

CLM-P 683

THE REGENERATION OF FORTRAN SOFTWARE

K V Roberts

Culham Laboratory
Abingdon, Oxford, 0X14 3DB, UK
(EURATOM/UKAEA Fusion Association)

ABSTRACT

There is a substantial body of existing Fortran Software that has considerable
scientific and commercial value, but whose potential is sometimes difficult to
exploit to the full because of a lack of structure and internal documentation.
This article discusses, by means of an example, how the OLYMPUS COMPOSITOR can
be used to regenerate such software semi-automatically so that it meets improved
documentation standards. Comments and headings can be edited in on-line, using
a free format, and the COMPOSITOR then produces a clear standard layout in which
the Fortran statement numbers are correlated with the decimally numbered sec-
tions and subsections of an individual routine, and the meaning of the code is
clarified by appropriate indentation and cross-referencing. Using the OLYMPUS
GENERATOR one can also restructure the COMMON blocks and construct indexes of
variables. It is suggested that such techniques can materially enhance the
usefulness of a great deal of Fortran software, including some of the programs

already included in the CPC Program Library.

(Submitted for publication in Computer Physics Communications)

September 1982

Introduction.

There is by now a substantial body of available computer software, much
of it written in Fortran, that is often of considerable scientific and commercial
value but of quite variable quality so far as the structure and documentation are

concerned.

This is true for example of the programs submitted for publication in the
CPC Program Library. In many cases the authors have taken great care to make
the listings as readable and intelligible as possible by the use of clear layout,
adequate headings and comments, tables, indexes and other techniques of the kind

recommended in the CPC Instructions to Authors (see 4th Revision, ref. [1]). At

the other extreme there are sometimes no tables or indexes, little apparent
structure or layout conventions, few or no comments, and statement numbers in

arbitrary order.

Certainly the structure and documentation make almost no difference to the
working of a program. One could remove all the comments, randomize the Fortran
identifiers, statement numbers and layout, and mix up the different program
activities, and it would be just as accurate and efficient as before. However
it would in practice be much less useful since the following evident requirements

could not be met:

Clear understanding of what the program does.
Guarantee of correctness.

Correction of any errors.

Conversion to other types of computer system.
Possible improvements in operating efficiency.
Adaptation to meet changing requirements.
Availability as a model for future work.
Efficient software project management.

. .

W ~1 O U bW =

The other OLYMPUS articles in this issue [2, 3, 4] describe utilities
and conventions that facilitate the writing of new programs to meet these require-
ments. However, there remains the question of what to do with existing software
when it is too expensive to discard and replace but also very costly to maintain
in operation. This paper demonstrates how the COMPOSITOR [2] can be used to
regenerate the structure of an old Fortran subroutine, and illustrates other

techniques that can bring the documentation to an acceptable standard.

Initial Subroutine Version.

Many examples of poor programming style could be chosen. However, since
it would be invidious to use anyone else's work for this purpose I have selected
a subroutine from the very early LDMHD code written by the author and his
colleagues [5, 6], and which actually dates from about 1960. This is shown in
Fig, 1. A few comments added later have been removed to restore the listing
to its initial state, and those COMMON identifiers that are not used by the
subroutine have been omitted to save space, but the listing is otherwise un-
changed. It is by no means untypical of much of the Fortran software that is

currently in use or even being written at the present time.

The listing is evidently unintelligible but some specific deficiencies

are:

1. No decimal subprogram number to locate its position in the
listing.

2, Only a brief outline of what the subroutine does: no details
or explanation of its working.

3. Untidy COMMON.

4, No comments.

5. No documentation of the intermnal structure.,

6. No explanation of variable, array or subprogram identifiers,

7. Statement numbers in random order.

8. No cross-references to external documentation.

Use of COMPOSITOR for Regeneration

The regeneration procedure is quite straightforward and consists of editing
in free-format comments, section headings (#) and subsection headings (# #)
at a VDU terminal, and then using the COMPOSITOR [2] to generate a clear layout
automatically., 1In practice this is an iterative procedure since as the code
gradually becomes better documented its working becomes easier to follow and
the regeneration can proceed more easily. To save space I have shown only a
part of the edited COMPOSITOR input file in Fig.2, and then the final version
of the subroutine in Fig.3. No executable statements have been altered at this
stage, except for a permutation of the statement numbers, the replacement of
'PRINT' by 'WRITE', and the use of a continuation line where the original state-

ment was too long when shifted to col.10.

External documentation was already available for the 1DMHD code (although
written well after 1960) and this has been referred to in the cross-references
shown in Fig.3. 1In general it may be necessary to produce much of the external

documentation in parallel with the regeneration of the code itself.

The original blank COMMON has been subdivided into separate labelled
and numbered blocks, each with a specific purpose, and these are included in
the code by means of the C/ INSERT statements shown in Fig., 3. The regeneration
of COMMON and the production of indexes can be carried out by the GENSIS
generator [3], the relevant index entries being shown in Fig, 4, and some of the

output in Fig.5,

Modification of Executable Statements.

Once the listing is in a clear state it may be useful and practicable to
improve the coding further by changing some of the executable statements. A
general procedure should be to carry out one or more standard test runs before
the regeneration begins, and to repeat these at each stage in order to assist

in the detection of any errors that have inadvertently been introduced.

The only change illustrated here (Fig.6) is the replacement of arithemetic IF
and computed CC TO statements by logical IF (which was not available when the
original code was written), although in some cases a much more substantial re-
organization might be desirable, for example changing COMMON identifiers
using an Editor to ensure that they are consistent throughout the code, or

breaking down long subroutines into shorter ones.

Dialect Statements.

In its published version [2] the COMPOSITOR cannot handle non-standard
dialect Fortran statements that it does not recognize. This mainly applies to
non-standard declarations which usually can be tidied up afterwards quite simply
with an Editor. Non-standard executable statements will usually be treated
correctly but those that contain references to statement numbers may require
editing, The COMPOSITOR program is however designed in such a way that it can
readily be adapted to handle specific Fortran 66 dialects or be extended to

deal with Fortran 77.

Concluding Remarks.

It is believed that the regeneration and maintenance of software will be
an increasingly important and economically necessary task in the future, and
that tools such as the COMPOSITOR [2] and GENSIS generator [3] will prove use-
ful for this type of work. Some of the programs that are currently being

submitted to the CPC Library would benefit from such preprocessing, and this

would materially lighten the task of editors and referees as well as that of

future users. Authors and subscribers might also like to consider the use
of these Utility programs to produce regenerated adaptations of some of the

programs that are already in the Library.

The computer output was produced on an ADLER SE1005 typewriter with a
carbon ribbon, interfaced to the Culham PRIME computer via a British Telecom

300 baud modem.

REFERENCES

[1] Computer Physics Communications, Instructions to Authors,
4th Revision, Comput. Phys., Commun, 27 (1982) 1.

[2] The OLYMPUS FORTRAN COMPOSITOR, M.H.Hughes and K.V, Roberts,

CLM-P690
[3] The OLYMPUS FORTRAN GENERATOR, M.H.Hughes and K.V.Roberts,
CLM-P689

[4] OLYMPUS FORTRAN Conventions, M.H.Hughes and K.V.Roberts,
CLM-P685 ’

[5] K.Hain, G.Hain, K.V.Roberts and S.J.Roberts, Zeits. fiir
Naturf. 15a (1960) 1039.

[6] K.V.Roberts, Journ. Nucl. Energy. Part C 5 (1963) 365,

* [DENTIF IERDF12GS
*FORTRAN
SUBROUTINE DF12GS
COMMON KGAS,UXDA,T,UXA,SWN,ACC,RELAX,N1,FACHC,KHC ,NHCORE ,
IN,KBA, KB, FLUXN, VNE ,RHOML ,RZA,NO3,GAS ,DELTAT
COMMON VISCN(51),MARKER(51),YN(51),RHON(5L) ,DELTAL({S1),
IVISC2(51),R2(51),QN(51),0N(51),ALPHA(S]),BETA(S1),RHO(51),
254(51),v(51),51(51),AN(S51),ANI(51) ,DELTAZ({S51),AJ0I(5L),AN2(5L]),
3RHON2(51),VYN2(51)

[OF12GS SOLVES THE FOLLOWING EQN.S
c
c DVN D (RHON.K.TN) 0PN
g RHON, === = = —o(-ceaceeaan) = === 4 G.(V-VN)
c DT DR({ M) DR
c
c DRHON RHON 0O
c memm= = = e, ea(R,VN) = §
c oT R DR
c
c DTN TN O G
C === = - (GAMMA-1),==,==(R.VN) = -===.(TN-TI)
c oT R DR RHON
C
C
GD TO (8,2),KGAS
2 Z1=EXPF(-UXDA*T)
FLUXN=UXA®Z1
Z2=5WN*+2

Z12=0.5%ACC*RELAX
D0 10 K=2,N1
VISCN(K)=0.0
Z=MARKER(K)-1
Z1=(VN(K+1)=VN(K-1))*Z
1F(Z1)7,10,10
7 VISCN(K)=-0.5*RHON(K)*Z1*Z2/DELTALI(K+1)
10 CONTINUE
VISCN(L)=VISCN(2)
VISCN(N)=VISCN({NL)
CALL DFi2vs(2)
0D 999 K=1,N
VISC2(K)=VISCN(K)/3.0
CONTINUE
00 9 K=2,NL
VISCN(K)=VISC 2(K=1)-VISC2(K)+¥ISC2(K+1)
9 CONTINUE
VISCN(1)=VISCN(2)
VISCN{N)=VISCN(NL)
00 32 K=l,NL
Z=(VYN(K+1)-VN(K))}/DELTAL(Ke1)+0.5%(VN(K+1)+VN(K))/R2(K)
QN(K)=-Z*VISCN(K)/RHON(K)
OM(K)=Z+0.25°DELTAT
32 CONTINUE
QN(N)=0.0
X=0,5+DELTAT
Z=DELTAT**2/8.0
ALPHA(1)=0.0
BETA{1)=0.0
X2=2.0%DELTAT*FACHC
2Za=4 . 0*ON(KHC)*QN(KHC)
00 41 K=2,N
MKR=MAAKER(K)
GO TO (31,36),KGAS
36 GO TO {31,33),MKR
31 x4=0.0
X5=0.0
X6:0.0
GO TO 35
33 X4=2.0°(S4{K)*RHO(K)+Sa{K-1)*RHO(K=-1))
X5=2.0*V(K)
X&=X*(S1(K)-SL(K-1))
35 Z1=AN{K)+«AN(K-1)+ANL(K)+ANL(K-1)
12=2.0*(RHON(K)+RHON(K-1))
ZZ1=AN(K)+ANLI(K)-AN(K-1)=ANL{K=1})

999

Z15=4.0°ON(K)=UN(K)
ZIB=GAS*(AN(K)+ANL(K))
ZZ9=GA5*(AN(K-1)+ANLI(K=-1])
Z5=X*((Z2Z1+2.0%Z1*(RHON(K)-RHON{K=-1)-%5)/Z2-2Z5-224)/DELTAZ(K)
1-Xa*x5/22)
26=2%(2718+711%2.0*RHON(K)/22)/DELTR2(K}
LeX2*VISCN(K) /(Z2°DELTA2(K))
27=2°(229+Z1°2.0°RHON(K-1)/Z2)/DELTA2({K)
1+X2%VISCN(K=1)/(Z2°DELTA2(K))
2242225
V2D=VN(Ks1)
GO TO(311,312),NHCORE
312 IF(k-2)310,310,204
310 X2:=X2+10.0
€2=0.0
27=0.0
El=Z6/DELTAL(K+1)+26/(2.0°R2(K))
GO TO 304
311 IF{K-N1)2D4,210,205
210 X2=0.1+x2
GO TO 204
El=0.0
26z0.0
v2D=0.0
GO TO 206
204 El=Z6/DELTAL(K+1)+26/(2.0%R2(K))
206 E2=27/DELTAL{X)-27/(2.0+*R2(K-1))
304 E3=El+E2-26/R2(K)+27/R2(K-1)+X*X4/22+1.0
=-25+E1*V20-(E3-2.0)*VN(K)+E2*YN(K-1)
ALPHA(K)=EL/(E3-E2*ALPHA(K-1))
BETA(K)=(F+E2*BETA(K-1))/(E3-E2*ALPHA(K=-1))
4l CONTINUE
v20=0.0
K=N
VN2(K)=V20*ALPHA(K) +BETA(K)
V20=VN2(K)
K=K-1
IF (K-1) 103,103,102
103 GO 70 (68,69),KBA
9 GO TO (68,70),K8
68 Z1=RHON(N)*DELTAL(N)
Z2=FLUXN*DELTAT
YN2(M)=(VN2(N)=ZLl-VNE®*22)/(Z1+22)
70 GO TO (300,301),NHCORE
301 GO TO (368,36%9),KBA
369 GO TQ (368,300),KBHC
368 Z1=RHON{L)*DELTA1(2) .
Z2=FLUXN®DELTAT
VN2(2)=(VN2(2)*Z1+VNE*22)/(Z1+22)
300 D0 L K=KHC,NL
MKR=MARKER{K)
GO TO (3,6),MKR
3 AN2(K)=AJ0L(K)
AHONZ (K) =RHOM]L
GO TO L
§ 22=(YN2(K+1)=VN2(K))/DELTAL(K+1)+0.5¢(¥NZ(Kel)-VN2(K))/R2(K)*R2A
DHN2:222+0.25*0ELTAT
ZL1=ABSF(ON(K)-DHNZ}
IF (Z11-212) 4,4,5
5 PRINT 201,211,K
ND3=2
4 ON2=-Z2+vISCHN(K)/AHON(K)
Z1=(DN(K)+DHN2)=(QN(K)-QN2) *CAS
Z=1.0+GA5* (ON(K)-DHNZ)
AN2(K)=(AN1(K)*(2.0-2)-21})/2
2=1.0+0N(K)~DHNZ
AHOMZ(K)=[RHON(K)*(2.0-2)
1 =S1(K)*DELTAT)/Z
AHONZ(K)=MAXLF (RHONZ{K),RHOM1)
1 CONTINUE
CALL OF128C(3)

205

102

8 RETURN
201 FORMAT(29H NEUTRAL COMPRESSION FACTOR=,El2.4,4H K=,I3)
END

Fig.1 Original Version of Subroutine DF 12 GS. The main deficiencies are a lack of overall structure, the
absence of comments, statement numbers in random order and an untidy COMMON.

CLM-P683

*Bypass this routine if plasma is fully ionised
GO TO (B,2),KGAS
LSpace/time scale parameters
¢Qecay of neutral flux from wall, Eq. (12.7)
2 Z1=EXPF (-UXDA*T}
FLUXN=UXA®ZL
*Neutral shock width
22=5HN**2
#Maxlmum compression rate
Z12=0.5%ACC*RELAX
fNeutral viscosity
LEvon-Neumann shock term, Eq. (5.20)
00 10 K=2,Nl
VISCN(K}=0.0
Z=MARKER(K)~1
Z1l=(VYN(K+1)-VN(K=-1))*Z
+Zero, if region of neutral expansien
IF{ZLl}7,10,10
7 VISCN(K)=-0.5*RHON(K)*Z1*22/DELTAL(K:1)
10 CONTINUE
VISCN(1)=VISCN(2)
VISCN(N)=VISCN(NL)
LEModify viscosity iFf required
*Dummy routine, can be used to introduce any viscosity term
CALL DFL2vs(2)
EEIntroduce some smoothing
+Temporary store
DO 999 K=l ,N
VISCZ2(K)=VISCN(K)/3.0
999 CONTINUE
+Smogth the viscosity
00 9 K=2,Nl
VISCN(K)=VISC 2(K-1)+VISC2(K)+VISC2(K+1)
L CONTINUE
*Boundary extrapolation
VISCN(L)=vISCN(2)
VISCN(N)=VISCN(NL)
ENeutral equation of motion

*Hain lImplicit methoo is used, with no iteration

LEPreliminaries
D0 32 K=1,Nl

*Div vn
Z=(VN(KeL)-VN(K))/OELTAL(Ke1)a0.5* (VN(KeL)+¥N{K)]/RZ(K)

*viscous pressure term
QN(K)=-Z*VISCN(K)/RHON(K)

*Expansion
DN{K)=Z*D.25*DELTAT

3z CONTINUE

QN{N)=0.0

c

+lnitiallze for scan
X=0.5*DELTAT
Z=DELTAT®*=2/8.0
ALPHA(L1}=0.0
BETA(L)=0.0
X2=2.0°DELTAT*FACHC
ZZ6=4.0*DN(KHC) *QN(KHC)

£E£S5can radially outwards
DO 4l K=2,N

c

sls thls point fully ionised?
MKR=MARKER{K)
GO TO (31,36),KGAS

36 GO TO (31,33),MKR

c
+¥es, skip
31 X4=0.0
x5=0.0
X6=0.0
GO TO 35
c

*No, charge exchange
33 X4=2.0%(S54(K)*RHO(K)+54(K=1)=RHO(K-1)])
X522.0%V(K)
*lonisation
X6=X*(S1(K)-51(K-1))
£fCoefficlents used each step (page 8.53)

Fig.2 Edited COMPOSITOR Input File. The extra lines all begin in col.1
and start with Cx& or # (shown as £). Only part of the file is reproduced here.

CLM-P683

C/ MODULE C2512
c

SUBROUTINE DF12GS

<

C 2.13 Solve neutral equations
Cc

C/ INSERT COMCON

C/ INSERT COMPLA

C/ INSERT COMNEU

C/ INSERT COMNUM

C/ INSERT COMESH

C/ INSERT COMWRK

C/ INSERT COMDGN

C
C. DF12GS SOLVES THE FOLLOWING EQN.S
c.
c. DV¥N D (RHOMN.K.TN) DPN
c. RHON. === = = ==(=se==e===) = === + G.(V=VN)
c. oT OR(M) DR
C.
c. ORHON RHON D
€ =-=-= = = ==-—.--(R.VN) - S
c. oT R DR
C.
C. DTN TN D
c. === = - (GAMMA-1).--.--(R.VN) -
c. oT R DR
c
c References are to D.L.Fisher, COS Note 12/66
c The neutral equations are discussed in Section 8, page 6.3
15 mim e R S S
fe Bypass this routlne if plasma ls fully ionised
GO 10 (660,100),KGAS
c
(e BT S L e A e S e B R L W L S R S L R R
cL L. Space/time scale parameters
C
c Decay of neutral flux from wall, Eq. (12.7)
100 ZL1=EXPF{=UXDA*T)
FLUXN=UXA®*Z1
¢ Neutral shock width
12=5WN=*2
c Maximum compression rate
Z12=0,.5*ACC*RELAX
<
i e i e S S S L L s S S S e s DS e dL S LR A S
cL .8 Neutral viscosity
c
cL 2.1 von=Neumann shock term, Eq. (5.20)

D0 z1l K=2,Nl
VISCN(X)=0.0
2=MARKER(K)-1
Z1=(VYN(K+1)=-VN(K-1))*2Z
c Zero, if region of neutral expansion
IF(zi)2lo,z11,211
210 VISCN(K)==0.5*RHON(K)*Z1*Z2/DELTAL(K+1)
211 CONTINUE
VISCN(L)=VISCN(2)
VISCN(N)=VISCH(N1)

cL 2.2 Modify wviscosity if required
c Dummy routine, can be used to introduce any viscosity term
CALL DF12vs(2)

c
cL 2.5 Introduce some smoothing
& Temporary store

DD 230 K=1,N
VISCZ2(K)=VISCN(K)/3.0
230 CONTINUE
(o Smooth the viscosity
00 231 K=2Z,Nl
VISCN(K)=VISC 2(K-1)+VISC2(K)+VISC2{K-1)
231 CONT[NUE

c Boundary extrapolation

WISCN(1)=VISCH(2)

VISCN{N)=VISCN(NL)
c
D emmsmscccctoneesnnn e m—————————— o o o i o e e e
CcL 3. Neutral equation of motion
C
c Hain implicit method is used, with no iteration
c
cL 3.1 Preliminaries

00 310 K=1,Nl
c Div vn

Z=(VN(K+1)=VN(K))/DELTAL(Ke1)+O.5°{YN(K-1)+VYN(K))/R2(K)

310

)

©

o
=

oo

320

5]

321

c
c
322z

340

34l

3az

3u3

3a4

350
351
352

e}

cL

Viscous pressure term
QN{K) ==-2*VISCN(K) /RHON(K)
Expansion
OM(K)=2*0.25*DELTAT
CONTINUE
QN(N)=0.0

Initialize for scan
%=0,5%DELTAT
2=DELTAT=*2/8.0
ALPHA(1)=0.0
BETA(1)=0.0
X2=2,0*DELTAT*FACHC
2Z4=4.0°DN(KHC) *QN(KHC)

3.2 Scan radially outwards
DO 360 K=2,N

Is this point fully ionised?
MKR=MARKER(K)
GO TO (321,320),KGAS
GO TO (321,322),MKR

Yes, skip
X4=0.0
x5=0.0
X6=0.0
GO TO 330

No, charge exchange
X4=2.0%(S&(K)*RHO(K)+54(K-1)*RHO(K-1))
X5=2.0%V(K)

Ionisation
X6=X*(S1({K)-51(K-1))

3.3 Coefficients used =ach step (page B8.5)
Z1=AN(K)+AN(K-1)+ANL(K)+ANL(K=-1)
I2=2.0*(RHON{K)+RHON(K=1})
ZZ1=AN(K)+ANL(K)-AN(K-1)-ANL{K-1)}

ZZ5=4.0%DN(K)*QN(K)
ZZ8=CA5*(AN(K)+ANL(K))
279=GAS5*(AN(K-1}+ANL(K-1))

Z5z%*((2Z1+2.0%Z1°(RHON{K)-RHON(K-1)-X6)/22-225+224) /DELTAZ{K)
. -Xu*X5/22)
Z26=2*(22Z8+21%2.0*RHON(K)/22) /DELTA2(K)
- +X2*VISCN(K)/(Z2*DELTAZ(K))
27=2°(229+21%2.0*RHON(K-1)/Z2)/DELTAZ(K)
+ +X2*VISCN(K=1)/(22+DELTAZ(K))

2I4=215
V2D=VN(K+1)

3.8 Boundary points
Is this a hardcore run?
GO TO(342,320),NHCORE
Yes
IF(K-2)341,341,350

Inner boundary (hardcore only, Section 1[3)
X2=X2+10.0
£2=0.0
27=0.0
El=Z&/DELTAL(K+1)+Z6/(2.0*°R2(K))
GO TO 352

[F(K-N1)350,343,3a4

Reduce viscosity for auter interval
X2=0.1%x2
GD TO 350

Quter boundary
El=0.0
25=0.0
¥20=0.0
GO 1O 351

3.5 Evaluate E and F (Eq. 8.18)
EL=26/DELTAL(K+1)+28/(2.0%R2(K))
E2=I7/DELTAL(K}=-Z7/{2.0%R2(K~1))

E 1+E2-26/R2(K)+27/A2(K-1)-%*¥4/22-1.0
F==Z5+E1*V20-(E3-2.0)*VN(K]-E2*VN(K-1)

3.6 Evaluate aLPHA 3ng BETA
ALPHA(K) =E1/(E3-E2*ALPHA(X-1))
BETA(K)=(F+EZ*BETA(K-1})/(E3-E2*ALPHA(K-1)]

Fig.3 Regenerated Version of Subroutine DF12GS. This version is produced automatically when the file
of Fig.2 is submitted as input to the COMPOSITOR. Except for the initial letter conventions it satisfies the
OLYMPUS conventions of ref. [4], and being more readable than Fig.1 it can be used as the basis for

further improvements.

CLM-P683

o

CONTINUE

4. Solve Ffor welocity, scanning inwards
v20=0.0

K=N

VNZ(K)=V2D*ALPHA(K)}+BETA(K)

v2D=VN2Z(K)

Kz=K=-1

IF (K-1)

00

510,510,400

St Effect of emission on boundary velocities

Sk Outer boundary
the boundary Lagrangian?
GO TO (512,511),KBA
GO 7O (512,520),48B

Is

No, Boundary condition on V¥n

Allow for neutral influx from wall,
Z1=RHON(N)*DELTAL(N)
Z2=FLUXN®DELTAT
WN2(N)=(VN2(N)*Z1-VNE*Z2)/(ZI1+22)

Eq. (12.8)

5.2 Inner boundary
Is it a hardcore run (Section 13)7
GO 0 (600,521),NHCORE
vYes, is the boundary Lagrangian?
GO TO (523,522),KBA
GO TO (523,600),KBHC

521
522

No, Hardcore boundary condition on Vn

523 Z1=RHON(1)*DELTAL(2)
T2=FLUXN*DELTAT
VNZ2(2)=(VN2(2)*Z1.VNE*Z2)/(21-22}
6. Temperature and density equations
600 D0 550 K=KHC,N1

MKR=HMARKER(K)

GO T0 (610,5620) ,MKR

c
CL 6.1 Set convenient values if fully ionised
810 aAN2(K)=AJGL(K)
AHON2(K) =RHOML
GO TO 450
E
cL 6.2 Adiabatic compression
620 22={VN2(K+1)-YN2(K))/DELTAL(K+1)}+0,5%(YN2(K-1)-VN2(K))/R2(K)
- *RZA
DHN2=22%0.25°DELTAT
[o}
o1 1Y 6.3 Check compression during timestep
Z11=ABSF(DN{K)+0HNZ)
IF (Z11-Z12) 631,631,630
£ Results not accepted
630 WRITE(NOUT,5000) ZL1,K
NO3=2
c Set warnlng marker
631 QNZ=-Z2*VISCN(K)}/RHON(K)
c
cL 6.4 Campression/viscous heating (T, Eg. 8.12)

Z1=(DN(K)+DHN2) *(QN(K)}+QN2)*GAS5
2=1.0+GAS*(ON(K)+DHN2)

[Neutral temperature
ANZ2(K)=(ANL(K)*(2.0-2)-21}/2

c
cL 5.5 Compression/lonizaticn (Rho, Eq. 8.1
Z=1.0+DN(K)}+0DHN2Z
RHONZ(K)=(RHON(K)*(2.0-2)
- -S1(K)®DELTAT)/Z
c Density cannat be negatlve
AHONZ (K) =MAXLF (RHONZ(K) ,RHOML)
-
550 CONTINUE
c
cL 6.6 Boundary conditions an Rho, T {sec. 12)
CALL DF128C(3)
c
560 RETURN
c
9000 FORMAT(29H NEUTRAL COMPRESSION FACTOR=,ELl2.4,4H X=,13)
END

Fig.3 Continued

CLM-P683

VERSION 1% 05/AUG/82 KVR CULHAM

ARRAY DIMENSIONS
ND=51

INDEX OF COMMON VARIABLES

5 2.1 Physics control

COMMON/COMCON/

I KGAS 1 fully fonised, 2 still partial

I NHCORE 1l if hardcore rtun, 2 if not

I KBA Boundary, | Eulerian, 2 can be Lagranglan
R T Time

I B Outer boundary, ! Eulerian, 2 Lagrangian
I KBHC Hardcore, | Eulerian, 2 Lagrangian

IA MARKER(ND) 1 cell fully lonised, 2 partial

§ 2.2 Plasma variables
COMMON/COMPLA/

R GAS Gamma-1

RA RHO(ND) Plasma density

RA V(ND) Plasma velocity

S 2.3 Neutral variables
COMMON/COMNEU/

R UXDA Neutral flux decay rate
R UXA Neutral flux coefficient
R
R

FACHC Neutral viscosity factor
FLUXN Neutral flux from wall

R VNE Velocity of neutrals from wall
AR VISCN(ND) Neutral viscosity

RA VN(ND) Neutral velocity

RA RHON(ND) Neutral density

RA S4{ND) Charge exchange rate/RHO
RA SI1(ND) Ionization rate

RA AM(ND) Neutral temperature

RA AN2(ND) New AN
RA RHONZ(ND) New neutral density
RA VNZ(ND) Mew neutral velocity

S 3.1 Numerical control

COMMOMN /COMNUM/

R SWN Neutral shock width

R ACC Maximum variable change/step

R RELAX Maximum timestep increase/step
R RHOM1 Minimum permitted density

S 3.2 Mesh

COMMON/COMESH/

1 Nl N-1

IN Number of mesh points

R DELTAT Timestep

RA R2(ND) Half-integral mesh points

RA DELTAl(ND) Integral space interval

RA DELTAZ(ND) Half-lntegral space interval
S 4.1 Working space

COMMON/COMWRK/

RA VISC2(ND) Working space

RA QN{ND) DIV(VN)*VISC/RHON

RA ON(ND) DIV(VN)*DELTAT/4

RA ALPHA(ND) Working space for implicit solution
RA BETA(ND) Working space for implicit solution
RA ANL(ND) AN - thermal conduction

RA AJOL(NO) AJQ + thermal conduction

S 5.1 Diagnostics
COMMON/COMDGN/

I NO3 Run termination parameter

Fig4 Master Index MINDEX. This is the input file used by the GENERATOR to construct COMMON
blocks, documentation and other standard sections of the program [3].

CLM-P68B3

Ummmemssmm—e—-ccccescceemee———————————— d-msamesmome————mmesemsmmmam—=a

cL ALPHABETIC INDEX OF COMMON VARIABLES

c
VERSION l* 05/AUG/B2 KVR CULHAM

od

c

€ ACC Maximum variable change/step R 3.1

C AJOL(ND} AJO + thermal congduction qA 4.l

C ALPHA(ND) waorking space for implicit solution RA 4.l

€ AN{ND) Neutral temperature RA 2.3

C ANI(ND) AN + thermal cancuction RA 4.1

€ AN2(ND) New AN AR 2.3

C BETA(ND) working space for implicit solution RA 4.1

€ DELTAL(NO) Integral space interval AR 3.2

¢ DELTAZ(ND) Half-integral space interval ARA 3.2

C DELTAT Timestep R 3.2

C ON(ND) DIV(VN)*DELTAT/4 AR 4.l

C FACHC Neutral viscosity facter R 2.3

C FLUXN Neutral Flux fram wall R 2.3 e o o bt ettt
C GAS Gamma=1 R 2.2 cL cz.3 Neutral wvariables

C KB Outer bouncary, ! Eulerian, 2 Lagrangian i C VERSION 1* 05/AUG/B2 KVR CULHAM

C KBA Boundary, | Eulerian, 2 can be Lagrangian I 2l COMMON/COMNEU/

C KBHC Hardcore, ! Eulerian, 2 Lagrangian I 2.1 A AN . ANZ , FACHC , FLUXN , AHON , AHONZ
C KGAS 1 fully fonised, 2 still partial I o2l RSl v sS4 » o UXA o, UXDA, VISCN . WN !
C MARKER(ND) 1 cell fully ionised, 2 partial 3 N | R ¥NzZ , VNE

c W Number of mesh points 1 3.2 DIMENSION

c Nl Na=l 1 3.2 R AN(SL), ANZ2(51), RHON(SL)}, RHONZ(51]), 51(51)
C NHCORE 1 if nardcore run, 2 if not 1 2.1 R 54(51), VISCN(51), YN{5L1), wH2(5L)
C NO3 Run termination parameter I 5.l

C QN(ND) DIV(VN)*vISC/RHON RA 4.1

C R2(ND) Half-integral mesh points RA 3.2

C RELAX Maxlmum timestep increase/step R 3.1

C RHO(ND) Plasma density RA 2.2

C ARHOML Minimum permitteg density R 3.1

C RHOH(ND) Neutral density RA 2.3

C RHOMZ(ND) New neutral density RA 2.3

C S1(nND) Tonizatisn rate RA 2.3

C S4(ND) Cnarge exchange rate/RHU AR 2.3

€ SkN Neutral snock width A3l

g T Time R 2.1

C UXA Neutral flux coefflcient R L3

C uxDa Neutral flux decay rate R 2.3

c w{nD) Plasma velacity RA 2.2

¢ vISC2(ND) Working space AA 4.l

€ VISCN(ND) Neutral viscosity AA 2.3

C WN(ND) Meutral wveloclity ARA 2.3

€ VN2(ND) New neutral velocity AR 2.3

C VNE velocity of neutrals from wall A 2.3

C

Fig.5 Examples of GENERATOR Output. Two automatically constructed files are shown. (a) Alphabetic
Index of Variables INDVAR. (b) COMMON Block COMNEU.

velocities

cL 5.1 OQuter boundary
c [s the boundary Lagrangian?
510 IF((KBA.NE.Ll).AND.(HB.NE.L}] GO TO 520
C No, Beundary conditlion an vn
c Allow for neutral influx from wall, Eg. (12.8)

ZL=RHON(N)*DELTAL(N)
Z2=FLUXN*DELTAT
YNZ2(N)=(YN2(N)*Z1-VNE*Z2)/(21+22)

@

cL 5.2 Inner boundary

C Is it a hardcore run (Section 13)?

520 IF(NHCORE.EQ.Ll) GO TQ 400

C

[¥Yes, is the poundary Lagranglan?
[F((KBA.NE.1).AND.(KB.NE.L1)) GO TO 00

[Mo, Hardcore boundary condition on vn
ZL=RHON{L)*DELTAL(2Z}
22=FLUXN®DELTAT
YNZ(2)=(¥YN2(2)"Z1+VNE*Z2}/(21+-22)

[

Fig6 Code Modifications. After the code has been clarified using the COMPOSITOR
it can be further improved by modification of the executable statements.

CLM-P683

