





CLM-P687

MAXIMUM ENTROPY SPECTRAL ANALYSIS
IN MICHELSON INTERFEROMETRY

G. A. Cottrell, W. H. M. Clark and S. F. Gull*
Culham Laboratory, Abingdon, Oxon, U.K.

(Euratom/UKAEA Fusion Association)

Abstract

A Rapid-Scan Michelson Interferometer is used to measure the spectrum of
Electron Cyclotron Emission from the plasma in the DITE Tokamak at the Culham
Laboratory. Instruments of this type can only be used to measure the
autocorrelation function up to a certain maximum value of the time delay in
one of the wave trains; this is determined by the maximum path difference
which can be introduced. If conventional Fourier methods are then used to
invert the data, false sidelobe structures often appear on the transformed
spectra. We describe the application of an alternative method of analysis,
the Maximum Entropy Method. The method gives a positive-valued spectrum
having the maximum spectral resolution consistent with the given
autocorrelation data set but has the minimum of sidelobes and false
structures. Because the numerical algorithm is non-linear, we are able to
'bootstrap' the data inversion scheme in order to self-calibrate it with
respect to the 'zero-path-difference' correction. We present Electron
Cyclotron Emission spectra from the DITE Tokamak plasma and compare results

with those obtained from the conventional method.
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1. Introduction

The technique of Fourier Transform Spectroscopy /8/ has become standard
in many branches of physics and chemistry. A rapidly scanned Michelson
interferometer offers considerable advantages for spectral analysis in terms
of, for example, simplicity of frequency calibration, wide spectral range and
large optical throughput giving a high signal-to-noise ratio. However, it is
only possible to extract the exact spectrum of the radiation source under
investigation in the case where the autocorrelation function is known, in the
absence of noise, for all values of the path difference between the two
interfering wave-trains. 1In a practical situation not only do we have to
contend with noise in the data but also have no knowledge of the
autocorrelation function beyond a certain maximum path difference, N&.

Usually N& is limited by the scanning range of the instrument.

The Fourier transform of such imperfectly sampled and truncated data
gives a response function having undesirable and prominent sidelobes.
Usually, in order to reduce these sidelobes, the autocorrelation data are
weighted (or 'apodized') prior to transformation; however this also has the
effect of degrading the maximum spectral resolution (by typically a factor of
2) /6/. So, in a given application, one is forced to choose a weighting
function which provides a satisfactory compromise between spectral resolution

and sidelobe structure.

One can, however, obviate the need to make such a compromise by adopting
a totally different scheme of data analysis, based on information theory. The
alternative method we present here is the Maximum Entropy Method (MEM);
various authors have discussed and used it with regard to the transformation
of imperfect autocorrelation data /1/, /2/, /5/, /6/, /11/, /12/. Because the
data are not apodized, MEM provides a substantial increase in resolution yet
at the same time the effects of noise are minimised. A further advantage of
the method is that certain calibration parameters can be ad justed
automatically; here, we pay particular attention to the problem of determining
the zero path difference (ZPD) correction when this cannot be found easily in
the experimental arrangement. The fact that it is possible to 'bootstrap'
(iteratively) the calibration procedure using MEM, is a consequence of the

fact that it is a non-linear algorithm yielding a positive spectrum.

We demonstrate the use of an efficient algorithm for MEM with this data
autocalibration procedure and illustrate it with an example taken from

experimental plasma physics.



2. Fourier Transform Spectroscopy

We are interested in the spectrum S(w) of a radiation source. This is

related to the autocorrelation functiom, I(<T), by
I(z) = IO +4 [3 S(w) cos (wt) duw, (1)

where T is the time delay between the two interfering wave—trains and I0 is a
constant background level on the whole inter-ferogram. The detector output
from the Michelson interferometer, however, is sampled discretely. Thus an

estimate of the spectrum is given by

N
S(w) = 2 z (I(nAt -t )-1 ] cos (unAT) (2)

™ n=o g 0
where Tt 1is the (unknown) offset in time delay for zero path difference

0
between the interferometer arms. The autocorrelation function (1) is sampled
at the discrete delays v, At -7, 2AT- 7T, + . =« , NAT= 1 . In these
] 0 0 .
circumstances, it is well known that the spectral resolution available is
limited to
1

M = oegE Ty ° ()
0

2.1 The Standard Inversion Technique

At this stage, one might estimate the most probable values for t and I
and, in the case of inversion by Fast Fourier Transform (FFT), interpglate tge
measured values of the autocorrelation function on to a grid. Some typical
data taken from a Michelson interferometer operating at millimetre wavelengths
are shown in Fig. 1. This interferometer was used to observe the electron
cylotron emission (ECE) spectrum from the DITE tokamak plasma /9/. At this
point an apodization function was applied to the data in order to improve the
shape of the spectral response function. In this example we have applied a

'Cosine-squared' weighting function and used a 512-point computational mesh

spanning a frequency range

_ 2 2
AT s &% AT (4)

where o is the 'oversampling' factor



512
2N o

If @ <1, the data overflow the FFT grid and, to avoid this, we have chosena = 4

as a satisfactory value and set the autocorrelation function to zero for
time delays beyond * NAt. According to this prescription, we have transformed
the data in Fig. 1 to yield the spectrum in Fig. 2. We also show the effect

of omitting the apodization step in Fig. 3.

The results shown in Figs. 2 and 3 demonstrate clearly the problems
associated with this method of analysis. Both spectra exhibit (unphysical)
negative regions, although, as expected, negative sidelobes are minimised in
the apodized case. However, in this case, the resolution has also been
degraded. 1Inspection of Fig. 2 shows the loss in structure of the dominant
peak at the second harmonic Electron Cyclotron frequency compared with that in
Fig. 3 as well as artificially broadened peaks at the fundamental and third
harmonic cyclotron frequencies. The Electron Cyclotron frequency was 61 GHz

for these data.

2.2 The Maximum Entropy Method

The Maximum Entropy Method (MEM) offers an alternative approach to
spectral analysis. Instead of trying to compute a spectrum from measured
autocorrelation data directly, we examine instead which spectrum would be the
most likely to have been produced given the observed autocorrelation data
set. This way, problems associated with the incompleteness of the data set

are almost entirely avoided.

The reconstructed spectrum is represented by its intensities, fj, on a
similar (say N = 512) grid as that described above. Then, to measure the
misfit between the actual (noisy) data and the data which would be observed if
the spectrum gere correctly represented by any particular fj, we use the
statistical y test:

2 2
X = | (normalised residual) . (6)

2
All spectra for whicg X 1is inadmissibly high are discarded; in MEM we seek
the condition that y /N = 1. To distinguish between the remaining spectra,
all of which are consistent with the data, we choose the spectrum having the

maximum configurational entropy /10/.

S = = . lo P. where B, o=



In this way we select a unique spectrum which is consistent with the observed
data. The entropy, S, is a measure of the missing information content of the

spectrum, consequently its unconstrained maximization yields a flat,

featureless spectrum. Thus we see that its constrained maximization gives us
a spectrum which is as featureless as possible but is in agreement with the
known autocorrelation data. This spectrum is therefore uniquely safe; it
contains the minimum of false artefacts and noise and yet gives the maximum
resolution and dynamic range attainable consistent with the quality of the

data.

Implementation of this method requires the calculation of the
autocorrelation data which would be observed from any arbitrary (positive)
spectrum. We do this using an FFT and subsequently interpolate to obtain data
at the exact delay values for which we possess measured data. We then compute

the value of

2
2 N [I(nat) - I7(nbt - T¢)]
x = 1 ' (8)
n=1 2
o
198

where I~ refers to the 'mock' data that would be produced by the trial

spectrum, f and tg is a trial value (in this example it is estimated by

j»
inspection of the maximum in the measured auto-correlation data, Fig. (1).
The value, o is the rms error on the nth datum. Starti%g with the flat
spectrum, we iterate on fj in such a way as to minimise ¥ /N but
simultaneously maximise S. Details of the algorithm are given in ref. /11/.
Fig. 4 shows the resultant spectrum and the corresponding value of x2/N after

various iterations.

After 12 iterations leN = 3.0 but reduces to 2.7 after 20 iterations.
However, because T was held constant during the MEM iteration, ¥ /N was not
necessarily fully ginimised with respect to changes in ©t , i.e. variations
in v will produce variations in I°(t ) after any given QEM iteration. Using
the gpectra obtained after 15 iteratigns we have minimised xz/N with respect

to T , obtaining an optimal value of 4.6, as shown in Fig. 5.
0

2
This value was then used to calculate y /N and the MEM iteration
2

procedure repeated. Further optimisations gave y /N =1 for 1 = 4.68 after
2 0
16 iterations. The ultimate minimisation of ¥ /N with respect to Tt is shown
0
in Fig. 6. In principle this recalibration procedure could be applied

iteratively but, unless the initial estimate of TO is far from optimum, one or



two recalibrations will suffice.

The resulting optimum MEM spectrum is shown in Fig. 7. The structure in
the second harmonic peak is clearly consistent with the measured
autocorrelation data and is not an artifact of the Fourier transform.

Accurate measurements of the profile of the second harmonic Electron Cyclotron
Emission with good frequency resolution are necessary for detailed studies of
the electron temperature profile in a tokamak /4/. In this example, the
structure is believed to be due to a resonance in the interferometer frequency
response and can be compensated for independently by comparing the spectrum of

the plasma with that of a black body /3/.

3. Conclusion

In summary, we have used both the Maximum Entropy Method and the standard
Fourier Transform Method to invert noisy autocorrelation data gathered using a
millimetre-wave Michelson interferometer. Comparison of the results shows the

MEM technique to have three clear advantages:

(1) For given autocorrelation data (with inevitable incompleteness and
measurement errors), MEM gives an enhancement in the spectral

resolution which can be obtained.

(2) The MEM technique eliminates negative sidelobe structures on the

inverted spectrum. This is a consequence of the definition of
configurational entropy (Egq. (7)) in which P j must always be greater

than zero.

(3) The use of MEM enables the zero-path-difference correction to be

determined accurately.

Although we have concentrated here on an example in millimetre-wave plasma

interferometry, it is clear that the MEM technique could be used to advantage

in other regions of the electromagnetic spectrum.
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Fig.1 Experimental autocorrelation data, N = 194 points. Electron
Cyclotron Emission intensity for magnetic field of 2.2 T in DITE tokamak.
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Fig.2 Inverted Spectrum with Cosine-squared weighting of autocorrelation data.
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Fig.3 Inverted Spectrum with unweighted autocorrelation data.
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Fig.4 Development of trial spectrum during Maximum Entropy Iteration.
Oversampling « = 4, zero-path-difference correction, 7 = 4.5 grid points.
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Fig.5 Minimisation of x* /N during Maximum Entropy Iteration
assuming 7 = 4.5 grid points.
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Fig.6 Minimisation of x? /N during Maximum Entropy Iteration
assuming 7_ = 4.68 grid points.
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Fig.7 Optimised Maximum Entropy Spectrum. Oversampling o = 4,
zero-path-difference correction 7, = 468, /N=1.0.

CLM-P 687









