field, as opposed
to toroidicity, and the net result is a critical beta substantially greater
than that for a tokamak [19]. When the helical modulation is relatively
small, the toroidal curvature dominates except in regions close to the top
and bottom of the minor cross-section where the helical field takes over.
In the particular case of an £ = 2, p = 3 stellarator with AP = I/EP =8
and o 0.48 the helical field provides favourable curvature within about
30° in  poloidal angle from the top and bottom of the minor cross-section.
The connection length is then L = %é qRO and consequently the ballooning
stable beta is approximately Bc e 2.2 Ep/qz, which is of the same order as
the limiting peak beta from equilibrium, and so ballooning stability is not
expected to set a lower limit on beta than that imposed by equilibrium considerations

Localized modes which grow in the vicinity of the mode rational surface
have been shown theoretically [20] to be stabilized by shear and by the
presence of a magnetic well. In most stellarators there is a large shear
in the field, and these modes should then be stable according to ideal MHD
theory. Finite resistivity virtually removes the effect of shear in the
stabilization of these instabilities, as shown in [14] where the criteria
given in [21,22] are evaluated for stellarator geometries. It was found
that for low beta £ = 2 equilibria, stability was predicted if p¢ < 11/2.
This inequality is close to the condition for the formation of a magnetic
well. It is satisfied in small aspect ratio & = 2 stellarators where p is
not too large (in section 2.2 it was shown that L= 962; we take § = 0.4

and thus p should be less than 5).



The conclusions arising from this section are:

1. & =2 is a better choice on equilibrium grounds than £ > 3.

2. Sensible equilibria for & = 2 are obtained for Bo 2 2*§Ep'

3. Pressure-driven MHD instabilities should not impose a lower beta

1imit in a small aspect ratio & = 2 stellarator with p € 5.

2.4 Separatrix formation

The separatrix in a stellarator with L-windings is formed when lines of
force orbit poloidally around the windings preventing the formation of closed
surfaces. This is not the case in an & = 2 stellarator with modular coils.
Here the open field lines circulate toroidally around the coils, as in any
diserete-coil solenoid. The helical symmetry of the 2-winding separatrix is
lost in the modular system.

In the modular coil set, the mean coil spacing is 2ﬁR0/Nc. The distance

between the separatrix, radius x and the coil, radius rC r is found in the

sx'
absence of field errors to be a maximum of half the mean coil spacing. This
is shown in Fig. 6, where field-line following results on ( rC - rsx)/RO are
plotted against W/Nc, for a variety of coil systems. We can use this obser-

vation to determine the minimum number of coils. Obviocusly the separatrix

should occur at, or further out than the first wall, mean radius rF. Thus we ha:x

o

> — j——
Loy 2 (e = ) 2 I (9)

c

and hence
ﬂRO
e (l0)
¢ (¥g - xg)

2.5 Coil conductor size

The finite size of the conductors, which we take here for simplicity to

be circular, radius Sc, imposes a major constraint on the geometry of the main

= T8 -



coil set. In effect it reduces the transform available at a given major
radius, as the space occupied by the coils is unavailable for extra coils
or greater coil modulation. Obviocusly in a detailed design for an actual
device, the size and shape of the coil conductors would be the subject of
-an extensive study, beyond the scope of the present work. We shall derive
here a simple formula to calculate the coil conductor radius Sc which is
adequate for the scaling work presented later.

The magnetic field strength at the surface of a conductor is generally
taken to be limited to BC =~ 10-11 T by the strength of materials. Where
the coils are spaced apart, as they are in a modular stellarator (Fig. 1)
the main contribution to the surface field comes from the self-field due to
the conductor current Ic H Bc = uOIc/ZnsC. The current in a coil required
to provide a main field BO at R0 is Ic = 2WR0BO/NCuO, and thus we have a

simple relation for Sc:

8§ = R 2 (11)

We have neglected here the increase in the field on the inboard coil limbs
due to the shared flux. We shall make some allowance for this by taking a
pragmatic value for BC in (1l1) of 10 Tesla. 1In fact (ll) leads to conductor
sizes which are typical of tokamak reactor designs (i.e. in the range

285 =~ 1-1.5m).
c

2.6 Fusion power output

Once the gecmetry and the beta of a fusion device are fixed, the
requirement to produce a given output power determines the main field at
which the device must operate. The fusion power density appropriate to a

reactor plasma can be expressed as [23]:

P = 1.44 g*2 B * Mw.m™3 (1)
v o

where B* is the root-mean-square toroidal beta.
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This relation is evaluated for the maximum reaction rate, at an ion
temperature Ti = 13 kev, and takes 20 MeV per reaction, thereby including

a contribution from breeding in the blanket as well as plasma fusion products.
We shall be interested later in the neutron power produced in the plasma,

and this is given by:

P = f£ffFfP = 0.4B2B% wmw.m 3 (13)
n 123V o O

where £ = 8/1l5 converts B*2 to Bg' for a quartic pressure profile (as used
1

]

in the equilibrium calculations, section 2.3), £ 0.862 allows for depletion

2
of D-T by 14% helium pressure (as Starfire} and f3

0.7 represents the
contribution from 14.1 MeV neutrons. We shall use this expression rather
than one derived from Starfire parameters, as the stellarator can operate at
Ti = 13 keV whereas Starfire needs a higher Ti (hence a lower Pn) to maximise
the effiéiency of the lower hybrid current drive.

The total thermal output power is now

P = n Pn v (14)

where nTH = 1.43 is the breeding ratio (including fusion a-particles) and V

is the volume of reacting plasma. Also,

P = 1 P A (15)

where Pw is the mean neutron power loading on the first wall, and Aw is the
area of the first wall. It is well known from tokamak reactor studies that
the cost of the installed capacity decreases as Pw is raised, and the Starfire
group chose to operate at Pw = 3.6 MW/m?, which is at the upper limit for
known materials. However, there is an advantage to be gained in replacement

lifetime by operating at lower P, We shall discuss these points further for

= TP =



modular stellarators in section 4.

2.7 Transport and Heating

Although there is recent experimental evidence that confinement in
net-current free stellarators is neoclassical [ 24], in this work we take

the empirical INTOR scaling, t. = 5.10 ?!@ F; , to be consistent with the

E

majority of reactor studies. TE is the energy confinement time, 0 the mean

electron density and rP the mean plasma radius. It is simple to estimate

from this scaling the additional heating power required for ignition,

P = k. .V (Watts) (16)

where V is the volume and the factor % allows for the contribution of
a-heating as ignition is approached. ¥ is the mean temperature at ignition
(in eV). Substituting for Tgr We have P, = 103TRO, and with T = 10%eV, we
find PH = lORO (MW) . We shall use this expression in estimating the cost

of heating.

At ignition, the a-power is greater than or equal to the transport losses

(0.86R)% <ov> eQ > 3feT (17)
4 TE

Qa is the a-particle energy, Qa = 3.5 MeV, and <ov> is the reaction rate,
given approximately by <ov> =~ 1.2 10730 12 (n3s7l) for T in the range 8-20 keV.

The factor 0.86 with n on the left-hand side of (17) allows again for a 14%

dilution of D-T by helium ions. We then have, on substituting for TE, a
criterion on nr for ignition

= 2. 22 _

de v 2B 20 =2 (18)

e

which with T = 1o eV is firg > 2.8 1020 =2,

= 13 =



We can use this, with expressions from section 2.6, to estimate the

minimum rP for ignition. Combining (14) and (15) we have P V =P A . For

a circular cross-section we have V/Aw = r/2 (neglecting any boundary layer).

also we have, Erom (13, P = 0.4 B§>B;*(wam3), which with Bo = %-é

(quartic pressure profile) and B = Zﬁeff(Boz/Zuo) gives

i 1
AT r? = 1.85 102" PW!'2 (19)

where Pw is in MW/m?. Combining (18) and (19), and taking T = 10% ev, we

then find:

(20)

Taking typical wall loadings of 2 - 3.6 MW/m2 leads to minimum r in the
range 0.65 - 1.2 m, which, as we shall see later, is quite easy to achieve

in a modular stellarator.

2.8 Boundary control

It is often said that the stellarator possesses a natural divertor,
referring to the ridge with helical symmetry which occurs at the separatrix
in stellarators with f-windings; field lines outside the separatrix orbit
the %-windings forming the divertor. In some modular systems, localized
divertor regions can be found which follow the dominant pitch-angle of the
winding system [25], although we have not found such a pattern in the L =2
coil sets we have analysed. Both of these divertor configurations rely on
the vacuum-field separatrix being inside the first wall, which may be
undesirable as the outer flux surfaces are lost first when beta increases,
leading to a reduction in the useful plasma volume. The presence of a
vacuum-field separatrix is not necessarily an important feature of the £ =

modular systems discussed in this paper.

- 14 -
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A more promising approach to houndary plasma control in such coil sets
is the combination of a 'resonant helical divertor', described for a
tokamak by Karger and Lackner [26], with a pumped limiter. The principle
behind the resonant helical divertor for a tokamak is the creation of a
resonant magnetic island in the boundary plasma by the addition of a helical
winding. Transport across this island structure is enhanced, so that a
pumped limiter inserted into the island would be subject to more uniform
heat and particle loading mainly on the back surface facing the pump. The
coil set in Fig. 1 produces g = 3 at the plasma boundary. The design of a
modular coil system could be readily optimized to produce an island of the
right magnitude to form a useful divertor, without seriously affecting the

transform on axis.

2.9 Forces

The full coil set of a modular stellarator (as envisaged in this work)
consists of a set of main field coils, such as those depicted in Fig. 1,
and a pair of vertical field coils sitting outside the main coil set at the
top and bottom of the machine (see Fig. 8). These latter coils are required
for equilibriumAat the ignition beta. We have made estimates of the main
forces in such a system in order to see whether they are within sensible
engineering limits.

Taking the parameters of an optimum design (section 4; Nc =15, p = 3,
BO = 6.6T, Rb = 15.8m, r_, = 5.5m, Bv = 0.26T), the main forces and their

C

magnitudes are:
L Coil self-expansion force, acting in the minor-radial direction, of
~ 2 - 8 -1 ;
Fp o= 2'n'ROBD /uDNc 2.25 10° N m per unit length.
2. Coil centering force, acting towards the major axis, of approximately

(for a circular coil) Fp = Fl'ﬂik:/Ac =1.4 109 N per coil (Ac = RD/rCJ_

o iy o=



3. Coil toppling force, due to the interaction with Bv' resulting in a

turning moment of T3 =4r 2BV.ZWROBO/L[ONC = 1.1 102 Nm, or a force

c
Fy = 1.108 N acting on the top and bottom of a coil.

4, Coil-to-coil attractive force, arising out of the interaction between
neighbouring coils where their toroidal modulation brings the conductors
relatively close together. Approximating the adjacent sections as
parallel straight conductors, we find a force per unit length

F), = uo(2waB0/uONc}2/2nd =~ 2.4 10% N m~! where we have taken the

separation 4 = 1lm.

The forces Fj, Fy, and F3 are present in tokamaks, but the magnitude of
the toppling force F3 is reduced because of the smaller vertical field. The
coil-to-coil attractive force Fy is of a similar magnitude to F3, and both
should readily be supported by a conductor/casing design which will withstand
F, and Fy. We may note also that the attraction between neighbouring coils
gives rise to a force acting poloidally, but the net force is small when the
contributions from both near neighbours are taken into account.

The potential of the stellarator for true steady-state operation reduces
the number of cycles through which the coils are taken in the life of the
reactor as compared to a pulsed device. Thus materials can be used much

closer to their yield limits without the risk of fracture due to cyclic stresses

3. COST SCALING

In this section the geometry of a stellarator reactor based on Starfire
design concepts [ ll] is described first. Then, the method of calculating
reactor parameters, using results from section 2, is summarized. The costing
scheme for the stellarator power station is then described. This is based
on Starfire cost estimates (in $1980), and as the plant thermal output is

kept the same as Starfire (4000 MW), cost scalings only of the major components
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of the stellarator reactor and its containment building are required, with
the balance of plant (thermal, electrical, services, etc.) remaining

unchanged. Starfire parameters and costs are outlined in Tables 1 and 2.

3.1 Reactor geometry

A schematic representation of the poloidal cross-section through a
modular stellarator based on Starfire design concepts [11] is depicted in
Fig. 7. The shape of the major components is approximated by ellipses,
concentric with the minor axis: this provides a simple means for calculating
volumes etc. which we shall need for the costing scheme. (We use the
terminology, with appropriate suffixes: a - semi-major axis; b - semi-minor
axis; r - mean radius (a+b)/2; e - elongation a/b)

The outer flux surface of the reacting plasma is represented by an
ellipse with an elongation of ep = 1.85. This corresponds approximately
to  the surface given by field-line following for a modular £ = 2 coil set,
Fig. 3. The plasma is surrounded by:
1z Boundary layer for exhaust limiter, O.2m in extent,

2. First wall and blanket, 0.6m thick,

3. A vacuum space for torus and exhaust pumping, 0.7m wide,

4. Neutron shield, 1l.1lm thick,

5. Main coil dewar, total width ©.2m, enclosing

6. Main coil, with conductor radius SC found by parameter optimization

(section 3.2).

Openings in the blanket, for the limiter, and in the shield, for the pumping
ducts, are not shown.

A section through the stellarator in its reactor building is shown in
Fig. 8. The positions of the equilibrium coils are indicated. The dimensions
of the reactor building allow for the complete removal of one coil module

for maintenance.
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The methods of calculating reactor parameters and component costs based

on this representation of the geometry are described in the next two sections.

3.2 Reactor parameters

The parameters of an & = 2 modular stellarator reactor are calculated
as follows: at a given Pw’ A.w is determined from PwAw = PTH/nTH = 2810 MW, (15)
A value is chosen for r , and hence ap and bP for ep = 1.86, and then RO is

; _ 2 2 L 2 5 = "
calculated using A = 47 RO{(a bo y/2}°, where ap = a, 0.2 and

F
b_ = bP + 0.2 allowing for the O.2m boundary regicn between the plasma edge

F
and the first wall. The mean coil radius is found from rC = rP + 2.8 + sc,
assuming a value for sc; this takes into account all of the space used
between the plasma and coil conductor. NC is given by the constraint on the
position of the separatrix, Nc P2 WRO/(rC - rF), (10). p is given by (8),

-<. - 2 =+-'=. - %
P (1r/Nc tc/RO)/SOEc , where t =S, 0.2 50 0.4 and EC r. /RO
We can then calculate beta, as 4 = pé 2 and B_ = 24 2€ . B_ is found using

o o o o P o
_ _ 2k Z a2 .

(13), PTH/nTH = Pn.v 0.4 BO BOV, where V 2m Roapbp is the plasma volume.
B is then estimated from (11), B. = B R /S N , and the above process

c c oo "cc
repeated varying Sc (at fixed Pw' rp) until Bc = 10T (or Sc is a minimum

radius of 0.5m). The reactor parameters for this wall loading and minor radius

are then defined.

3.3 Component costs

We describe the cost scaling of each of the major components of the

reactor in turn, using Starfire engineering and costs as a basis.

3.3.1 First wall and blanket

The Starfire first-wall and blanket design consists of a beryllium-coated
PCA stainless steel first wall, Be or ZrSPb3 multiplier, LiAlO2 (60% enriched)

breeder and a graphite reflector. The structure is PCA stainless steel, and

pressurized water is the cooling medium. The total thickness of the first-wall/

blanket sandwich is 0.6m ( 'outboard' side, the 'inboard' first-wall/blanket beir

w T =



somewhat thinner due to the omission of the graphite reflector and some
breeder material). Maintaining this first-wall/blanket thickness. around
the stellarator plasma, we take the cost CFWB to be proportional to the
volume, Vg, = O.6.4n2R0{h§2 + b§21/2}%. ag = + 0.5 and b; = bp + 0.5
are the average semi-major and minor axes of the first-wall/blanket. The
constant of proportionality, derived from Starfire data is 0.17 $M/m3

(Zr5Pb breeder option) :

3

e = 0.17 vF ($M) (21)

3.3.2 Neutron shield

In the Starfire design, the inner surface of the shield acts as a vacuum
wall for the torus. A plenum, O.7m wide, is provided between the blanket and
shield on the 'outboard' side to give a large pumping conductance for the
exhaust from the pumped limiters. As space is available on the inboard side
of a stellarator, we can extend this vacuum region so that it surrounds the
entire blanket (Fig. 7).

The geometry of a stellarator also allows for a uniform thickness of
shield surrounding the plasma. We can base the cost estimates for the
stellarator therefore on the cheaper outboard shield design for Starfire. This
is constructed of layers of high-flux shield, 5% TiGAl4V + 65% TiH2 + 15% B,C
+ 15% H20, medium-flux shield, 70% Fe-1422 + 15% B4C + 15% HZO and low-flux
shield, 100% Fe-1422. The total thickness is 1.lm. Again we take the cost
C; to be proportional to the volume, v, = l.l.4w2RO{(a52 + bSZJ/2}%,
maintaining the l.lm thickness and with a, = ap + 2.05 and bS = bp + 2.05.
The cost per unit volume, estimated for the Starfire outer shield is 4.74 10~2
$M/m3. To this cost we add a fixed amount, $76.8M, for the pumping duct
shielding as in Starfire:

C, = 76.8 + 4.74 1072 Vg ($M) (22}
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3.3.3 Main coil set

The design of the Starfire toroidal coils uses NbTi and NbBSn super-
conductor materials in a copper stabilizer with. epoxy-fibreglass laminate
insulation material. Each coil is cooled in a liguid-helium bath: we have
allowed for a 0.2m liquid helium dewar around the modular stellarator coil
in the present conceptual design. We take the cost of a coil set CTF to
scale with the current necessary to generate the main field Bo on axis,

I = ZHRDBO/UO, and the length of each coil, L_ = 2ﬂﬂ§§ + bé)/Z}%
(neglecting the ¢ modulation) . The proportionality constant, derived for
the Starfire coils, is egual to 1.55.10 2$M/MA-m, and thus

= =2
CTF = 1.55 10 Ich (3M) (23)

3.3.4 Equilibrium coil set

The modest vertical field required to restore the outer flux surfaces
in the stellarator can be generated by two simple coils placed outside the
main coil set, as shown in Fig. 8. The major radius of the coil conductor

axis R_ is 1.5m outside the envelope of the main coil set, R

= + + t_ + 1
E %5 * B C

E
where tC= Sc + 0.2. The vertical field at a typical Ro from two such coils has
been computed to be Bv = 0.83. uDIE/ZRE, where ].IOIE/2RE is the field at the
centre of a single coil. For equilibrium we require Bv ~ 0.04 Bo (section 2.3)

and thus IE = ZRE. 0.04 BO/O.83 Yo- Again we take the cost C proportional

EF

to IELE' where LE = 2nRE, and with a constant of 1.32 1072 $M/MA-m derived

from the 8 EF coils in the Starfire design:

CEF 1.32 10 IE.2nRE ($M) (24)

The Starfire design also calls for a set of correction field coils with a

faster response than the main equilibrium coils. The cost of these coils is

- 20 -



modest, and we have retained them for the stellarator without scaling.

C = 4 ($M) (25)

The ohmic coils in the Starfire design are not required for the stellarator.

3.3.5 Plasma heating

Lower-hybrid radio-frequency heating was chosen for heating to ignition
and current drive on Starfire. To be consistent with the Starfire study, we
retain this heating method, and its costs, for the stellarator. The power
required to heat the stellarator to ignition on a time-scale much longer
than the energy confinement time was estimated in section 2.7 to be PH = lORO
(MW) , which is consistent with the Starfire heating po&er of 90.4 MW. The
cost per unit power used in the Starfire study (not including power supplies)

is 0.372 $/W, and hence the cost of heating the stellarator to ignition is

C. = 0.372 p (M) (26)

3.3.6 Power supplies

In order to calculate the cost of power supplies, switching and energy
storage appropriate to a stellarator reactor, we take each of the component
systems in turn and scale costs from Starfire figures:

Main (TF) coils - scale the cost with Ich as (23)

- -5
CTFPS = 3.75 10 ICLC ($M) (27)

Equilibrium coils - also scale as IELE (24)

-2
1.03 10 IE.ZHRE ($M) (28)

C
EFPS

Correction field coils - retain unchanged

CCFPS = 9.3 ($M) (29)
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Ohmic coils - not reguired

ECRH start-up - retain unchanged

C = 3 ($M) (30)

Lower hybrid heating - scale with,PH (26)

Cope = 0.126 . PH ($M) (31)

3.3.7 Reactor buildings

The reactor building for the Starfire device consists of two parts, the
reactor hall (50 x 50 x 42.5m high) and a process module room (70 x 50 x 42.5m
high) where large torus components are prepared or rebuilt. All contaminated
or potentially contaminated systems are located within this building. In
order to find the costs of the stellarator reactor building, we consider that
a process module room of similar size would be required, at a pro-rata cost
of $91.48M, and that we can scale the cost of the reactor hall by volume,
-VBLD’ assuming it to be a box as in the Starfire design. The width of the
reactor hall must be enough to accommodate a complete main coil sector
removed from the reactor, Fig. 8. We allow a further 3m space around the
withdrawn module, and thus the distance from the machine axis to the face of
the wall must be RO - 3(a.C + t ) + 3. To.calculate the height, we allow

C

a headroom of 30m above the coil envelope, giving a height of 2(aC + tc}
+ 30. The cost per unit volume of the Starfire reactor hall is 6.17 1074
$M/m3, and thus the total cost of the stellarator reactor building is

- -4
Csny = 9L.48 + 6.17 1077 Vg ($M) (32)

3.4 Cost summary

The cost of the remainder of the stellarator reactor power station plant,

that is apart from the items discussed above, is taken to be identical to

= 99 =



Starfire. This should be a good approximation as we have chosen to cost a
station with the same thermal output peower, PTH = 4000 MW. The total cost
of this 'balance of plant' is $1029.33M, to which we add the scaled costs
of the separated items in order to derive the total direct cost.

The cost accounting scheme used by Starfire then adds 23% to the total
direct cost for the provision of construction facilities, equipment and
services (l0%), engineering and construction management services (8%) and
other costs (5%). To this new subtotal is added a further 13% for inflation
during construction (keeping to the 1980 constant dollar scheme), giving the
total capital cost.

The best comparator of the capital cost of generating plant is the cost
per unit of installed capacity, Cu. This is obtained for the stellarator
power station by dividing the total capital cost by the electrical power
output, which is 1350 MW. This is 150 MW higher than Starfire, where this

amount of power is recirculated to supply the lower hybrid current drive

(not required on a stellarator).

4, RESULTS AND DISCUSSION

The results of calculations of stellarator reactor parameters and costs
are presented. It is shown that the geometry and cost scalings lead to a
design with a relatively small aspect ratio and modest wall loading, and
that such a design, producing slightly more electrical power than Starfire
for the same thermal output, is not significantly different in the cost per
unit installed capacity from Starfire. The significant reductions in cost
per kilowatt which cccur when less conservative values of beta and wall

loading are allowed, are discussed at the end of the section.
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4.1 Geometry and parameters

The effect of Pw’ and hence Aw' on the parameters of an & = 2 modular
stellarator reactor is evident from Figs 9 and 10. Fig. 9 shows, on
contours of constant wall loading, the loci of parameters rp and RO for
devices with minimum Ro(whichis also a guide to minimum cost) at given
numbers of field periocds. The weak variation of RD with Pw occurs because
a minimum circumference is required to fit in a sufficient number of finite-
diameter coils with adequate modulation to produce the required transform.
BO, and hence Sc, increase with Pw for these minimum RO devices (Fig. loa)
exacerbating the space problem to the point where it is no longer possible
to construct a device if we adhere to the 10 Tesla restriction on Bc, eqg,
p=3,4 5atp = 3.5MW/m? in Fig. 9.

The variation of Nc' P BO, BO, Sc (and the cost per unit installed
capacity) with plasma aspect ratio AP is shown in Fig. 11 for Pw = 2MW/m2,
and again choosing devices with minimum RO at a given p. The parameter
optimisation scheme we have used corresponds to choosing the minimum
number of coils consistent with the separatrix being at or outside the
first wall, and then allowing the coils to have sufficient modulation to
produce the rotational transform (fixed at 0.16 per field period), without
overlapping. It is evident from Fig. 1l that as AP is reduced, fewer
coils can be fitted in. This reduces the number of field periods and
hence the axial beta, and consequently the main field must increase (to
maintain constant power output) requiring larger coil conductors to main-
tain Bc < 1OT.

It should be noted here that all of the configurations identified in
Figs. 9-11 have a minor radius in excess of that required to satisfy the

ignition criterion (20) based on INTOR scaling of Tt

o



We conclude here that there is no obvious choice of optimum config-

uration which can be made purely on the basis of reactor parameters.

4.2 Costs

The calculated cost per unit installed capacity Cu is shown in Fig.
10b as a function of wall loading Pw (for p = 3) and Fig. 11f as a function
of plasma aspect ratio AP (for Pw = 2MW/m2?). There is a steep rise in €
below Pw = 2MW/m? (Fig. 10b) mainly through increases in the volumes of
blanket, shield and buildings. Figure 11f shows that Cu decreases
steadily as AP is reduced, with a broad plateau at Aps 10. The variation in
component costs with AP is shown in Figure 12; it is clear that the trend in
Cu is a consequence of the addition of a number of small effects rather than
a large variation in one major component. The major costs are in the reactor
buildings and the main coil set, with the shield and.first—wall/blanket
slightl? below. CTF increases a£ small aspect ratio because of the increase
in BO (Figure 11d).

Although the costs of the components of the nuclear island appear sub-
stantially higher for a stellarator than for the Starfire tokamak (which
has the lowest costs of any tokamak reactor design, and is also steady-state),
the stellarator does in fact produce = 11% more electrical power for the
same thermal power and hence the overall cost per unit power can be reduced
to a level very close to Starfire ($2000/kW at 1980 prices).

It is clear then that the 'minimum cost' stellarator reactor will
have a modest plasma aspect ratio < 10, a small number of field periods
(2-4) and a reasonable wall loading (2-3MW/m?). If we set a further cons-
traint, that Nc must be an integral multipie of p, the choice would appear
then to be between (10, 2, 2.5), (12, 2, 2), (12, 3, 3) and (15, 3, 2)

(where the parameters are Nc’ jo ) Pw). The values of main field Bo and
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cost/kW Cu for these devices are (8.2, 2041), (7.8, 2162), (8.5, 2060)
and (6.6, 2154).

We have chosen here to present detailed lists of parameters and costs
(Tables 1 and 2) for the 15 coil 3 field period device, which offers the
most conservative values of BO and Pw' The data for Starfire are also
given in Tables 1 and 2. The average plasma radius of the stellarator
is rp =~ 2m, slightly below Starfire, and the major radius is RO ~ lom,
giving AP ~ 8. The coil aspect ratio is Ac =~ 2.9, The parameters call
for a modest peak beta, 80 = 5.8% (viz, E = 3.9%) which is well below
the Starfire beta (80 = 19.4%, B = 6.7%, where it should be noted that
B~6 Ep/qz). Figure 13 shows the effect of increasing the equilibrium
peta in the stellarator (with p = 3) from the value used in the main study,
BO = 2*é €P up to BO = 4*2 Ep. The cost per kilowatt at this higher beta
is now some 5% below Starfire at Pw = 2.5MW/m%. However we do not wish
to claim that the stellarator would provide such a high beta.

Similar reductions in the cost per kilowatt could be achieved by
increasing the size of the device to produce a higher output: the thermal
power of 4000MW was chosen for the present study to be compatible with

Starfire. This applies also to the tokamak, and gives no particular

advantage to the stellarator.
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5. COMPARISON WITH OTHER STELLARATOR REACTOR STUDIES

There are two published studies of modular-coil stellarator reactor
designs with which we can compare the 'best case' described above [Tables
1 and 2]. These are the Wisconsin study UWTOR-M [3], which is & = 3,
and the Los Alamos study MSR [4], which like our device is % = 2.

Costs are not discussed in the Wisconsin work.

Analytic theory of equilibria in stellarators [14, 16] is used in
the present work as a basis for choosing 2 =2 rather than %= 3 (section
2.3). This theory suggests that the average beta assumed for UWTOR-M,

B = 0.06, would lead to a very large axis shift, and that a value

wl
|

= %Bo = %+2/AP = 0.022 would be more appropriate (4 = 1.125 and
AP = 14 in UWTOR-M). This would appear to pose a serious problem for
an & = 3 design. In order to achieve the high value of rotational
transform at the separatrix in UWTOR-M, the Wisconsin group have used
a large number of toroidal field periods (p = 6). This inevitably leads
to a large aspect ratio (AC = 3). The main result of the cost analysis
in the present work is that for minimum cost a stellarator (like a
tokamak) must have a small aspect ratic. UWTOR-M would appear therefore
not optimized in terms of cost.

The Los Alamos modular stellarator reactor, MSR, is % = 2. An
expression for the maximum beta is used, 8 = *Z/Ap, which is similar
to the one used here, E = 4/3 *é/Ap. The difference is due, in large
part, to the use of an external vertical field in the present work to
restore the outer flux surfaces. This leads to a better utilization
of magnetic volume from low to high beta, and we believe it to be an
important feature of the modular stellarator concept. The main

difference between MSR and the present work is to be found in the

method of producing transform. MSR relies on a large number of field
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periods, p = 6, which (like UWTOR-M) leads to a larger aspect ratio

than is necesséry on grounds of cost. In fact, the plasma aspect

ratio in MSR is modest, AP = 11; this is a consequence of the use of a
rather low neutron wall loading Pw = 1.3 Mw/mz, which allows the use

of a larger minor radius. (eg see Figure 9). The MSR group experience
some difficulty in producing the assumed transform, 4 = 0.66, by field-
line following which gives 4 = 0.15. The higher value is the transform
calculated for a conventional helical coil stellarator with the same Ac
and p, and with the separatrix close to the coils. They point out how-
ever that a conventional stellarator is not a good analogue of a modulaxr
coil system, and that a better analogue [13] which takes into account
the 'anti-helical' winding as well as the 'helical' winding gives

better agreement with field-line following. In fact we know that the
separatrix is not helical in modular % = 2 devices, but grises out of
the finite separation between the coils (section 2.4); we use this
feature in the present work to determine the number of coils. For

MSR parameters, Pth = 4800 MW, Pw = 1.3 Mw/mz, p=6, 4 =0.66, we have
calculated the size and cost of an % = 2 reactor system using the model
described in this paper. The result, RO = 25.4 m, rp= 2.33m, Ap = 10.9,

A =4.,5, N =24, B =5.2%, B =4.8T, C_= 2359 $/kW, is a device
c c o u
very similar in size to MSR but with Nc increased (from 18 in the MSR
design). Also, the ceoils in our model are wedge-shaped, to maximise
the modulation, compared with box coils in MSR. The combination of
wedge-shaped coils with an increase in NC/p, which reduces the 'anti-
helical' effect, should produce a transform closer to the design wvalue
than the MSR coil set. The unit cost, 2359 $/kwe, is higher than the

estimate given by the MSR group [4]; 2150 $/kwe, and is also higher than

the 'best-case' p= 3, ¢ = 2 reactor described above, 2165 $/kWe.
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6. CONCLUSIONS

The design and cost bases of a modular stellarator fusion reactor
have been examined. It is shown that a configuration based on & = 2
symmetry is better able to support the beta required for economic
electricity generation than £ 2 3. A small additional vertical field
is required to improve the flux surface geometry at the highest beta.
Physical scaling relationships are obtained which allow the parameters
of a modular & = 2 stellarator to be defined with reasonable accuracy
over a range of numbers of field periods, aspect ratios and sizes. The
costs of such a reactor are estimated by scaling from the cost
predictions for the Starfire tokamak reactor plant which, like the
stellarator, is a continuously operating device.

The main results of this work are firstly that for minimum unit
cost, a stellarator reactor should be of small aspect ratio, and
secondly that it is possible to design such a system which is
competitive in unit costs with the most optimistic tokamak reactor
designs (eg Starfire). The best-case design, for a 4000 MWth plant,
has a major radius of = 16 m, an average plasma minor radius of = 2 m,
3 field periods, a high transform per field period giving a total of
= 0.5, 15 coils, a modest wall loading of 2 MW/mz, a main field of 6.6 T
and a modest average beta of 3.9%. The vacuum and equilibrium flux
surfaces have been checked as far as possible using field-line following
and analytic eguilibrium calculations. The plant should produce
= 1350 MWe,which is higher than Starfire where 11% of the electrical

power is recirculated to power the continuous current drive.
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Unit Yalue VYalue

TABLE 1
(Stellarator) (Starfire)
1.Characteristic Machine Dimensions
1.1 Reactor Envelope
1511 Height m 15.8 28.6
1.1.2 Width m 51 dia 33 dia
1.2 First Wall
1.2.1 Major Radius m 15.8 7
1.2.2 Minor Radius m 2.17 2.14
1.2.3 Volume s 1350 950
1.2.H. Inner Surface Area o 1405 780
2, sma P e s
2.1 Plasma Dimensions
2.1.1 Major Radius m 15.8 7
2.1.2 Minor Radius | m 1.97 1.94
(1.38x2.56)
2i w3 Elongation 1.86 1.6
2.8 Peak Toroidal Beta © 0.058 0.194
2.18 q, Plasma Safety Factor 2.08 T |
2.21 Plasma Heating Method Lower Hybrid
2.22 Plasma Heating Power MW 160 90.4
3.Power Output
2 Plasma Fusion Power MWth 3510
3.2.1 Thermal Power MWth 4000
3.3 Power to First Wall (neutron) MWth 2810
3.10 Plasma Chamber Power Density M’H/m3 2.6 3.7
3.10.1  Plasma Power Density Mi/m 3.2 5.7
3.12 Plant Gross Electrical Output MWe 14490

3.13 Plant Net Electrical Output MiWe 1340 1200



3.16

Net Plant Efficiency

9.Reactor Components

9.1.8
9.1.8.1
9.3.1
9.3:1.8
9.3.1.9
9.3.1.10
9.3.2
9.3.2.9

9.3.2.10

11.Buildings

1.

|

11.1.1

11.

1

.2

First Wall Loading

14.1 MeV neutrons (average)
Toroidal Field Magnets
Maximum Field

Field on Plasma Axis

Number of Magnets
Equilibrium Field Magnets
Field on Axis

Number of Coils

Reactor Building

€haracteristic Dimensions
Reactor Hall
Process Room

Enclosed Volume

Unit Value Value
b3 33 30
2
MW/m 2.0 3.6
T 10.0 11.1
T 6.6 5.8
15 12
T 0.26 0.35
2 6
mxmxm 80x80x44 50x50x44
mxnxm 80x56x44 90x50x44
3 5 5
m 4,79 10 3.08 10



TABLE 2
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Fig.1 A 15 coil, 3 field period, £ = 2 modular stellarator with wedge
shaped coils, represented as filaments, and a coil aspect ratio =~ 3.
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) Ry R R,

Fig.2 The geometry of the envelope of a wedge shaped coil. The
envelope of the centre of the coil conductor cross-section has its
apex at Ry, and subtends a half-angle ¢ . t_ is the space allowed

for the half of the conductor cross-section and the surrounding
vacuum dewar which is outside the envelope defined by Ry, and ¢ .
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Fig.3 Vacuum magnetic surfaces, computed by field
line following, for the coil set in Figure 1.



Fig.4 The variation of transform per field period «/p with 52, computed by
field line following. The solid line is the theoretical prediction ¢ /p = §2.
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Fig.5 Computed equilibrium magnetic surfaces for an £ = 2 stellarator with p = 3, ¢ = 0.48 and Ap =8,atan
average beta of § = 3.9% for a quartic pressure profile and with a vertical field B, = 0.04B . Four sections
within a field period are shown. The dashed line is the mean coil radius.
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Fig.6 The position of the separatrix in a modular £ = 2 stellarator.
The distance of the separatrix inside the coil I, - I, normalised to
the coil major radius R, is shown against /N .- In some cases,
resonant errors in the field have decreased r,,» but in the absence
of field errors the computed points are close to the line TRl |
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Fig.7 A schematic view of the cross section through a module of a
stellarator reactor based on Starfire engineering concepts.
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Fig.8 A schematic view of the cross-section through the reactor hall
showing a coil module in position and withdrawn. The positions of
the vertical field coils are also shown.

3 5 = ,
5'*’ (98] U'I Mo &
I\
N
1 o)
Q
£
un
2 ‘
o
=
wn
S
G (o]
1 1 !
0 10 20

Major radius (m)

Fig9 The variation of plasma minor radius r_ with major radius R | for fixed values of p,
the number of field periods, and P_, the neutron wall loading. Only devices with the minimum
permissible R at given p and P, are shown.
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Fig.10 The variation of parameters and costs with wall loading, P,.for3
field period stellarator reactors. (a) The magnetic field on axis and the
radius of the coil conductor cross-section; (b) the unit cost (5/kW).
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Fig.11 The variation with plasma aspect ratio of the main parameters

of a stellarator reactor for a wall loading P, = 2MW/m?.
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Fig.12 The variation in cost of the major components of a stellarator
reactor with plasma aspect ratio for a wall loading of P, = 2MW/m?.
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Fig.13 The variation of unit cost with axial beta, for p =3 and Pw =2

and 2.5MW/m?. The beta multiplier is the factor in front of > €p-
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