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Abstract

Many radio frequency heating methods involve conversion of an in-
coming wave to another mode which only propagates within the plasma and
is ultimately damped. In this paper we extend a method which we have
previously used to consider electron cyclotron heating by the O-mode to
include other mode conversion phenomena. From the properties of the
dispersion relation in the neighbourhood of the mode conversion point,
differential equations for the mode amplitudes are constructed, in a
well-defined way, which give energy conservation in the absence of
damping. An analytic solution gives the transmission and conversion
coefficients in terms of parameters defining the local behaviour of the
dispersion relation. The technique is applied to a number of problems,
showing that they can all be solved by elementary algebraic manipula-
tions of the local dispersion relation. The phenomenon of electron
cyclotron emission also falls rather naturally into this mode conversion
picture. It is also suggested that the method of dealing with cyclotron
emission may have some relevance to the more general problem of energy
transport across a magnetic field. The technique, therefore, brings
together into a unified theory a number of problems which have been
treated by diverse, and usually more complicated, mathematical tech-
niques in the existing literature, |
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I INTRODUCTION

In previous paper’sj’2 we have developed a technique to deal with a
certain type of mode conversion problem and have applied it to the
absorption of the O-mode at the electron cyclotron resonance. Regarding
this process as a mode conversion to a cyclotron harmonic mode it was
shown that previous results for the optical depth of the plasma could be
obtained in quite a simple way.

Here we develop the mode conversion technique further. In the next
section we shall give a somewhat modified version of our technique and
suggest a way of going from the local behaviour of the dispersion rela-
tion around the mode coupling point to differential equations for the
coupled mode amplitudes which is unique, and which leads to an energy
conservation law. The problem of uniqueness of the differential equa-
tion to be associated with a dispersion relation has been discussed by
Fuchs et al.3 but, as we point out below, their technique does not, if
our interpretation of it is correct, necessarily lead to energy conser-
vation. Equations which conserve energy have been obtained by Swanson ’'~,
but are complicated and not amenable to analytic solution. Our method
will be shown to give equations which can be solved analytically for
transmission and conversion coefficients which depend on the local
behaviour of the dispersion relation. When this has been done analysis
of particular cases merely involves elementary algebraic manipulations
of the local dispersion relation.

In the remainder of the paper we use the technique to calculate the
absorption of the X-mode at perpendicular incidence, both at the funda-
mental and second harmonic electron cyclotron frequencies. Also, we
show that the same technique can be applied to other mode coupling prob-
lems involving waves in the ion cyclotron and magnetohydrodynamic

regimes. The results we obtain here have all been obtained by other



workers, but each case has involved asymptotic analysis of different
differential or integral equations. Our object is to show that they can
all be obtained in the same way with a simple method, providing a unifi-
cation and simplification of previous work and giving confidence in the

wide applicability of our method.

IT THE MODE CONVERSION THEORY

We deal with systems in which the wavenumber in the direction of
inhomogeneity, kx say, varies with x as shown in Fig. !. The waves
will be assumed undamped, so that the wvalues of kX are real, though we
shall discuss the introduction of damping later. Our interest centres
primarily on the mode coupling points like A or B on the diagram at
which the two roots of k (we drop the subscript x for convenience)
almost coincide. In many applications there is, however, a cut-off of
one of the waves at an adjacent point, C on the diagram, so that the
dispersion curves take the form shown.

In the neighbourhood of a mode coupling point we suppose that the

dispersion relation may be approximated by an equation of the form
(W= w)w-=-w,) =n (n

where w,(k, x) , w,(k, x) are the frequencies of the two uncoupled modes,
represented by the dotted lines in Fig. 1, and n is a small quantity
which is only significant in the neighbourhood of the coupling point and
whose presence leads to the characteristic shape of the dispersion curves
as shown. In a stable plasma n = 0. Any wavenumber perpendicular to
the inhomogeneity (i.e. ky or kz) simply appears as a parameter in W,
and w, and will not be referred to explicitly.

If a wave of frequency w, propagates through the inhomogeneous

o

plasma, then coupling takes place in the neighbourhood of x, at which,



for the appropriate k =k,, W, =, (kb’ xo) = w,(ky s x5) - We now

expand about this point, writing

and letting

Wo + ad + b

€
—
I

w, = w, + £6 + g

in the neighbourhood of (ko, xo) a, b, f and g being the appropriate
partial derivatives of w, and w, . Then, around X s k 1is determined

as a function of position by

(ak-ako +bE) (£ k - fko+ g€)=no, (2)

where no 1s the value of n evaluated at (ko, xo) .
We now wish to associate this local dispersion relation with a

differential equation, through the usual procedure of identifying k

with -id/df . A straightforward replacement of k by the operator
- id/df 1leads to a second order differential equation whose asymptotic
solutions yield the usual results for transmission, reflection and mode

? However, this procedure suffers from the

conversion coefficients
disadvantage that it is ambiguous and furthermore the resulting differ-
ential equation does not satisfy energy conservation. Since we are
dealing with the coupling between two wave modes of the plasma we
suggest that the most natural way of converting eq. (2) from an
algebraic equation to a differential equation is to introduce two wave
amplitudes ¢, and ¢, instead of just one. We then regard the coup-

ling process as between these two waves ¢, and ¢, which are described

by the pair of first order differential equations
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de,
, \ C
= - (- E5) 0. - 120 (3b)
L
where A = (no/af)z. This procedure is now unambiguous and in addition

eqs. (3a) and (3b) conserve energy.

We consider the case where both waves have positive group velocities,
so that both a and f are positive. The case where one wave is backward
propagating, which is important in practice, will be discussed later.

It is easily seen that

d ( . 2
d_g\‘¢l| + l¢’2! >=0 ’
so that if the wave amplitudes are regarded as being normalised so
that |¢[2 is the energy flux, we have energy conservation.
If we eliminate ¢, from (3) and make the transformations

¢, (E) = exp (ikoﬁ —%%

z = (ig—a_fﬁ)i £ exP(%T)

ag — bf

Y- > 0) we obtain, as beforel’z, the equation

(assuming

a2y LA 11 ,] .,
d;2+[ag-bf+7 ghpe=0.

5 .1 T
In contrast to our previous analysis , this is an exact result rather

than an approximation valid for small f. If we take the solution



Dn(c) of this equation, where Dn(g) is the parabolic cylinder

function, then the asymptotic solution for ¢, in the region & < 0,

is
ig
= 2 i 212
g (B »e (%E) exp (m8/4) |€!lB exp (1’. kog-lg.g_)
| (42)
while in the region & > 0 we have
ig
2
ag - bf\ "~ 3 2
$1(E) ~ ( —= ) exp(___gﬁ)glﬁ exp(l.k £ - 132 )
_if_ 1
1 -—2—- E
(2m)? _ T8, (ag-bf -ig - £2 3
T(-1B) (-3Z) \_g'af__ g exp(lk E-5= - 1T“)

(4b)

where B = no(ag - bf) .

It is tempting to identify the first term in eq. (4b) as the
transmitted wave and the second as the mode converted wave. However,
this is not correct as we will see in a moment from direct solution
of the equations. The asymptotic value of ¢,(£) has a similar form
to eq. (4b) containing a term which comes from the uncoupled mode and

a term arising from the coupling.

To interpret (4) in terms of ¢; and ¢, we return to (3) and
consider the behaviour of these coupled mode equations away from the

coupling point. As a first approximation we may take

- : ib £? _ .o . ipE2
¢1 = A exp (1 kog - &Qa \j ¢, = B exp (1 koé; = 12’;’ )

/

Substituting this zero order solution for ¢, into the right hand side

of (3a) we obtain a correction to ¢, of the form



AB af . 1gg? (1)
- &L _1sg7)
(ag-b0)E EXP(lkoE 2f) 0 &)
If the corresponding correction to ¢, is substituted back into the
right hand side of (3a), we find that it changes the constant amplitude
A to AElB. Finally, if the corresponding corrected value of the

leading term in ¢, is again substituted into (3a), we obtain

o fiB o [iy g ibER_ ABaf ~iB-1 /) o igE®)
By & 5 exp\1k0£ 2a) (ag - bf) ¢ XP \l kog 2F }
which is correct to O0(1/£%) . Clearly this corresponds to the

asymptotic expansion found from the parabolic cylinder function solution,

and comparing the two we can find the amplitudes A and B of the trans-
2

mitted and converted waves. With the aid of the idemntity |F(— iB)| =

. . ; g 2 £ 5
m/B sinh MR it can be verified that lo," | + |6,| is conserved.

1
If ag-bf < 0 then we may put £ = ((bf - ag) /af)? £ exp(- i3m/4) and

take &= |€| exp(im) 1instead of |E] exp(-im) 1in the region & > O, in
which case Dn(C) again gives the appropriate solution. If the converted
wave is backward propagating, as for example in the ion cyclotron
resonance problem discussed by Ngan and Swanson6 , then f < 0 and the
shape of the dispersion curves is changed to that shown in Fig. 2. Now
the factor i) multiplying ¢, and ¢, on the right hand side of (3)

is real, and the conservation law becomes, as would be expected

2 2
(16 - loal ) =0

The appropriate solution is one which has non-zero ¢, and ¢, in £ < 0
and only ¢, in § > 0. Physically this represents a wave ¢, incident

from £ < 0 being partially transmitted and partially converted into



the mode ¢, which propagates backwards (in the opposite direction to
its phase velocity) into the region £ < 0. Again this solution can
easily be constructed in terms of the parabolic cylinder function. In

all cases the energy transmission coefficient is

- 2
'ITT]O-I

r-em | ] )

white the energy flux in the converted wave is 1-T times the incident
flux. 1If this fraction of the energy proceeds to the cut-off C, then
we may expect it to be reflected, then proceed to the other crossing
point at which a further fraction 1-T will be converted to the back-
ward propagating counterpart of the incident mode. This argument leads
us to anticipate that if the wave is incident from one side there will

be a reflection coefficient given by
R=(1-1)%, (6)

while with incidence from the other side there will be no reflection.

It might be objected that often the mode coupling and reflection
points are very close together and so cannot be considered separately in
this way. We may note, however, that in this case the coefficient f 1is
small and the variable ¢ 1is then large even if £ 1is not. The
validity of this simple argument is also supported by more elaborate
calculations in which backward and forward propagating waves are

included in a fourth order equation6’7
We now make some brief remarks on the introduction of wave damping
into the theory. This may be dome by letting w,, w, and n become

complex in (1), with w, and w, still being the slowly varying quan-—

tities representing the uncoupled modes and n determining the local



properties in the coupling region. If the damping is slowly varying
with position then an analytic solution may be found as before, but if,
as is the case for cyclotron damping, it varies rapidly, then a
numerical solution of the coupled mode equations may be necessary. We
propose to investigate the effect of damping in more detail and to
compare the results obtained with those of Swansons’8

Finally we make some remarks on the theory of Fuchs et a13. Their

work appears to suggest that the local dispersion relation

k? - k(zko—%g -%g) + (k --2 g) (ko—% g)- A2 =0

which comes from (3) should be associated with the differential

equation

8 i -2 -2 o 14 ror - B - Bnel - G- 26 G- Eenateso
dg? 2 o a £f°°dg 2 dg 0 a f o a o f

If this is done the solution may be obtained analytically in the same way

as before, but has the property that as X -+ 0, the transmission
~ coefficient, which is still given by Eq. (5), goes to unity, whereas

the converted wave amplitude is non-zero, a result in obvious conflict

with the conservation of energy.

ITI ABSORPTION OF THE X-MODE AT ELECTRON CYCLOTRON FREQUENCIES

For propagation perpendicular to a steady magnetic field we shall
consider the absorption process to be mode coupling to a Bernstein mode
at the second harmonic (w = 2Q) or to a cyclotron harmonic wave at
the fundamental. As with our earlier treatment of the O-mode we shall
obtain results in agreement with those obtained previously by Antonsen

. 7 . : .
and Manheimer' . The analysis involved in our treatment is, however,



rather more straightforward than their full wave calculations and the
same technique is shown to apply to all cases.

The dispersion relation for the X-mode at perpendicular incidence

is

nZIn
2 _ 2 2 _ - _ ’
/1__wp E.A © n In) l__czkz ) wp “ A Z — + 2}\In ZAIn
\Coa R n=- w=ng w? w n=-—o w - nf
2
m; oA ? n(I'=-1I)
= e (7)
w he e W™ DO ,
where
2_ 2
A-KTEEZ _kvth
m 92 3’22
and X 1is the argument of the modified Bessel functions In' We

shall look first at the behaviour of the harmonic w = 20, where the
X-mode has a mode crossing with a Bernstein mode. Following the
procedure of Sect.II our object will be to find the frequencies wp
and w, of the separate modes, then write the dispersion relation

X

near their crossing point in the form

(w - wB)(w - wX) =n . (8)

The X-mode is adequately described by the cold plasma approximation,
the dispersion relation for which is obtained by letting A = 0 in (7)

and may be written as
w" - w2(2m§i+ k?c? + Q%) + kzczuﬁf + k%c?2Q%+ wé*= 0 . (9

This equation has two solutions for w?, corresponding to the two

branches of the X-mode, and we assume that one of them propagates in

2
the frequency range w? = w;a ~ (2Q) . For the wavenumber which gives



this there is a second solution w? = mf and the quadratic in (9) is

(w?- w;O (w?- uhz). We are only interested in the mode such that  w = W

so we factor out the other three unwanted modes by writing

W= = ] % 1,0h.8, 6f (9)

(@ + w) (w?-w?)

= C S . B
\ 7 T oY W Wt

2 4 4 ~2
w? {w? = Q%) (1 -5 ) fi ke “p ) e
)

2 A
(w + u_)x) (w W,

(10)

In the cold plasma approximation the expression in curly brackets
vanishes. Now, however, in order to bring the Bernstein mode into the
picture we include thermal effects. Assuming that A 1is small at the
crossing points, we include the O(A) corrections in the n = 2 terms
of the sums in (7), in which case we get w-wx calculated from (10)

to take the value

w2 2w 2
P

202 Q
al B P
W

w? (W2 - Q%)

(W= 20) (W + wy) W?-w?)

c’k?
+
(w2-0%) w? w2 9%

(11)

o >

(w-w) =

For small A, Wy 22, so by comparing (8) and (11) we may identify n
as w = 20 times the r.h.s. of (11). The resultant expression can be
simplified by evaluating from the cold plasma X-mode dispersion relation
the value of k at which w = 20 . Also uHZ must be evaluated, this

being most easily done by noting that from (9) ,
w2+ w? = 2w?+ k%? + 0% .
X P

Putting w = 20 we find after some algebra that
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w? A (6Q%-w?)
p P

g _ end.,. 2 Y
16 (902 50 wp + wp)
In the notation of Sect. II the other quantities required are

awx

# e

which may be evaluated from (9), the result being

2
o c?(30% - wpz)

a:_

20 9N - 5022+
P P
and
M Lm0
& T Bx 3x R

where R is the scale length of the magnetic field variation. As in the

O-mode case f = BwB/BkZ is small and can be neglected. Finally we

have the energy transmission coefficient

—2'rrn_o/ag
T =-¢e (12)
where
_e=azy/3—2a”4(1-.a> -1J Te _—
ag c \3 - 402/ | 3 - 402 me?

with o = w ?/40% .
P
The X-mode at the fundamental may be treated along the same lines,
now taking w = @ and including the thermal corrections to the n = 1
terms in the dispersion relation (7). The main difference is that the

0(A) correction to the value of w-w o, corresponding to (9) above,



vanishes and it is necessary to go to O(Az) . This 1s a reflection
of the fact that for small va/Q there is no Bernstein mode in the
vicinity of the fundamental frequency. The only mode which appears
there is the cyclotron harmonic wavelo, which is an additional branch
of the dispersion relation which appears when terms of higher order in
A are included. Absorption at the fundamental may be regarded as
being due to mode conversion to this wave. Again the energy trans—

mission coefficient is of the form (12) with, in this case

n w T & w %
o 1 e \ RO P
__=__P_f__?)_c_ (2__) (14)

Comparing (13) and (14) we note that for perpendicular incidence absorp-—
tion at the fundamental is weaker than at the harmonic by a factor of

order Te/mcz.

Iv SOME OTHER APPLICATIONS OF THE MODE COUPLING THEORY

We now consider some other mode coupling probiems in which the wave
properties are as discussed in Sect.lI, and which have been discussed in
the literature using a variety of techniques. As we shall show, previous

results may be recovered with a minimum of effort using our method.

A. Ion cyclotron absorption at perpendicular incidence

This problem has been discussed by Ngan and Swanson6, the physical
process under consideration being the coupling of a fast Alfvén wave to
an ion Bernstein mode at the harmonic of the ion cyclotron frequency.
The dispersion relation which determines the wavenumber is, as given in

ref. 6,

k* = A%zk?+ APz +y =0 (15)



with X and Y constants and z the direction of wave propagation.
To apply the theory of Sect.II to this we note that for large z

the roots of (15) are

k>~ A%z -1 and k* =1,

with corrections 0(1/z) . These roots determine the behaviour of k
away from the coupling point and so correspond to the dotted lines of

Fig. 1. Thus, in line with our general procedure we write the dispersion

relation (15) as

(k¢ = 1) (kK2 =A%z + 1) +y+1=0. (16)

Now the crossing point of an uncoupled mode is given by

A%z - 1 =1
ie. 5
z =-Iz
at which point k? = 1. We now expand about tﬁe coupling point with
k=1+3§
z = £ 4 g
22
to get
8(8 - gng)=_Yzl
Note that by choosing k = 1 rather than -1 we fix our attention on

waves going in one direction rather than the other, and reduce the
original fourth degree equation in k to a quadratic in &§. This is in
line with our previous technique of factoring out the waves propagating

in the opposite direction.



Identifying this last equation with equation (2) of our general

theory, we predict an energy transmission coefficient of

il + 1
T = gsp (_ (sz )) ’
exactly the same result as Ngan and Swansonﬁ. Using the method of

Sect.IT we may also obtain their results for the behaviour of the

reflection coefficient.

B. Alfvén wave cyclotron resonance heating

This problem, in a geometry where the inhomogeneity is along the
magnetic field, rather than across it as in our previous examples, has
been considered by White, Yoshikawa and Obermanll. The dispersion rela-

tion which they analyse is of the form

(k2+‘+a\(—k2+f2)+xz=o- (17)

n/ :
where n 1is the spatial coordinate along the direction of inhomogeneity
énd a, f and A\ are constants. As discussed by White et al., A
determines the strength of the coupling between modes with k? = £? and
k? = -1 - a/n, and is small. Again we determine the point at which
the uncoupled modes cross, namely n =- a/(l +f2), and expand k and n
about their values at this point as before, to obtain

fo .1+ £,y A2
S8t Tmr &) T

4

From this we predict an energy transmission coefficient

T = ( m\’a )
=exp |- ———
£(1+£%)"

- 14 -



which is not exactly the same as that given by White et al.ll, but

agrees with their result for small A, 1y may also note that while
they predict a reflecfion coefficient of zero with incidence from one
direction, they obtain R = T(1-T)? with incidence from the other
direction, instead of the (1-T)? obtained in other theories of this
sort and given a simple interpretation in Sect. II. This discrepancy

is discussed further in the Appendix.

C. Wave Transformation in Magnetohydrodynamics

A paper with the above title by Moiseev and Smilyanskii12
considers mode conversion between fast and slow magnetoacoustic waves
in an inhomogeneous system. The energy transmission coefficient given
by their analysis, using phase integral techniques, is of the form
=28 where §, 1is related to the wave vectors k;, ky; of the two
waves in a way which will be explained shortly.

First we note that, in the notation of Sect.II, the values of k;

and k; in the vicinity of the mode coupling point are given by
%
ki 2 =ky = {(ag+bf) £t [(ag-bf)2£2+ 4afno] }/Zaf, (18)
from which we see that

1
k?. -'kl = E-f_

L

;
[(ag—bf)zgh -ﬁafno} 5 (19)

Thus, if k, - k; is regarded as a function of the complex variable £

it has branch points at

E=+*1 —_— (20)



According to the analysis of Moiseev and Smilyanskii,

60=—;Zj( (k, - k,)dE, 21)
L

the contour L being a loop encircling the two branch points and the cut

which connects them. Using the formulae of (19) and (18) for the

integrand and the branch points, the integral of (21) can be evaluated

to give

™

o ag - bf

demonstrating that the analysis of Ref. 12 predicts a transmission
coefficient the same as would be predicted by our method. The

reflection coefficients are also in agreement with our analysis.

V. CYCLOTRON EMISSION AND ENERGY TRANSPORT ACROSS THE MAGNETIC FIELD

We should like to draw attention to the fact that the interpretation
of cyclotron absorption as a mode conversion from a cold electromagnetic
wave to a cyclotron harmonic wave (cf. Section III for the X-mode at
the fundamental and second harmonic and Refs. 1| and 2 for the O-mode at
the fundamental) also provides a natural description of electron cyclotron
emission perpendicular to the magnetic field. The argument is now exactly
the reverse. The cyclotron harmonic wave is excited within the plasma
and passes through the resonance region with the same transmission co-
efficient T = e ' that we obtained from the absorption calculation
(Section III or Refs. | and 2). The fraction of the energy in the
cyclotron harmonic wave which is mode converted to the cold electro-

magnetic wave is 1-T (this now follows rigorously since our mode

conversion equations conserve energy). The mode converted energy is

-16 =



radiated from the plasma in either the 0- or X-mode depending on
the particular mode conversion under consideration. Let us now see
how we can use this interpretation to calcnlate the intensity of the
electron cyclotron emission from a plasma.

We assume that the plasma is in thermal equilibrium, although this
is not a necessary condition. The cyclotron harmonic waves will then
be excited to a level of Te per mode (N.B. We use the term cyclo-
tron harmonic wave to cover both O- and X-type waveslo as well as the
Bernstein modes). The energy density of the cyclotron harmonic waves
in the frequency range w to dw will be Tep(w)dw where p(w) 1is
the density of states in this frequency range. The energy emitted
from the plasma due to the mode conversion mechanism described above

will therefore be

T, p(w) (1- e dw

where T refers to the particular mode conversion (eg. Bernstein wave
to cold X-mode at the second harmonic, cyclotron harmonic wave to cold
O-mode at the fundamental). The energy emitted can be written as an
energy flow or radiation intensity by multipiying by the group velocity
vg to give the emission over the whole of the unit sphere. To obtain

the radiation intensity emitted at right angles to the magnetic field

through a fraction df2 of the unit sphere we write

afl
)ngwﬁ .

T, o(w) (1-e "

The density of states p(w) can be written13

_‘[7_



where V is the volume under consideration. Using the fact that the
emission occurs under the condition that the cold 0- or X-mode is
resonant with a cyclotron harmonic wave, I(w) , the intensity of
radiation per unit volume per unit solid angle per unit frequency range

is given by the well known expression]

(1-¢e7) (22)

where n 1is the refractive index for either the cold O-mode or the X-

mode.

This interpretation of electron cyclotron emission may have wider
application. The mechanism is based on mode coupling of waves propa-
gating at right angles to the magnetic field. However, in the presence
of a rotational transform, the emitted radiation may emerge from the
plasma no longer perpendicular to the magnetic field. The mode coupling
mechanism may therefore cover the emission of radiation at all angles to
the magnetic field.

Finally, we would like to make an observation concerning the trans-—
port of energy across the magnetic field. The above mechanism for

electron cyclotron emission can also be applied at lower frequencies.

Since the fast wave 1s very effective for carrying energy into the
interior of a plasma, it could also be equally effective for the reverse
process. It would therefore be of interest to examine possible mode
conversions of localized waves to the fast wave in order to discover the
rate of energy outflow due to this process. In addition, the mode con-
version picture is not restricted to the case of thermal equilibrium.

In particular, a mode coupling from an unstable wave could be treated in

a similar way. The energy transport due to waves has previously been



discussed15 although only the case of thermal equilibrium was treated
and the effect of mode conversion was not considered. What is being
proposed here is a specific mechanism for coupling energy out of the
central region of a plasma to its edge region. The coupling mechanism
is linear but for the case of most interest, where the localised wave

is unstable, the energy density would be determined by non—linear effects.

VI RAY TRACING OF ELECTRON CYCLOTRON WAVES

The mode conversion picture we have developed for electron cyclotron
radiation suggests a simplification to the description of ray tracing in
this frequency range. In the vicinity of cyclotron resonance even the
weakly relativistic theory predicts infinite values for the group velo-
citylﬁ. This property clearly makes ray tracing difficult in this region.
However, the mode conversion interpretation offers a solution to this
problem. The group velocity is well behaved as the resonance is approached
thus permitting the rays to be followed with confidence. At the coupling
point a certain proportion of the wave energy is mode converted (given
by our mode conversion analysis) and the remainder transmitted through
the resonance. This interpretation therefore leads to a non-relativistic
ray tracing procedure for undamped waves. However, the absorption at
cyclotron resonance is accounted for by the fraction of energy mode con-
verted, as already discussed. Such a scheme would therefore allow ray
tracing, with the total absorption at cyclotron resonance included, to

be carried out at all points.

VII CONCLUSIONS
In this paper we have developed a technique which provides a simple

way of analysing a class of mode conversion problems and which satisfies



the essential physical constraint of enmergy conservation in the absence
of damping. Once the basic analysis has been carried out, transmission
and conversion coefficients are easily obtained by means of elementary
algebraic manipulations of the local dispersion relation. To illustrate
the theory we have looked at various problems which have already been
solved, generally by means of asymptotic analysis of the governing
differential equations, but with the details of the mathematics varying
from one case to the next, and have shown that these results can all be
reproduced. (The one discrepancy is discussed in the Appendix).

We have also shown how the phenomenon of electron cyclotron
emission can be described by means of our mode conversion model. In
addition, we have suggested that mode conversion at other frequencies
may contribute to the flow of energy across the magnetic field in a
plasma. In particular, a mode conversion from an unstable localised
wave to a wave which travels easily across the magnetic field would be

a case worth investigating.

Finally, we have indicated the way in which our mode conversion

interpretation might improve ray tracing of electron cyclotron waves.

Thus a wide variety of results can be brought together in a unified
theory which by-passes much of the labour and mathematical sophistication
involved in the earlier derivations. We believe that the validity of
our method has been amply demonstrated and that it should provide a
simple way of tackling other mode conversion problems. Also we suggest
that damping of the waves can be included in a simple way and we propose

in future work to examine the behaviour of damped systems.



APPENDIX

The one point in which we differ from previous work is in the
reflection coefficient in the problem treated by White et al.ll. We
have argued that, in general, the energy transmission and reflection

coefficents, for incidence from the appropriate direction will be

related by
R = (1-T)%

and have found this to be supported by more rigorous calculations,

except in this case where White et al. find that
R =T(l-T)>%.

We wish to suggest here a possible resolution of this discrepancy,
based on a slight modification of the calculations of White et al. 1In
Sect. 3 of their paper the calculation of the asymptotic behaviour of
their differential equations involves contour integrals in the complex
k plane and,if the theory is examined in detail, it will be found that ,
the reflection coefficient, but not the transmission coefficient, depends
on the choice of the argument of k on the various contours. It is,
therefore, essential to find some way of making an unambiguous choice
of the argument, and we suggest that, as is usual in such problems,
causality arguments are used to determine this choice. White et al.
prescribe small displacements of the poles kp from the axes due to
causality, and the most obvious way to choose the arguments seems to us
to be in the natural way when the branch cut goes away from the real axis
and the real axis can simply be deformed into the required contour. This
is illustrated in Fig. 3.

Thus when a pole is below the axis the argument is determined when

= 4] =



the contours go downward and when the branch cut and contour are rotated
to go upwards, the argument is determined by the direction of rotation.
Similarly, the argument on a contour going round a pole above the axis
is determined when the branch cut and contours go upwards. Applying this
prescription to the work of White et al. changes the energy transmission
coefficient (T? in the notation of Ref. 11), thus bringing it into line

with other similar cases.
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Fig.1 Variation of wavenumber with position
in a typical mode conversion problem.
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Fig.2 Dispersion curves with a backward
propagating wave.
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Fig.3 Arguments on contours in the complex k plane.









