

CLM-P690

THE OLYMPUS FORTRAN COMPOSITOR

M H Hughes and K V Roberts

Culham Laboratory
Abingdon, Oxford, 0X14 3DB, UK
(EURATOM/UKAEA Fusion Association)

ABSTRACT

This article describes the purpose,structure and use of the
COMPOSITOR, which is a word-processing faciiity that is designed
to assist in the construction and maintenance of Fortran programs
that conform to the QOLYMPUS Standards. It can also be used to

tidy up existing Fortran programs.

(to be published in Computer Physics Communications)

NHovember 1982

Title of progham: COMPOS

Catalogue numbern: ACEA

Progham obtainable §rom: CPC Program Library, Queen's University of
Belfast, N,Ireland (see application form in this issue)

Compuzgn: PRIME 750. Installation:; Culham Laboratory. The program can be
used on any computer equipped with the OLYMPUS system, and IBM
support routines are provided,

Operating system: PRIMOS

Proghamming Language.: ANSI Fortran 66

High speed stohrage nequined: 3 PRIME segments of 64K words each.
(Minimum size program).

No. o4 bits in a word: 32

Perniphernals used: disc

Number of Lines in combined program and test deck:

CPC Library phoghams used (alternatives):

Catalogue No: Title Reg. in CPC
ABUF OLYMPUS 7 (1974) 245
(ICL 4/70)
ABUJ OLYMPUS 9 (1975) 51

(IBM 370/165)

ABUK OLYMPUS 10 (1975) 167
(CDC 6500)

Keywords

OLYMPUS, Fortran, Documentation, Automatic Code Generation,
Word-processing, Text formatting.

-1 -

Nature of problem

The COMPOSITOR is a word-processing program that converts a free-format
Fortran input file to standardized OLYMPUS form. It is used for the semi-
automatic construction and maintenance of OLYMPUS software, and can also be
used for tidying-up existing Fortran codes in order to make them bhetter
structured and more readable. A variety of comnnent styles is allowed for,

Method of Solution

The input file is read in A-format, line by line, and temporarily
converted into unpacked integer format for processing. It is then stored
in packed format prior to output.

Restrictions on the complexity of the problem

The COMPOSITOR is written in OLYMPUS form in ANSI Fortran 66 and should
run on any type of computer system provided that the OLYMPUS system is in-
stalled and that suitable character packing and unpacking routines are
available. Versions of these routines are provided for the PRIME and IBM
computers, It mainly handles ANSI Fortran 66 code but could readily be
extended to deal with ANSI Fortran 77 or dialect statements, It processes
a sequence of subprograms one-by-one. The table sizes can be extended if
required.

Typical running time

3 seconds/100 lines of input on the PRIME 750.

LONG WRITEUP

1. INTRODUCTION

The inaugural article in this Journal [1] described and analysed

a number of techniques to facilitate the understanding of Fortran
programs. It was suggested that a program listing should be given the
general structure and appearance of a textbook in order to make it as
intelligible as possible to the reader. These ideas were subsequently
formalized within the OLYMPUS Fortran Programming System [2,3]:(see also
other references in the preceding paper [4], denoted in the following

by II). In fact, OLYMPUS consists of a complete set of prescriptions
for the construction, documentation and operation of portable Fortran
programs, Experience with the OLYMPUS system has recently been

reviewed [5].

Just as with a textbook, it is necessary to conform to a precise
set of typographical conventions if the layout is to be neat, consistent
and readable, These are defined in the preceding paper II., Although
the conventions adopted in OLYMPUS may seem rather detailed for manual
use, the work does not necessarily have to be done by hand at all, since
once a precise set of conventions has been established a substantial
degree of automation becomes possible. Thus a number of OLYMPUS
processors have been developed whose input is intended to be in a
progressively more relaxed style, eventually relieving OLYMPUS programmers
of much of the routine work of program construction and documentation,

This article describes one such processor, the OLYMPUS Fortran
COMPOSITOR, whose purpose is to ensure the preferred standard layout
of individual subprograms during:

(i) The initial construction, editing or updating of OLYMPUS programs,

(ii) The conversion of existing, arbitrary Fortran to a tidier form
that is more readable and easier to maintain.

Like the chapters in a textbook, OLYMPUS subprograms usually have
a standard decimal structure of sections and subsections each with an
appropriate heading, (see e,g, II, £§3 and Fig.12), and the COMPOSITOR
is analogous to the type of text formattingutility that is nowadays often
used in the preparation of decimally-structured reports, e.g. the RUNOFF
facility [6] on the PRIME computer system at the Culham Laboratory. It
is expected that it will assist in the further application of the OLYMPUS
system by making it easier to unite new programs, and at the same time

be of considerable practical help in a semi-automatic tidying up of a

substantial body of existing Fortran code. How to do this is discussed in
an earlier paper in this issue [7], denoted in the following by I.

The subsequent article [8], denoted by IV, describes a companion
processor called GENSIS, the OLYMPUS Fortran Generator, which automatically
constructs indexes and other OLYMPUS documentation, COMMON blocks, and
certain utility subroutines,

The present version of the COMPOSITOR is written in ANSI Fortran 66
[9] and should run on any type of computer system that is equipped with the
OLYMPUS Control and Utility Package [3]. A small number of input/output and
character - handling routines must be implemented in dialect Fortran or in
assembler language for a specific type of system, and these are segregated
in a support package outside the main Standard Program File (SPF). Versioms
are provided for the PRIME and IBM systems, and it is explained in Appendix
1 how they should be implemented for other types of computer.

This version of the COMPOSITOR is mainly intended to process programs
written to the ANSI Fortran 66 standard, and may therefore require some
minor enhancements in order to deal with the additional types of statement
that occur in particular Fortran dialects, or in ANSI Fortran 77 [10]. The
code is written in OLYMPUS form in such a way that these enhancements can
readily be madé, and suggestions on how to do this using the EXPERT facility
are described in Appendix 2.

It is hoped in due course to implement OLYMPUS in ANSI Fortran 77 [10],
and to produce a version of the COMPOSITOR that is written in Fortran 77 and
processes Fortran 77 programs, In this case many of the problems of input/
output, character handling and dialect statements that are familiar in Fortran
66 should not arise. It is also hoped subsequently to develop versions of
OLYMPUS and its utility programs for other languages such as ADA and Algol
68 since many of the techniques and conventions are of general applicationmn,

The COMPOSITOR is intended for interactive on-line use, and some of
the on-line commands that are explained in this article are those that apply
to the PRIME computer system at Culham. It should be relatively straight-
forward to build it into other interactive systems and it could also be used
in batch mode.

Section 2 discusses the philosophy of on-line program development,
illustrated by the short example, shown in the Test Runs, Figs.4-7, and it
is suggested that the style in which the programmer finds it most convenient
to type and the style that he likes to read need not be the same, thus giving
an extra degree of freedom which word-processor can exploit. In Section 3 we
explain how to use the COMPOSITOR in the development of OLYMPUS programs,while

in I we show how it can be employed to convert non-OLYMPUS programs to a more

structured and readable form without changing the working of the executable
statements.
Section 4 outlines the overall structure of the COMPOSITOR program
Which is similar to that of an OLYMPUS physics program [2,3], 1In section
5 we define the data structure in detail. In addition to being in standard
OLYMPUS form, the program is fully indexed and commented so that its working
can be readily understood from the listing. Section 6 explains the Test Runs.
Appendix 3 indicates how the COMPOSITOR has been built into the PRIME
computer system at Culham by making use of the Command Abbreviation facility
[11], while paper II defines the details of the OLYMPUS conventions that it
fulfills,

2. INTERACTIVE PROGRAM DEVELOPMENT

There appear to be two general requirements for an interactive program

development system (Fig.1):
(a) The input file A should be as simple to type as possible,

(b) The program listing B should be as well-organized and
readable as possible,

In particular, the programmer should not need to concern himself with
the details of layout and numbering conventions while he is constructing file
A, but when he is reading the listing B it is convenient to have it laid out
in a clear standardized format with a consistent numbering scheme and the main
sections well emphasized.

] In most present-day programming environments the formats of A and B are
essentially the same, except, possibly, for tab facilities and the automatic
indentation of blocks in languages such as Algol and Fortran 77. Although
context editors do enable the programmer to manipulate the content of the
input file A in a very general and powerful way, he remains entirely respon-

sible for the specific details of its layout. The consequence is that a single

compromise format is normally used for both A and B which is neither particu-
larly simple to type nor particularly readable, and which has a quality that
is much lower than what could be achieved with the available symbols and
paper area or is normally expected of typed or printed reports.

Furthermore, even when the experienced programmer does make the con-
siderable effort required to type his program in readable format, as many
people nowadays do, there is no mechanism by which this can be standardized
and programs written in collaboration by several people or even by the same

person at different times can often become quite ragged,

Fortunately the computer itself can help to solve this problem by
converting the free format of the input file A into the fixed standardized
format of the program file B as an automatic process.

In the OLYMPUS system File A of Fig.l is a free-format input file which
is designed to be easy to type, a short example being shown in the Test Run
1 Input of Fig.4., In particular statements and comments need not be indented,
statement numbers are arbitrary, and decimalized sections and subsections
need not be numbered but are denoted by # or ## respectively. When File A is
processed by the COMPOSITOR by typing the PRIME abbreviation command

COMPOS <filename> (1)
it is replaced in situ by the standard OLYMPUS File B format of Fig.5.
(For safety the original File A is preserved in 2 work file).

Usually File B will require further editing or 'proof-correction'’
as with a typed or printed paper., This is indicated by the loop in Fig.l1l,.
The necessary corrections or additions can be made either in free-format, or
according to the OLYMPUS conventions, or by a combination of both, an example
being shown in the Test Run 2 Input of Fig.6. Repetition of the command (1)
then updates the file to the standardized format of Fig.7 in which the
section, subsection and statement numbers have where necessary been altered
to take account of additions. This process may be repeated as many times as
required, so maintaining a consistent standardized format throughout the
development of the program, and during any subsequent maintenance that may be

needed.

3. USING THE COMPOSITOR TO CONSTRUCT OLYMPUS PROGRAMS

The COMPOSITOR is designed to assist in the construction of the FORTRAN
Section 3 of the OLYMPUS Standard Program File whose overall structure is
indicated in II, Table 1. The construction of the DOCUMENTATION Section 1

“and of the COMMON Section 2 of the SPF is facilitated by the GENSIS Generator
described in IV,

3.1. Input lines

The COMPOSITOR is primarily intended to process input files containing
two types of line:
OLYMPUS statements and comments
COMPOSITOR statements and comments
but it can also deal to some extent with arbitrary Fortran statements and

comments.

3.2.. OLYMPUS input

The standardized formats of OLYMPUS statements and comments are

explained in II. These are recognized by the COMPOSITOR and minor deviations
from the conventions will be tidied up to some extent, for example incorrect
columns in statements, comments, headings and sub-headings. However,any state-
ment or part of a statement that starts after col,10 will retain its position

in case it is part of a planned layout.

3.3 COMPOSITOR input

The rules for COMPOSITOR statements and comments are listed in Tables

1 and 2 and only a brief ekplanation will be given here, COMPOSITOR input is
intended to be free-format, but it has to start before col.6, in order to
distinguish it from a normal Fortran continuation 1line (col.6) or statement
(col.7). Usually it is convenient to start in col.l., Note that the combina-
tions ## and '' should not contain embedded blanks.

Only COMPOSITOR statements beginning with C in col.l present any problem.
It is necessary to distinguish these from Fortran comments, and the rules
listed in Table 2 which must to some extent be a matter of convenience,are
intended for this purpose, A string beginning with C will always be recog-
nised as a statement if col.l is left blank and the user may find it conven-
ient to adopt this convention,

Forms such as Cb=, CLB= are treated as statements, 5 = blank, C in
col.1l}), but the occurrence of two or more blanks would lead to the strings
being interpreted as OLYMPUS input lines according to Rules 16 and 17 .

If the user wishes to preserve the content of a comment line essentially
unchanged, he should edit . (dot) into col.2 (Rule 18). To allow for high-
lighting techniques that are often used such as strings of asterisks across
the page, or comments marked by C****¥* the occurrence of two identical
non-alphanumeric characters B (other than -) in cols. 2 & 3 of a comment
line will force conversion to a C. comment (Rule 20). A line beginning C--
or *-- is however converted to a ruled line with - extending to col.70 (Rule
19), in order to minimize typing in the production of OLYMPUS programs. By
these methods it should be possible to preserve most non-OLYMPUS documentation
if required, although it is often preferable to convert some of it into stan-
dard OLYMPUS form. Note however that comments such as

CABC, C*ABC, C*BABC,
would be interpreted as statements and should be converted beforehand into,
say

C.ABC or C.b5ABC

Indexes

Rules 12-14 allow for the construction of indexes with the formats
illustrated in Figs.5 and 7. Rule 13 is intended for indexes of internal
variables and Rule 14 for indexes of formal parameters, where <type> might
be I(input), O(output) or IO(input and output), but these rules may have

other applications.

EXPERT and MESAGE

Rule 8 enables an EXPERT call [2,3] of the form
CALL EXPERT (ICLASS. ISUB, <n>)
to be generated without the programmer having to provide an argument list,
where the values <n> are numbered in sequence through the subprogram, while

Rule 9 simplifies the construction of a message call

10 72
¥ 4
CALLMESAGE (48H < message >)

The blank after the word CALL in Rules 8 and 9 is mnot significant,
INSERT
Rule 11 allows a list of files to be inserted to be typed on one line,

and separate C/ INSERT <name> statements will then be generated.

3.4 Output Format

The COMPOSITOR will line up declarations, statements, headings,
subheadings and comments according to the standard OLYMPUS column conven-
tions (II), and will automatically generate (or update) section and sub-
section numbers., Furthermore all statement labels are updated so that they
are correlated with the number of the section or sub-section in which they
appear; statements that refer to the updated labels are of course, changed
automatically. Because statement labels are automatically allocated, any

arbitrary labels may be used in the input file provided that they are distinct.

3.5 Heading and non-executable parts

The layout conventions for the heading part of an OLYMPUS subprogram are
defined in II §3.1 and the COMPOSITOR will attempt to obey these,i.e.,by inser-
ting C-blank linesand by arranging the correct columns for the subprogram

identification label and title line, and for the VERSION line. A SUBPROGRAM

FUNCTION or PROGRAM statement is lined up on col.1l0, while subsequent declara-
tions are recognized individually and lined up on col,.8, Minor problems may
arise for declarations that are not part of standard Fortran and are there-
fore not recognized by the COMPOSITOR., These can usually be corrected

straightforwardly using an editor,

3.6 Structure of the input file

The FORTRAN Section 3 of the SPF consists of a sequence of modules each
headed by
C/ MODULE <name>
and terminated by the Fortran
END
statement. However the COMPOSITOR does not require a MODULE statement at the
head of each module and works like a compiler, using END as a delimiter and

processing a sequence of independent modules one-by-one.

3.7 Diagnostics and restrictions

Only limited diagnostics are provided, which on the PRIME are reported
at the terminal. The COMPOSITOR will type the offending statement, and at
the same time, will flag the corresponding card image in the output file
with a string of asterisks in cols,1-5.

Note that the COMPOSITOR does not perform a comprehensive check of
Fortran syntax. Only those syntax errors that inhibit Processing will be
reported.

Dialect statements that reference statement labels may cause trouble,
since if the labels are not recognized they will not be updated and must then
be corrected with an editor.

OLYMPUS conventions restrict the numbers of sections (9), sub-sections

within a section (9) and statement labels within a sub-section (10),

4, STRUCTURE OF THE COMPOSITOR PROGRAM
The COMPOSITOR package has the SPF (Standard Program File) form shown

in II, Table 1, and the program runs under the control of subprogram <0.3>
COTROL of the OLYMPUS control and utility package [2,3], which also provides
the COMMON blocks [C1.1] COMBAS and [C1.9] COMDDP and a number of utility
subroutines,

The program has the OLYMPUS structure and consists of 3 main parts:

1. Prologue Initialize data structure
2. Calculation Read and analyse File A
3. Output Construct and output File B

-9 -

Each 'step' of calculation followed by output corresponds to the processing
of one module.

The program deck contains detailed indexes and other documentation
together with the MINDEX master index module to enable any necessary modifica-
tions to the COMPOSITOR to be made using the GENSIS generator as explained in
IV. However, many extensions and adaptations can be made by using the OLYMPUS
EXPERT facility described in Appendix 2, and this method is to be preferred
since it allows the SPF to remain unaltered,

Utility routines are listed in Table 3. Those in Class Z are part of
the SPF and are system-independent. Routines that are system-dependent or
may need to be modified are contained in a SUPPORT package that is placed
after the end of the SPF.

Note that in order to conform to the rules of ANSI Fortran 66 [9] a
dummy main program is provided whose purpose is to reference all the COMMON
blocks and so ensure that all COMMON variables and arrays remain defined
throughout the run. This replaces the main program of the OLYMPUS package [3],
and calls a new OLYMPUS subprogram <0,0> MASTER which for convenience is also
provided in the SUPPORT. If extra COMMON blocks are added they should be
included in the main program.

The SUPPORT package also contains a version of <0.2> MODIFY which sets
the appropriate channel numbers for the PRIME, <0,4> EXPERT which deals with
the PRIME BINSERT substitution facility, and three dummies which suppress
OLYMPUS messages. Subroutine AREAD uses a dialect Fortran statement which
may need to be replaced for use on other types of computer (although it is
now part of ANSI Fortran 77).

Subroutines PACK and UNPACK are written in assembly language and
versions are provided for the PRIME and IBM computers. PACK is used to pack
a sequence of small integers, contained in an array, into successive bytes
starting from a given base address, while UNPACK is used to expand a string
of bytes into an array of small integers,

Table 3 also lists four OLYMPUS routines that are specifically used by
the COMPOSITOR but are not part of the present package.

4.1 Prologue

Only <1,.3> PRESET need be mentioned; this sets up character codes,
keyword strings and markers, and resets counters, It is called again together

with <1.2> CLEAR after each module has been output.

= 10 =

4,2 Calculation

This is controlled by <2,1> STEPON which calls the main lower-level
routines shown in Table 4 and Fig.Z2. Utility routines listed in Table 3
have been omitted.

STEPON reads the input file A line by line until a read error,
end-of-file or an END statement has been detected., Subprogram <2,2>
OLYMPS is then used to check for an OLYMPUS statement or comment, and <2.3>
COMPOS for a COMPOSITOR statement or comment. A type marker NTYPE is then
set and determines the processing of the line using the subroutines <2.,4>
to <2,11> , the contents being packed into the array NSTORE, Sections and
sub-section numbers are established and statement numbers calculated and

stored,

4.3 Output
This is controlled by <3.1> OUTPUT which controls the main lower-

level routines shown in Table 5 and Fig.3. In fact most of the work is done
by <3.2> OUTBUF which first calls <3.14> HDPART to deal with the heading part

and the processes and outputs the stored lines one by one according to type.

5, DATA STRUCTURE
In addition to the standard OLYMPUS COMMON blocks [C1.1] COMBAS and

[c1.9] cOMDDP, there are labelled COMMON blocks listed in Table 6., These are
contained in Section 2 of the SPF, and are referenced in Section 3 by C/ INSERT
statements. In order to compile the COMPOSITOR the necessary insertions must
be made either automatically or by hand,

Blocks [C6.1]COMCHR and [C6.3]COMSPC contain respectively the alpha-
numeric characters @-9, A-Z and a number of other special characters that the
COMPOSITOR needs to recognize. These use the internal character code of the
computer, i.e. normally ASCII or EBCDIC, although other codes may also be
encountered. Strings of characters are read, stored and written in packed
format, (i.e. A4 on the PRIME or IBM computers), but are unpacked by the utility
routine UNPACK and manipulated during the processing stage in right-adjusted
form, one character/word. Normally they will be integers in the range 0-255,
The integer values are set in §1 of PRESET using UNPACK,

It is assumed that the integers MO-M9 representing the digits are
monotonically increasing with MO<M9, and that the integers MA-MZ representing
the upper-case letters are monotonically increasing with MA<MZ, and that in
neither case are other relevant characters intermixed with them, This is true
for ASCII, but in EBCDIC there are gaps between MI and MJ, and between MR and

MS, which in some implementations might be used for non-standard characters.

If any problems arise it is suggested that the processing should be carried
out in a private internal code, This is done for the GENERATOR and the code
can be set up by a method to be explained in IV,

Other characters that are not individually represented in the COMMON
blocks can be read, stored and output by the COMPOSITOR if they can be handled
by the computer system, but they are not specifically recognized. Lower-case
letters are an example,

The number of characters/word is NCHWD, set in §3 of <1.3> PRESET, and
if this differs from 4 it should be overwritten in EXPERT as explained in
Appendix 2 and appropriate versions provided for the utility routines PACK,
UNPACK, AREAD and AWRITE.

Block [C6.5]COMKEY contains arrays of keyword strings in unpacked
integer form, one character/word, with any blanks omitted. They are set in
§1 of PRESET using UNPACK, and the list can readily be extended as explained
in Appendix 2 if extra keywords are needed.

Block [C4.4]COMMAX contains table sizes and other maximum values. They
are set in §3 of PRESET., Array sizes can be changed by altering them here
and also in module MINDEX, and re-running GENSIS (IV) to update the COMMON
blocks. The numbers of sections (9) and sub-sections (9) are however a
consequence of the OLYMPUS notation and increasing these would need some other
changes to the program in order to accommodate 4-digit or 5-digit statement
labels.

[c4.1]COMARK and [C4.2]COMSEC contain markers, current values and
pointers, together with the arrays LABIN and LABOUT which hold the statement
labels of files A and B respectively. [C5.1]COMBUF contains the input-output
buffers and working store, and the array NSTORE which holds the packed con-
tents of the subprogram after it has been processed and before it is output,
There is one string for each line, which is stored in the form.

<length><type><contents><length>

6. TEST RUNS

Two test runs are contained in Section 4 of the SPF, with the input
and output reproduced in Figs.4-7 respectively. Fig.4 shows the initial
input of File A, which is processed by the COMPOSITOR to become File B of
Fig.5. This is then further edited by the programmer (Fig.6), and repro-

cessed to give the final output of Fig.7.

- 12 -

Appendix 1, Input-output and character-handling

Character-handling has always been somewhat awkward in ANSI Fortran 66
[9]. The method adopted here is believed to be consistent with the formal
rules of that language and has worked well in practice for many years on a
range of different computer systems. However, it is not consistent with the
standard version of the new ANSI Fortran 77 [10], since character-handling is
one area in which Fortran 66 is not a true language subset (ref,[10] Appendix A).
and the Hollerith data type has been deleted from the new standard although
it is retained as an optional extension (ref.[10] Appendix C).

Minor problems may therefore occur with compilers that have been up-
dated from Fortran 66 to Fortran 77, and if these do arise it may be advisable
for users to convert the Hollerith strings and integer character variables in
both OLYMPUS and the COMPOSITOR to the new Fortran 77 CHARACTER type. This
should be a straightforward task, but it is hoped to issue Fortran 77 versiomns
of these and other OLYMPUS packages in due course,

Characters are handled by the present Fortran 66 version of the COMPOSITOR
in two integer formats, either packed with NCHWD characters/word, or unpacked
with one character/word, right-adjusted. NCHWD is set to 4 in §3 of <1.3>
PRESET, (corresponding to a 32-bit word of 4 8-bit bytes), but this default
value can be overwritten by a subsequent call to <0.4> EXPERT as explained in
Appendix 2,

Two subroutines PACK and UNPACK convert between these formats. Sub-
routine <A3> PACK(KSTR,KI,KCHARS,EKN) packs KN characters from array KCHARS
into array KSTR, starting from the byte location KI relative to the base
address of KSTR, where the lowest byte location in the array KSTR is counted
as 0.

Conversely, subroutine <A4> UNPACK (KSTR,KI,KCHARS,KN) extracts a string
of KN packed characters, starting in byte position KI of array KSTR, and
plants them as right-adjusted integers in array KCHARS.

According to the rules of ANSI Fortran 66 [9] it is allowable for the
actual arguments corresponding to the dummy array names KSTR and KCHARS to be
either array names (e.g. IARRAY) or array element names (.e.g. IARRAY (3)).
What is passed to the called subroutine is the storage address of the actual
argument, so that references to IARRAY or to IARRAY (1) give the same
result, This arrangement gives considerable power and flexibility to the
use of PACK and UNPACK, but some care may be needed in translating the
COMPOSITOR program to languages with a more sophisticated syntax than Fortran
66,

Usually, it is necessary (and advisable for reasons of computing speed)

- 13 -

to implement PACK and UNPACK in assembler language, although some dialects of
Fortran provide appropriate bit-manipulation functions such as SHIFT, AND,
OR from which they can be constructed. Assembler-language versions are pro-
vided in the SUPPORT package for the PRIME and IBM computers.

A typical use for UNPACK is to set up a keyword, as for example in §1
of <1.3> PRESET:

CALL UNPACK (11HEQUIVALENCE, 0O, IEQUIV,11)
which plants the 11 integers that represent the characters of the word
EQUIVALENCE into words MEQUIV(l) to MEQUIV(11l). The integer representation
of the characters may depend on the particular computer but for the COMPOSITOR
program this should not matter since no alphanumeric sorting is performed.

72-column lines are read and written by two low-level Fortran routines
<Al> AREAD and <A2> APUNCH. The versions supplied use A4 format and can be
used for both PRIME and IBM computers. They may need to be altered for
machines with different byte or word lengths. The READ statement in AREAD is

dialect Fortran 66 since it makes use of error and end-of-file conditioms.

Appendix 2. Modifications using the EXPERT facility

One of the significant features of OLYMPUS programs [2,3] is that calls

can be made to an auxiliary subroutine EXPERT in the form

CALL EXPERT (ICLASS, ISUB, IPOINT)
where <ICLASS.ISUB> is the decimal number of the calling routine from which
the call is made.

The parameters-of the call are coded as a jump within EXPERT to a point
at which additional Fortran statements can be introduced, The use of INSERT
statements provides access to the COMMON storage of the program, and
additional COMMON variables and arrays may also be defined within EXPERT if
required, (in which case they should also be added to the dummy main program
of the support package).

In the published PRIME version this facility is used to recognize and
convert ZINSERT to C/ INSERT at the input stage, and to convert C/ INSERT to
SINSERT at the output stage, so enabling the PRIME file insertion facility
to be used. Coding is also included to handle the *CALL and other directive
statements used on CDC and CRAY computers.

The additional Fortran statements included in EXPERT can either over-
write or supplement those of the program proper, For example if the number of
characters/word is changed, say, from 4 to 8, the statement

NCHWD = 8

- 14 -

should be brought in by an EXPERT call in PRESET, The present version of
EXPERT indicates where this should be placed.

The advantage of this method is that it allows for very flexible
adaptations to an existing program without changing the main body of the

code which can be preserved as a fixed binary load module.

Appendix 3, Using the COMPOSITOR on the Culham PRIME
A simple way to use the COMPOSITOR is as follows, Suppose that the

programmer is working in a sub-directory [12] that contains File A under some
name <fname>, He can then process this by typing the command

COMPOS <fname>
The processed version File B will overwrite the original, which will be

preserved in file
*>TEMP>COMPIN

The new <fname> can be edited and the command repeated as many times as
required. Diagnostic messages will be displayed at the terminal.
To make use of this facility the programmer should set up the PRIME

abbreviation entry [11]
COMPOS EXEC KBCCPG>COMPOS

under his username., He should also ;reate a lower-level sub-directory TEMP
in the area of file-space in which he is working.

The Culham PRIME version of the COMPOSITOR accepts *INSERT, @INSERT
and C/ INSERT statements, converting all of these to BINSERT for direct use
with the PRIME Fortran compiler.

- 15 =

TABLE 1,

Rules for COMPOSITOR Statements and Comments

1. COMPOSITOR input must start in cols. 1-5.

2. No blanks are required before labelled or unlabelled statements.
3. Comments start with *

4, Continuation lines start with &

5. Headings start with #

6. Subheadings start with #F

7. A numerical label with no statement generates CONTINUE.

8. CALL EXPERT requires no parameter list.

9. CALL MESAGE(<message>) is accepted, (<message> < 48 chars.)
10, *MODULE <name> is converted to C/ MODULE <name>,

11. *INSERT <namel>,<nameZ2>, ... generates a C/ INSERT sequence.

12. A line ''INDEX OF <purpose> produces a C, heading line.
13. A line ''<variable> T <purpose> produces a C. index entry.

14, A line ' <variable> b <type> T <purpose> produces a C. index entry.

TABLE 2.

Rules for Lines with C in Column 1

These are treated as Fortran statements except as follows:

15. A line beginning C/ is treated as an OLYMPUS control statement.

16, A line beginning €ba is treated as an OLYMPUS comment,where

o is blank or any character except =

17. A line beginning CL¥a is treated as an OLYMPUS heading or subheading,
where o is blank or any character except =

18 A line beginning C. is reproduced unchanged.
19. A line beginning C-- or *-- generates a ruled line,

20. Any other line CBR<string> comnverts to C.B<string>, where 8 is any
non-alphanumeric character,

NOTE T denotes a blank

Table 3. Subsidiary Routines

COMPOS Program

Z1 MATCH (7) Compare character strings L
z2 STORE (3) Store character string i
Z3 CREAD (4) Fetch card image {
Z4 CWRITE (2) Qutput card image :
Z5 CONVRT (3) Integer - string conversions ;
76 LABREF (1) Check for label reference L |
z7 GETREF (5) Fetch label reference
Z8 DECLAR (5) Check for Fortran declaration !
Z9 JOURNL Write offending statement to terminal ;
i
SUPPORT Package
(main) Defines all COMMON blocks
0.0 MASTER OLYMPUS master subprogram
0.2 MODIFY Modify basic data if required P
0.4 EXPERT (3) Modify standard operation of program P
1.4 DATA Dummy to suppress OLYMPUS message
1.5 AUXVAL Dummy to suppress OLYMPUS message
1.6 INITAL Dummy to suppress OLYMPUS message
1.8 START Dummy to suppress OLYMPUS message
4.1 TESEND Dummy to suppress OLYMPUS message
Al AREAD (4) Read card image SIP
A2 APUNCH(2) Output card image SIP
A31 PACK (4) Pack character string Al
A3P PACK (4) Pack character string AP
A4l TUNPACK (4) Unpack character string Al
A4P UNPACK(4) Unpack character string AP
1
|
|
0.1 BASIC Initialise basic control data
0.3 COTROL Contrel the run
Ul MESAGE (1) Print 4S8-character message on output
channel
Ul5 RESETI (1) Reset integer array to specified value
The number of arguments is in brackets i
A = Assembler language i
B = IBM ;
L = Logical function
P = PRIME '
S = System dependent Fortran

Table 4, Class 2 Routines
2,1 STEPON Read and process File A
2.2 OLYMPS Check for OLYMPUS input
2.3 COMPOS Check for COMPOSITOR input
2.4 PCOMNT Process comment
2.5 PINSRT Process INSERT
2.6 PMODUL Process MODULE
2.7 PHEAD Process heading/subheading
2.8 PDECL Process declaration
2.9 PSTAT Process executable statement
2,10 PLABEL Process labelled statement
2,11 PCNCRD Process continuation line
2.12 PINDEX Process index entry

Table 5, Class 3 Routines
3.1 OUTPUT Construct and output File B
3.2 OUTBUF Output buffer
3.3 OUTCOM Output comment
3.4 | OSPF | Output SPF statement
3.5 | OHEAD ! Output heading/subheading
3.6 OSTAT Output executable statement
3.7 OLABEL Output labelled statement
3.8 oUTDO Output DO statement
3.9 OUTIF Output IF statement
3.10 QUTGO Output GO TO statement
3.11 OUTIO Output I/O statement
3.12 ODECL Output declaration
3.13 OCNCRD Output continuation line
3.14 QINDEX Output index entry
3.15 HDPART Construct -subprogram heading part

Cl.1
Cl.2

c4.1
Cc4.2
C4.3
C4.4

C5.1

C6.1
6.3
C6.5

TABLE 6. COMMON Blocks

1. General OLYMPUS Data

COMBAS Basic system parameters
COMDDP Development and diagnostic parameters

4, Housekeeping

COMARK Markers

COMSEC Section/Sub-section markers
COMADM Administrative variables
COMMAX Maximum values

5. I1/0 and Diagnostics

COMBUF Buffers

6. Text Manipulation

COMCHR Character codes
COMSPC Special characters
COMKEY Character strings

REFERENCES

(1]

[2]

[3]

[4]

[5]

(6]

[7]
(8]
[9]

[10]

(1]

[12]
(131

The Publication of Scientific Fortran Programs, K.V.Roberts,
Comput. Phys., Commun. 1 (1969) 1.

An Introduction to the OLYMPUS System, K.V.Roberts
Comput. Phys., Commun. 7 (1974) 237.

OLYMPUS - A Standard Control and Utility Package for Initial-
Value Fortran Programs, J.P.Christiansen and K.V.Roberts,
Comput. Phys. Commun. 7 (1974) 245,

OLYMPUS Conventions, M.H.Hughes and K.V.Roberts, -- CLM-PES5

Experience with the OLYMPUS System, K.V.Roberts, in the
Relationship between Numerical Computation and Programming

Languages, ed. J.K.Reid (North-Holland 1982),

PRIME: The New Users Guide to EDITOR and RUNOFF, D.P.Vern,
PRIME Computer Inc. (1978).

The Regeneration of Fortran Software, K.V.Roberts, CLM-P683,
The OLYMPUS FORTRAN GENERATOR, M.H,Hughes and K.V,Roberts, CLM-P689

USA Standard Fortran, USA X3,9 - 1966, (USA Standards Institute, New
York, March 1966),

American National Standard Programming Language FORTRAN, ANSI
X3.9 - 1978, American National Standards Institute Inc.
New York, 1978).

PRIMOS COMMANDS Reference Guide FDR3108 - 101B, Prime Computer Inc.
(1980), pp. 3-6 to 3-10.

loec, cit. ref, [11], pp. 2-6 to 2-9.

OLYMPUS and Preprocessor Package for an IBM 370/165, M.H.Hughes,
K.V.Roberts and P.D.Roberts, Comput. Phys. Commun, g (1975) 51,

CLM-P 690

r — ¢ — Proof Correction — € —

|

A

INPUT
FILE

—

I

COMPOSITOR

e e

B

PROGRAM
LISTING

Fig.1 Tterative use of the COMPOSITOR. File A is designed to be easy to type at the
terminal, while File B is designed to be easy to read, but may be proof-corrected and
re-processed any number of times.

21

STEPON

Fig.2 Block diagram of the Class 2 input and analysis part.

2.2

OLYMPS

—

2.3

COMPOS

2.4

PCMNT

2.5

PINSRT

|

2.6

PMODUL

2.7

PHEAD

2.8

PDECL

2n

PCNCRD

29

PSTAT

2n

PCNCRD

2.10

PLABEL

29

PSTAT

2

PCNCRD

anm

PCNCRD

212

PINDE X

3.4

0SPF
__’3.15 36 I___
HDPART OSTAT
3.3 3.12
QUTCOM ODECL
3.4 3.8
0SPF J _| OUTDO—I
3.2 [35 l IEE
QUTBUF |__OHEAD QUTIF
31 1.2 3.12 3.10 38
QUTPUT CLEAR ODECL oUTGO ouTDO
J ___la.s [3.1 J 39
PRESET 0STAT | QUTIO QUTIF
3.7 3.6 3.10
—‘{ OLABEL |—_(OSTAT J_ QUTGO
313 I EXT
OCNCRD ouTIO
3.14
OINDEX

Fig.3 Block diagram of the Class 3 construction and output part.

SUBROUTINE CONVRT(KCHR,KNUM,K)

#Z.10 Convert unpacked characters to integer and vice-versa
DIMENSION KCHR(1)

Wi

* INSERT COMCHR,COMSPC

.
DIMENSION INUM(1)
EQUIVALENCE (INUM(1),MO)
c

Go 10 (1,2),K

-

f£Character string to integer

1

#Clear integer to zero

KNUM=0

*Construct 6-digit integer
ITEN=1000000

#*Scan over digits, highest first
Do 3 J=i,6

ITEN=ITEN/LO

ICHR=KCHR(J)

*Check against characters MO to MS
00 4 Jl=1,10

1J=J1

4 IF(ICHR.EQ.INUM(JL)) GO TO 5
+*Character not found - make it zero
[J=1

§ 13=1J-1

#Accumulate integer

KNUM=KNUM+ ITEN®*T]

3

C

RETURN

m o

ND

Fig.4 COMPOSITOR input. (# is reproduced here as £).

CLM-P 690

C
SUBROUTINE CONVRT(KCHR,KNUM,K)

c :
C Z.10 Convert unpacked characters to integer and vice-versa
c
DIMENSION KCHR(1)
[e e T e T T T LT ey

C/ INSERT COMCHR
C/ INSERT COMSPC

[e e e
DIMENSION INUM(L)
EQUIVALENCE (INUM(1),MO0)
c .
GO TO (100,104),K
C
Cemcmmccc e s e e e e r e c e e e - ———————————— =
CL 1. Character string to integer
C
100 CONTINUE
c Clear integer to zero
KNUM=0
C Construct é6-digit integer
ITEN=1000000
C Scan over digits, highest first
DO 103 J=1,6
ITEN=ITEN/1O
ICHR=KCHR(J)
¢ Check against characters MO to M9
DO 101 Jl=1,10
I1J=J1
101 IF(ICHR.EQ.INUM(J1)) GO TO 102
C Character not found - make it zero
- I1J=1
102 I1J=I1J-1
c Accumulate integer

KNUM=KNUM+ITEN*IJ
103 CONTINUE

RETURN
104 CONTINUE
END

Fig.5 Processed Version of Fig.4.

CLM-P 690

C/ MODULE 210
o
SUBROUTINE CONVRT(KCHR,KNUM,K)

Z.10 Cenvert unpacked characters to integer and vice-versa

o Mmoo

KCHR I0 Character string
'WNuM IO Integer

'K I Choice of call
DIMENSION KCHR(L}

C/ INSERT COMCHR
C/ INSERT COMSPC

DIMENSION INUM(L)
EQUIVALENCE (INUM(1),MO)

GO TO (100,1048),K

R T e e e e R e P e
cL i Character string to integer
&
100 CONTINUE
c Clear integer to zero
KHUM=0
5 Construct 6-digit integer
ITEN=1000000
£ Scan over digits, highest first

DO 103 J=1,6
ITEN=ITEN/LQO
ICHR=KCHR(J)
Check against characters MO to M9
DO 101 Jil=1,10
1J=J1
1ol IF(ICHR.EQ.INUM(J1]}) GO TO 102
2 Character not found - make it zero
1J=1
102 1J=13-1
e Accumulate integer
KNUM=KNUM+ ITEN®T]
103 CONTINUE

"

RETURMN

fInteger to character string

104 CONTINUE
*Clear character string to blank
CALL RESETH(KCHR,6,MBLANK)
*Construct integers
11 =KNUM
*Scan over digits, lowest first
00 11 J=1,6
1=7-3
12=11/10
sCurrent right-hanag digit
INT=Il-10"12
KCHR(J)=INUM({INT+1)
*Aemove right-nand digit

RETURN .

**INDEX OF LOCAL VARIABLES

*'1 Character counter

**11 Remaining part of integer

'*'12 Rignt-most digit removed

**1CHR Current character

*'1] Current agigit

''INT Digit O tao 9

**INUM Array of characters MO to M9
*'1TEM Current poaser of 10

*'] Counts aigits or characters ! to 6
**3l Scans oaigits O to 9

=

EnD

Fig.6 Proof-corrected version of Fig.5, with additional statements
and illustrating the construction of indexes.

CLM-P 690

C/ MODULE Z10

[

SUBROUTINE CONVRT(KCHR K KNUM K)
c
C Z.10 Convert unpacked characters to integer and vice-versa
-
C. KCHR Character string 10
C. KHUM Integer 10
C. % Choice of call 1
2

DIMENSION KCHR({L)
C/ INSERT COMCHR
C/ INSERT COMSPC
c

DIMENSION INUM(L)
EQUIVALENCE (INUM({1),MQ)

o

Go 10 (l00,200),K

“

Cmmm e mmmmm e mmmmmmae . mmmemme e
CL 1. Character string to integer
=
100 CONTINUE
(E: Clear integer to zero
KNUM=0
c Construct 6-digit integer
I[TEN=1000000
c Scan over digits, highest first
DO 103 J=1,6
ITEN=ITEN/LOD
ICHR=KCHR{J)
C Check against characters MO to M9
00 101 Jl=1,l0
13=J1
101 IF(ICHR.EQ.INUM(J1)) GO TO 102
C Character not found - make it zero
13=1
loz 1J=1J3-1
C Accumulate integer
KNUM=KNUM+ ITEN®I]
103 CONTINUE
c
RETURN
c
R e e s smssEssssEmEE S — e m e E . ——————— e
CL 2, Integer to character string
C
200 CONTINUE
c Clear character string to blank
CALL RESETH(KCHR,&,MBLANK)
€ Construct integers
I1=KNUM
c Scan over digits, lowest first
DO 201 J=1,6
i=7-3
[2=11/10
C Current right-hand digit
INT=11-10"12
ACHR{J)=INUM({INT-1)
c Remove right-hand digit
Il=12 %
IF(IL.EQ.0) RETURN
201 CONT INUE
RETURN
c
i S e 5 S e e S S
C. INDEX OF LOCAL VARIABLES
c
E. ¥ Character counter
c. Ii Remaining part of integer
c. 12 Right-most digit remaved
C. ICHR Current character
c. I3 Current digit
C. INT Digit 0 to %
C. INUM Array of characters MO to M9
C. ITEN Current power of 10
c. 2 Counts digits aor cnaracters ! to &
[a1 Scans digits 0 to ¢
c
END

Fig.7 Final processed version of the subprogram, with indexes of
formal parameters and local variables.

CLM-P 690

