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ABSTRACT

The well-established transfer function methcd of determining the stability of
lumped parameter dynamic systems is applied in the paper to a study of the stabil-

ity of an infinitely conducting fluid immersed in a magnetic field,

Such a system is both distributed in space and multi-dimensional and it is
shown how, by the application of a modal energisation technique, the whole may be
replaced by a number of simpler systems, each subjected to a spatial energisation
in the fundamental or a higher order (harmonic) mode and each amenable to a one—
dimensional analytical treatment. Complete stability is obtained only if all the

component systems are themselves individually stable,

To accommodate the distributed nature of the system the concept of field impe-—
dance is introduced, and to help the electrical engineer to understand and appre-
ciate better the physical significance of the problem the whole is converted to an
equivalent circuit or analogue, involving electrical transmission lines., A further
advantage of this approach is, of course, the wealth of analytical solutions and

tabulated transforms which are applicable to the electrical network field,

Two particular geometrical configurations are then discussed in detail, In
the first, a cylindrical fluid is contained by an axially directed magnetic field
and in the second, a cylindrical fluid is contained by a circumferentially directed
magnetic field. These are two geometries which have been intensively studied in
the controlled thermonuclear fusion field and are usually referred to as the 6-

pinch and the Z-pinch respectively.
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1. INTRODUCTION

The pracfical application of electromagnetic theory increased so spectacularly
in the microwave field between 1940 and 1950 that a new approach became necessary,
The old practice of working out each boundary value problem as it if were a new
one was largely abandoned as repetitive and uneconomical because if failed to co-
ordinate the various results. The central theme of the newer approach was the

concept of field'impedance]’z.

Also, during the following decade the need for a more unified approach to the
understanding of closed loop lumped-parameter dynamical systems led to a more

- . 3,4
widespread use of transfer functions and transforms as design tools™’ '’ 5.

This paper is an application of these engineering concepts to magnetohydro-
dynamics, i.e., the dynamics of ideal conducting fluids. Such an approach will
not yield analytical solutions which cannot be obtained by classical methods but

for some it will provide an intuitively clearer picture,

There are obvious limitations because superposition principles lie at the root
of the concepts of both field impedance and the transforms, The field equations
of electromagnetism are linear, whilst the field equations of hydrodynamics are
non-linear due, in the first place, to the presence of, and the ideas behind, the
transport operator; also when an electromagnetic field penetrates a conducting
fluid the combined system is stentially non-linear, due to the coupling mechanism,
i.e., the presence of the motor and dynamo terms, This paper, however, is con-
cerned with the formulation of the magnetohydrodynamics in a form which is linear-—
ised on the one hand by the assumption of an infinitely high conductivity fluid
which prevents penetration of the electromagnetic field and, on the other, by con-

sidering perturbations about a set of equilibrium conditionsﬁ.

2, THE MASS-SPRING MODEL

The stability of an infinitely conducting fluid in the presence of external

electromagnetic fields can be likened to the simple mass-spring model of Fig,1 so
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closely that the behaviour of the latter is worth recounting in detail, In develop-
ing the analogy analytically it is conceptually useful to consider the mass-spring
model flow diagram as a closed loop system expressed in terms of force F and
velocity u as dependent variables; the fluid counterparts are pressure and velo-
city.

Initially, the system is postulated to be in static equilibrium where the
weight of the mass M is balanced by the tension of the spring. Suppose now the
system is perturbed by the application of an external force Fe' At some time t
later the mass will be displaced a distance x and if the proportionality factor

of the spring is K we have:

Spring restoring force Fr = Kx
= K/ udt
u
— K s LB (1)
1
where E = dt
. d3x
Accelerating force F = M-—
a dt2
du
= M =—
dt
= MSU s0 e (2)
d
where s = at
and the system configuration is defined by
= = F LR
Fe Fr a (3)
Equation (1) may be rewritten as:
= Z en e
F " (4)

where Zn is referred to as the impedance of the spring.

Likewise equation (2) may be rewritten as
F = ZLl LAY (5)

where Zm is referred to as the impedance of the mass.
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Equations (3), (4) and (5) are depicted in conventional seromechanical lang-
usage in Fig.2(a), The object of this paper is to express the hydrodynamic and

electromagnetic field behaviour in a similar kind of language.

The system transfer function connecting the response u with the applied

force Fe is

1
4y 1

1 ~ L + 2% *
1~ (%n) (- Zn) m n
K
1 M S
In terms of the system parameters this is K K )
(Sz+ﬁ)

and the velocity response to say a unit step of applied force will be

Sin t .

A=

=

This is illustrated in Fig.2(b) and the system is neutrally stable,

Consider now the case where the spring constant K becomes negative, i.e. a
de-restoring force. This mechanical situation has many counterparts operating in
terms of angular rather than linear displacements, e.g. a weather vane pivoted to
leeward of its centre of pressure'or an aircraft with its centre of pressure ahead

of its centre of gravity.

The system transfer function becomes

A=
2=
w

giving a step response of

% Sinh /%t

This is shown in Fig.2(c) and the system is now unstable,
An alternative and well-established approach to determining the stability of

the system is worth re-stating here., If A(s) is the open loop transfer function



Z
(in this case A(s) = - = = - s )

Zm s*M
system is 1 — A(s) = 0 and the stability depends on the roots of this equation,

then the characteristic equation of the

being unstable if any root has a positive real part. If numerical values of the
parameters are available the well-known Nyquist diagram approach may also be use-

ful,

The characteristic equation 1 — A(s) = O 1is sometimes called the dispersion
relationship. In Fig.2(a) an input force Fe was shown for the sake of complete-
ness, but the stability of a linear system is not a function of the stimuli and in

later parts of the paper this input will usually be omitted.

3. STABILITY OF THE SIMPLE 6-PINCH CONFIGURATION

This section considers the stability of a cylinder of infinitely conducting
fluid surrounded by a vacuum containing a steady uniform axial magnetic field
enclosed within an infinitely conducting metal wall. This configuration is approx-
imately produced in a 6-pinch plasma experiment after the pinch or collapse phase
is complete. The latter is usually brought about and maintained by a f—di rected
current driven around the infinitely conducting metal wall by an external power
supply. This fluid, magnetic field geometry, shown in Fig.3, has been chosen as
a starting point because its dynamic behaviour can be directly related to that of
the mass—spring model, Attention will be confined to a two-dimensional model with

variations along the axis and the radius only,

3.1 The Closed Loop Flow Diagram

Since the fluid is infinitely conducting, the steady uniform axial magnetic
field HOZ is excluded from the interior of the fluid and of necessity a sheet

current of density -—JOe (= HOZ) flows on the surface of the fluid perpendicular

to the axis. Initially, the system is postulated to be in static equilibrium

where the pressure PO within the fluid is balanced by the magnetic pressure
2

E'LHOZ

> outside,




Suppose the surface of the fluid is perturbed and moves sinusoidally about its
equilibrium position with a radial component of velocity u, and an axial compo-
nent of velocity uz. The former is related to the fluctuating pressure p at

the surface by -u, = —%: where rZ; is known as the acoustic field impedance
looking radially into Ehz fluid. The negative sign arises because u, is posi-
tive in the direction of increasing radius. Implicit in PZ; is the two-
dimensional nature of the problem and its value is thus dependent on boundary con-
ditions in the 2z direction and on the spatial pattern of the pressure fluctua-

tions, also in the 2z direction. This aspect of rZ; and likewise of eZ+

z"e
(see next paragraph) will be discussed in some detail in later sections of the

paper,

The fluid surface, moving with a radial velocity u, then interacts with the
steady magnetic field Hoz producing an induced fluctuating electric field on
the surface .(dynamo effect, u x u H). Since the fluid is infinitely conducting
and thus cannot support a net electric field (i.e, E + uxB = 0) this induced
electric field must in turn be balanced by an equal and opposite Ee field.
Because of the two—dimensional nature of the problem, this fluctuating Ee field

gives rise to fluctuating magnetic field components Hz and Hr‘ As before E9

E

is related to Hz by Hz = 591 where SZ+ is the electromagnetic field impedance
b/
zte

looking radially outwards from the fluid into the vacuum. This corresponds to the

propagation of an electromagnetic wave in the radial direction, The value of EZ;

is again dependent on the z direction boundary conditions of the system and on

the 2z direction spatial pattern of E as shown in Section 3,2,

6!
Finally, the steady current —Jbe flowing on the surface of the fluid reacts

with the fluctuating magnetic field Hz producing a surface pressure p (motor

effect, J x p H) and this completes the loop. The flow diagram of the closed loop

is thus as shown in Fig.4 and is similar to that for the mass-spring system in

Fig.2(a),

The open loop transfer function is -



A(s)

I

= Moz 37 ¥ oo

0z 06 ... (8)

and the dispersion relationship 1 - A(s) = O becomes

Bﬂ
0z
1 + —=pg=3 =0 eee (7)
rfa zZe

The stability of the system depends on the roots of equation (7) but these cannot
be determined until the field impedances rZ; and gz; have been developed. An
established technology exists in the micro-waveguide field for dealing with prob-

2 and it will be usefully employed here because of the insight

lems of this kindl'
which can be gained when hydromagnetic systems of this kind are thought of in

terms of transmission lines,

3.2 The Electromagnetic Field Impedance 22;

Although the simple MHD problem of Section 3.1 has been discussed in cylin-
drical geometry, there are advantages in introducing the concepts and ideas behind
the field impedance approach in Cartesian geometry. An obvious advantage is, of
course, mathematical simplicity, but it is also easier to introduce and explain
the congept of mode energisation and mode impedance which is a key feature of this
approach. If it is assumed that the vacuum outside the fluid is contained in a
thin annular space, then without loss of rigour the electromagnetic part of the
system can be analysed in Cartesian co-ordinates where Ee becomes ?Y and Hr

becaomes H_.
X

Consider a section through the vacuum, between the fluid and the wall, as

shown in Fig.5., The electromagnetic field equations are:



JE
. 4

Z

It

a \jw!.f. Hx LN (8)
E
e

ox

Qs

—Jop H) see (9)

and

aHx 3H2
- —= = jwe E

e oo a ]O
ez X y (H0)

From equations (8) (9) and (10) may be obtained

e ) *E
EEEI-'-#:IQEE_V e (1])
where
2 _ v 5
Pe = Jjwsjop
Assume the solution E_=E (x) E (z) then
y y y
#E (x E (z
by S ey e
E (x F) E (z oz -
Y Y(
and this is satisfied if
&E (x)
+ r|2 E (x) =0 o0 (12)
0 y
and
32E (z)
2 - -
az + k Ey(z) —0 LI (1‘3)
and
n? + k2 = - T2
e
The solution is thus
E. = (A Sin nx + B Cos nx) (C Sin kz + D Cos kz) sen L18)

y

where A B C and D are constants; either n or k 1is also arbitrary at this

stage,
Suppose Ey is assumed zero at z = + Ea and z = —% (z direction boundary
o ; s ; ka F ka =
corditions), This can be satisfied if C = 0 and Cos 5 = O giving > =85

where g = 1,3,5,7 ,.. etc, or alternatively if D =0 and Sin %? =0 giving



%? = gn where g =0,1,2,3 ... etc., Both are valid solutions, the former giving

a cosine distribution about O, the latter a sine distribution, but only one solu-

tion is applicable at any one time.

Each solution for Ey thus consists of the sum of an infinite number of terms
having a sinusoidal distribution along the =z axis and each term corresponding to
one mode (or spatial harmonic) of the possible complex pattern of Ey along z.
This is an important concept because in considering the stability of a system like

this every mode taken singly must in itself be stable.

Since toroidal configurations are important in pinch discharge work it is
interesting at this stage to show how the above analysis can also be applied to a

toroid. If Ey is assumed to be symmetrical about O this corresponds to a

cosine distribution with C = O, If additionally the ends at z = + % and
zZ = - % are left free then the x distribution of Ey along z = - % will be
identical with that along z = - % and Hx will be zero at all points along the

edges, This latter condition is necessary to prevent propagation in the 2z direc-

tion beyond + 2 and - . In this case the two edges may be joined together

g
2 2
without disturbing the system and this is equivalent to bending the strip round

on itself and leads to toroidal geometry in the =z direction, To satisfy this

condition Sin %? must be zero, thus %? = gn where g = 0,1,2,3 ... etc. Finally

if the toroid has a major radius R, then a = 27Rp  and this gives Kk = ﬁ%— and

from equation (14)

n=j [Ie® + <§;)ﬂ "

The solution for Ey is then:

Ev = (A Sin nx + B Cos nx) Cos kz ve. (16)

B

k., f - - _ Kk
Suppose Ye = Pe + k® then n = Ye

Equation (16) can be rewritten as

E, = (P Sinn kve x + Q Cosh kYex) Cos kz ee (17)

where P and Q are new constants, and may of course be complex. Also fron



equation (9)
kY

z pr

(P Cosh kT X + Q Sinh Y x) Cos kz ees (18)

and the electromagnetic field impedance ize' which is associated with propagation

along OX is given by

y Sy
zze = H
Z

P Sinh kY + Q Cosh kY
_ Jowop ok e X

L] LN ] (19)
k k . k
Ye P Cosh Ye X + Q Sinh Te X

Note that this impedance is not a function of 2z so0 the modal propagation
problem in the x direction is essentially one-dimensional, The value of the
field impedance does however depend on the mode being considered, i.e, on the
value of g and hence the value of k, It is convenient and appropriate in dis-
cussing the one dimensional modal problem to refer to kYé as the mode intrinsic

propagation constant and ﬂ$5 as the mode intrinsic field impedance zoe'
e

In terms of the problem parameters these are:

. . . : Kk*
kYe=\/Jw¢.Lst+k2 = JJmp (Jms+m),

and
= [ jou jwe + k3 \} .
Jwe + -_—
; k k . e
Relating ¥ and "Z to the propagation constant and characteristic impe-

oe
dance of a one-dimensional electrical transmission line it is clear from the above

expressions that the form of one elemental section of such an electrical analogue
is as shown in Fig,6 where voltage is analogous to the electric field Ey and

current analogous to the magnetic field Hz'

Using standard transmission line theory, the input impedance to such a line of
length £ terminated in a short circuit, i.e, the vacuum in this case surrounded

by an infinitely conducting metal wall, is given by:



y. _k k
Lo = Zy, tanh Y, & ... (20)

e
At low frequencies (w = 0) kYe approaches k and the impedance approaches
Jou Le (an inductive reactance) where Le is a constant dependent on the mode

number under consideration., Thus 511 in the flow diagram of Fig.4 1is equal to
z %
s;L (s = 3 = jw in cissoidal analysis) and this has exactly the same form as
e

Z
n

1l

% in the mass spring flow diagram of Fig.2(a).

A similar low frequency approximation can be obtained from an analysis of Ze
in cylindrical geometry but here the mathematics will involve Bessel functions7.
If the fluid surface is at a radius s and the infinitely conducting wall has a
radius R0 then the outward looking field impedance 22; is derived in Ref.8

Pt.II Appendix G3 equation G3.25 and is -

o _ o TalTeRo) Ky (Krero) = Ky (S¥gRy) T, (Mrero)

cea (21)
ze kg LalkygRy) Ky (kyery) + Ks (kyery) Iy (kyero)

where I and K are the modified Bessel functions.

At low frequencies this also reduces to an expression of the form JmpLe (an

inductive reactance) as was the case for Cartesian geometry.

3.3 The Acoustic Field Impedance rz;

Since this impedance is related to hydrodynamic waves propagating into the
body of the fluid, this aspect of the problem must be worked out in cylindrical

geometry. The linearised acoustic wave equations are:

1 o(ru_) du .
i __r _Z _ =Jwp (22)
r or e gz O P se
00

QR__.

e eeo (23)
and

9P _ _j

Tz = —dwp gy, eee (24)

where P, = mean pressure, p = mean density, and eo = ratio of the specific

- 10 -



heats,

Eliminating u, and u, gives:

ar Z P
or
e 19p, 8°p _ pa, _ 95
ar+r‘ar+az PED_O’ wus (25)
where
; Po
I' = jw
2 eopo

is the intrinsic propagation constant for acoustic waves.

Assuming as before that p =p (r) p (z) and separating the variables the

solution of equation (25) is

k k, .
p _l:é I, ( Tar) + B KO ( Yar{} (C sin kz + D Cos kz) , ees (26)

kra = | T2+ k°

is the mode intrinsic propagation constant for acoustic waves.

where

From equation (22)

Ky

a k k :
u, =~ JmPo’:é I, ( Yar) ~ B Ky ( Yar):} (C Sin kz + D Cos kz) swn LOT)

and from equations (26) and (27) the acoustic field impedance rz; looking

radially into the fluid from the surface at radius r, is

. k
Jop IO( Taro)

- p_
Z = = L] ocoe (28)
r a -u
ro My (Yr)
Jw K
In equation (28) the term K is the mode intrinsic field impedance “Z__ for
Ya

acoustic waves,

At low frequencies (w = 0) corresponding to incompressible fluid flow the

acoustic field impedance PZE approximates to jwpo Ga where Ga is a constant

- 11 =



depending on the mode number., Thus as before —%: in the flow diagram of Fig.4
ra
is equal to IG and this has the same form as é_ =3 in the mass-spring
o a m
flow diagram of Fig.2(a)

3.4 Stability

The stability of this simple 6-pinch MHD system can now be studied by con-

sidering the roots of equation (7) since the field impedance Ez;

4

and Z  have
r'a

been determined. At low frequencies the dispersion relationship becomes:

BQ

0Z
- =0 ees (29)
s “POGaLe ?

and
B2
0Z
§%2 = = ——o see (30)
p'PoGaLe

The system is therefore neutrally stable,

This can also be seen from the flow diagram of Fig.4 with the low frequency

Bt and _Z~ respectively., The

approximation SpLe and SpOGa inserted for e oy

form of the flow diagram is then identical with that of the mass-spring model in
Fig.2(a) (a closed loop containing two integrators and a phase inverter) and as

such is neutrally stable,

At high frequencies it is much more difficult, if not impossible, to deter-
mine the roots of the dispersion relationship analytically., However, if numerical
values of the system parameters are known, the open loop Nyquist diagram can be
drawn and the stability of the system inferred from the position of the point

(~1,0) on the diagram; this has to be done for each mode,

If the bounding wall has finite conductivity the effect of this on the sta-
bility can be deduced from the equivalent electrical line in Fig,6. This results
in a resistive termination, so at low frequencies the line input impedance iZe
takes the form R + jwL, This form applies for all mode numbers, but the resis-

tive component relative to the inductive component at any frequency gets less as

- TZ v



the mode number increases,

With a temmination of this type the dispersion relationship, equation (7)

becomes:

de
0z
] + = O seoe (3])
(R + sL) sPoGa

giving on solution

B2
R R® 0z
§ = == 0+ ———p sse (32)
2L 4L POGaL

Both roots have a negative real part so the system is stable and additionally
will damp out any small injected disturbance. This example indicates a way in

which the impedance of the power supply can affect the stability of the fluid,

4, STABILITY OF THE SIMPLE Z-PINCH CONFIGURATION

This section considers the stability of a cylinder of infinitely conducting
fluid, carrying an axial surface current of Jbz amps per metre of circumference,
enclosed within an infinitely conducting cylindrical metal wall, The surface
current JOz will have associated with it a circumferential magnetic field in the

) . . o) .
vacuum outside the fluid of magnitude HOe - where HOe = Joz' As before, at-

tention will be confined to a two dimensional model with variations along the axis

and radius only,

4.1 The Closed Loop Flow Diagram

The system is postulated to be initially in static equilibrium where the
2
pH
fluid pressure P0 is again balanced by the surface magnetic pressure 206 v

If the surface of the fluid is disturbed and moves sinusoidally about its equili=-
brium position with a radial component of velocity U, and an axial component of
velocity u,, then as before the fluctuating surface pressure p 1is related to

u. by =-u_ = B where FZZ is the same acoustic field imbedance, looking

Z
ra

radially into the fluid, as was discussed in Section 3.3. The fluid surface moving

with velocities u, and uZ then interacts with the steady magnetic field HOe

- 13 -



producing induced fluctuating electric fields on the surface in the z and r

directions,

As before, because of the infinite conductivity of the fluid, these induced
fields are balanced by fluctuating components EZ and Er and they in turn give
rise to a fluctuating magnetic field He associated with electromagnetic wave

propagation in the radial and axial directions. In the radial direction EZ is

E

related to He by =~ He = —2. where gz; is the electromagnetic field impedance

Z z+

6%e
looking radially outwards from the fluid surface into the vacuum. gzz is not the
same impedance as was discussed in Section 3.2 because here the radial propagation

is due to EZ and H. whereas before it was due to E6 and Hz' As before how—

)

L G B +
ever the two dimensional nature of the problem is implicit in gZe.

Finally, the steady current JOZ flowing on the surface of the fluid reacts

with the fluctuating magnetic field H producing a surface pressure and this

)
completes the loop. Unlike the 6-pinch problem however this is not the whole
story, because the decrease in the vacuum magnetic field as one moves radially

away from the fluid surface leads to a further component of fluctuating pressure

which can be represented as an additional loop in the flow diagram.

This extra pressure fluctuation, arising from the displacement of the fluid
in a non-uniform magnetic field will be referred to as the displacement term and

is calculated as follows:

Magnetic pressure at radius r outside the fluid

l.l.Hz r?

06 "o

.ot saw 133)
2 2

) e Lo

. Pressure gradient il cee (34)

et 2
HH06

(o}

at the surface radius ro.

i
=

Fluid surface radial velocity

J. Surface radial displacement

It

- 14 -



Hence fluctuating surface pressure = pressure change/unit displacement
u

ap - r

(37) x displacement (g )

-
tloe U
e s

i (B5)

The closed loop flow diagram, including this displacement term, is shown in

Fig.7e

The open loop transfer function is

2 2
Als) = H JozHoe ”Hoe
o = 7~ Z Y sz r °

raébte ra o

82 BQ

= - _06 e 09 sop (36)

Z ZZ+ su Z r
rfa e%e Hrfa o

and the dispersion relationship 1 - A(s) = O becomes

B2 B2
e =2 . 2 _ _ vea(37)
rla oZe StrZ; To

As before, the system stability depends on the roots of this equation. At low fre-
quencies rZ; is again equal to SPoGa but the form of gz; is not yet known,
It is interesting to note that if SZZ is assumed to be infinite, then the disper-
sion relationship reduces to
Boe

1 = EEEEZE;F; =0 sen (58}
giving on solution a positive value for s, If the electromagnetic field imped-
ance is infinite then the displacement term causes instability. This is also clear
from the flow diagram, Fig.7, because the upper loop, corresponding to the dis—
placement term, consists of two integrators in cascade only, and is exactly
analogous to the mass—spring flow diagram, Fig.2(a), where the spring constant is
negative, The behaviour of the complete system however, depends on the form of
zZ +

Bze which is studied in the next section.

= 15 =



4,2 The Electromagnetic Field Impedance gZJer

Assuming the vacuum annular space between the fluid and the conducting wall
is thin, then as in Section 3,2 it is simpler to evaluate gz; in Cartesian
geometry where E " and He become Ex and Hy respectively. Consider a sec—

tion through the vacuum space, between the fluid and the wall, as shown in Fig.8.

The electromagnetic field equations are:

o,
3z = - J(JOEEX see (39)
oy
X = ,JwEEZ eee (40)
and
aEx BEZ
3z " Tk < e ess W3
From equations (39), (40) and (41) may be obtained:
3%H 3*H
s 2
= +E§x = I‘e H‘y ees (42)
where
I': = jwejwu

Equation (42) can be solved exactly as equation (11) in Section 3,2 giving:

H, = (P Sinh Ky, x + Q Cosh r_ x) Cos kz , .en (43)

where

and

g Lg =0y 15258 uees ebe)

W
Il

3]

g

1l

-E-— for a toroidal arrangement.

—

From equation (40)
ky

E = —2 (P Cosh X x + Q Sinh
% Jwe e

kYe x) Cos kz sea (44)

= 16 o



and the electromagnetic field impedance ;Ze which governs propagation along o0x

is given by:

E
;ze -7 ﬁg
Y

ky, P Cosh Mty x + Q Sinh Sy, x e
= = —_— eae (4
Jwe p sinh Ky, x + Q Cosh Ky, x

ky,
As before kTe is the mode intrinsic vropagation constant and 352 is the mode

intrinsic field impedance kzoeo

In terms of the system parameters these are:

]
1l

k’Ye J Joe jup + K2 \} (Jop + ——) Joe 4

and

K _ jwe jou + k2 _ Cop. + ]ws)
Zoe Jue ’

and from these expressions for kTe and kzoe it is clear that one elemental

section of the equivalent electrical transmission line is as shown in Fig.9.

4.3 Stability

Continuing in Cartesian geometry, the impedance looking into a transmission
line of the type shown in Fig.,9, of length £ and terminated in a short circuit
is:

Zz = %z tann ¥y e eee (46)
ye oe

k,
At low frequencies (w - 0) the propagation constant Ye approaches k
S
and the impedance approaches jﬁt (a capacitive reactance) where Se is a con-
stant depending on the mode number, The cylindrical solution for gz; is derived

in Reference 8, Pt. II, Appendix G Equation G1.20, and is:

k. k k =
,IE IO ( YERO) KO ( Yero) Ko (kYeRo) Io (kYeroJ
Joe 1o Ry ) Ka (Krgrg) + Ky (KreRy) 1, (Kyery)

(47)

DN
o +

As in the Cartesian geometry case at low frequencies, this also reduces to

S
an expression of the form j:i (a capacitive reactance). The dispersion
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relationship, equation (37) therefore becomes:

B € B2
0o M . 0 (48)
1 + T i - = se e
PoSeGa s“upoGaro
32 > B2
08 06
s 1+ 20| = —2- eee (49)
[ PoSeGa:| P‘POGaI‘o

One root is always positive and the system is unstable,

A method of improving the stability of this simple 2z pinch is to immerse
the fluid in a z~directed magnetic field, This field is usually established in
z-pinch plasma experiments before the pinch or collapse phase, when the plasma
conductivity is low. During the collapse phase, the z field is trapped in the
plasma and increases in magnitude as the radius falls. This phase ends when the
trapped field reaches a value HOZ such that the pressure balance relationship

“ng “ng
Po + T2 T T2

is satisfied.

Consider then the idealised situation of a c¢cylindrical fluid of low bulk con—
ductivity but having an infinitesimally thin surface layer of infinite conductiv-
ity, carrying an external surface CUrfent of JOZ amps. per metre of circumference.
Associated with this current will be a 6-directed magnetic field in the vacuum

. . . Hog To .
space outside the fluid of magnitude = where H06 = Joz' In addition, there
is a z-directed magnetic field of magnitude Hoz trapped in the low conductivity
fluid and unable to escape because of the infinitely conducting surface layer,
This will of necessity give rise to an internal surface current of Joe anp. per

metre of axial length where Hoz =J The assumption of a low conductivity

06"*
fluid inside the surface layer simplifies the problem, in that the acoustic and
electromagnetic waves propagating through the fluid are not coupled along the

radius (as in Reference 8, Part I, Section I, Fig.4) but are coupled only at the

surface Po'

The flow diagram for this arrangement is identical with Fig.7 but with an
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extra loop, corresponding to electromagnetic wave propagation through the fluid
from the surface inwards towards the centre., This is shown in Fig.10, The field
impedance involved in this loop is 22;. This inward looking electromagnetic

field impedance (which here must be in cylindrical co-ordinates) is derived in

Reference 8, Part 2, Appendix G3, Equation G3.8 and is:

ZZ— _. Jwp M oo (50)

T Ry Io(%vero)

At low frequencies and low mode numbers, using the approximations given in

Reference 9, Appendix 2 when kTerO approaches O this becomes:

6~ _ Jou kYero
z'e ~  Kky 2
e
juop T
_ duro e (51

The open loop transfer function for Fig,10 is:

B2 Bz 2
00 06 0z
A(S) = - + = - - O.— R} (52)
— Zot
rza eze Sprza r‘0 rza zze
and the dispersion relationship 1 - A(s) = O becomes:
B2 ¢ B 2 B3
52 [] + 06 j|= 06 _ OZ -y (53)
PoSeCa ] HPeGaTo  HPoCaT,
Bge # Bgz
e [ . ees (54)
Hpocaro [: Boe :I
This is stable if
B2
0 i
- F cee (55)
00

For higher mode numbers in equation (50) it can be shown from the Bessel func-
tion expansions-7 that
I, (kYero)
k
Iy ( Yero)

(o]
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k.
Y r
is always less than g 9 . thus equation (53) defines a condition for the pre-

vention of sausage-type instabilities in the idealised two-dimensional z-pinch

which is applicable to all mode numbers,

Attention has been confined, in this paper, to two-dimensional systems, but
the same techniques can be equally well applied to the response of wave and
diffusion-like systems in three dimensions and an example of this is given in

Reference 8, Part I, Section 6,

It is interesting also to note that in equation (52) the positive term on
the right-hand side which could bring about instability stems irom the displace-
ment term due to a negative magnetic field gradient outside the fluid. If this
gradient were positive; corresponding to the magnetic field increasing away from
the fluid surface, this term would change sign and the system would become uncon-—

ditionally stable,

5. CONCLUSIONS

The paper has shown how the engineering concepts of transfer functions and
flow diagrams, generally used to detemmine the stability of closed loop lumped
parameter dynamic systems, can be applied to a study of the stability of an infin-

itely conducting fluid immersed in a magnetic field.

The authors feel that the conversion of the magnetohydrodynamic system to an
electrical analogue, or equivalent circuit, will help considerably the control
engineer to get a better physical understanding of the problem. For example, the
paper shows clearly how the very complicated expressions like equations (21) and
(47) which occur in analytical studies of magneto-fluid-stability have very

simple physical interpretations in terms of field impedance,

It is believed that an extension of these techniques might be applied advan-—
tageously of fluids having finite conductivity and to geometrical configurations

other than the 6 and Z pinches considered in the paper,
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It is likely that this approach is also applicable to a variety of physical

systems where wave and diffusion processes are involved,
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Transfer function flow diagram for the mass-spring model
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Velocity time graph for the mass-spring
model with a positive spring constant
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model with a negative spring constant
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Schematic of a two-dimensional #-pinch experiment (CLM-P69)
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Transfer function flow diagram for the f#-pinch
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Fig. § (CLM-P 49)
Cartesian representation of a radial section through
the vacuum space of the #-pinch configuration
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Fig. 6 (CLM-P49)
An elemental section of the transmission line
analogue of the vacuum space in the #-pinch
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Transfer function flow diagram for the z-pinch
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Cartesian representation of radial section through
the vacuum space of the z-pinch configuration
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An elemental section of the transmission line
analogue of the vacuum space in the z-pinch
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Fig. 10 (CLM-P 69)
Transfer function flow diagram for the z-pinch
with a stabilising axial magnetic field












