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Abstract

The two-fluid equations are used to investigate a turbulence inter-
pretation of transport in tokamaks. Radial energy balance equations are
derived with mean energy fluxes and sources expressed in terms of corre-
lations between the various fluctuating quantities. Ambipolarity and
plasma diffusion are discussed, the latter in relation to tokamaks with

negligible particle sources. It is argued that turbulence cannot signi-

ficantly affect toroidal resistivity, and hence the present analysis is
consistent with the experimentally 'observed' Spitzer value. Application
to MACROTOR suggests that other gross features, including the energy

confinement time, can also be qualitatively interpreted.
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INTRODUCTION

In this paper we continue our investigations of a two—fluid

turbulence interpretation of transport in tokamaks (Thyagaraja et al.
1980; Cook et al 1982). Appropriately averaging over the electron

and ion energy equations, we have previously derived general forms for
the mean radial energy transfer equations for both fluids (Haas et al,
1981); these lead to formal expressions for the heat fluxes in terms
of correlations between the various fluctuating quantities. The
analysis suggests that the radial anomalous electron thermal conduction
can be interpreted in terms of temperature and magnetic fluctuations,
both of which are known to occur in present tokamaks, and furthermore,
that parallel electron thermal conduction is crucially involved. To
proceed further, we considered a simple model in which density and
velocity fluctuations were neglected (Haas et al 1981). With these
assumptions and a suitably 'corrected' form for the parallel electron
thermal conductivity, we demonstrated the effective radial electron
thermal conductivity to be of the order of the experimental value for typical
fluctuation levels. Our work showed that the enhanced thermal
conductivity arises from the phase lag between magnetic and electromn
temperature fluctuations due to the parallel thermal conduction,

(Haas et al.1981). Furthermore, our results suggested that only
frequencies of order 30-100 kHz could significantly affect the
enhancement. Due to the large mass difference between electrons and
ions, however, our work indicated the ion thermal conduction to be
essentially unenhanced, thus supporting the belief that the ions behave

neoclassically (Thyagaraja et al.1980).

Our previous work suggests, therefore, that a two-fluid turbulence
theory could plausibly interpret the transport phenomena observed in
tokamaks. The neglect of density and velocity fluctuations, however, is
a serious omission. The principal objective of the present paper is
to remedy this defect, thus allowing our investigation to cover convection,
turbulent heating,particle and momentum transport. Following a previous
study of the dissipationless system (Thyagaraja and Haas, 1982), we
linearise the full set of two-fluid equations: continuity, momentum,
energy and Maxwell equations. The energy equations, however, now
include both electron and ion parallel thermal conduction as a dissipative
(and hence phase-shift producing) mechanism. Manipulation of the linearised

relations leads to forms for the turbulent heating and particle and energy



fluxes in terms of the power and wave-number spectrum of any one

fluctuating quantity, which we shall assume to be known from experiment.

The results of the above calculational procedure will be used
to provide at least a qualitative interpretation of some of the grosser
experimental aspects of transport in tokamaks. These can be summarised

as follows:

(1) The electron perpendicular thermal diffusivity is of
order (0.5 to 5.0) x 104 cm2 sec—] for a wide variety of
tokamaks.

(2) The ion perpendicular thermal diffusivity is a few

times neoclassical, although with neutral injection heating
the factor can be larger. In high density machines such as

FT and ALCATOR it has been claimed that the ion thermal
diffusivity is almost neoclassical.

(3) Particle tramsport is believed to be ambipolar in

the central regions at least. Although difficult to measure,
there appears to be some consensus (Coppi and Sharky, 1981;
Strachan et al, 1982) that the particle flux can be written

as the sum of an outward diffusive flux and an inward convective
flux. This assumption, together with a diffusivity of order
]04 cm2 .':‘.ec-1 and an inward velocity of order ]02 to ]O3 cm
sec—], allows a realistic simulation of density profile both
with and without gas-puffing. Remarkably, it is even asserted
that the above form of particle flux will interpret impurity

transport (The ASDEX team, 1981) and the diffusion of added

trace elements (Stodiek et al, 1980; Chrien et al, 1981).

(4) Present tokamak experiments suggest that the toroidal

resistivity is essentially that given by the Spitzer value.

In section 2 of this paper we describe the underlying philosophy
of our method. Section 3 contains the full set of linearised two-fluid
equations. These are used to obtain relations which we subsequently
use 1in deriving explicit expressions for the various energy and particle
fluxes; the details of the eliminations are given in an appendix. In
section 4 we discuss ambipolarity in relation to turbulence. This leads
to an interpretation of the 'phenomenological' simulations of plasma

diffusion (Coppi and Sharky, 1981). We follow this with a rederivation



of the radial mean energy balance equations. Using results obtained

in Section 3 we are able to derive a relation between the electron

heat flux and the electron particle flux. Section 5 comprises a
discussion of some features of our analysis, together with an application

to MACROTOR (Zwehen et al, 1979). Section 6 contains our conclusions.

THEORETICAL BASIS OF CALCULATIONS.

For our present purpose it is sufficient to consider a cylindrical
model of tokamak with minor radius a and periodicity length 27R. When
required we shall use cylindrical coordinates r,0, z, based on the
axis of the cylinder. Our analysis employs the two-fluid equatiomns,
namely, electron and ion continuity, momentum and energy, as well as
Ampere's and Faraday's equations. These comprise fifteen independent
equations for the variables ne(z,t), Tng,t), Ti’ > u, E and B,
where the symbols have their usual meanings; note quasi-neutrality is
assumed throughout. Furthermore, we assume all sources of mass,
momentum and energy to be steady. The linear relations between the

unknowns are given in Section 3. In this section, however, we give a

very general discussion of our underlying procedure.

If we denote the physical variables ne(g, t), Ee(E}t) etc. by

the general symbol W, then their time evolution is described by

dw

e = F(W,S), (N
where F 1s a complicated operator which depends on W and its space
derivatives. The quantity S represents steady external source parameters

such as total current, auxiliary heating etc. Experiment suggests that

W(r,t) can be written as

W(r, t) = <W> + 6W(x, t) , (2)

where the average of any quantity Q(r, t) is defined by
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with t,, denoting the shot-time. . Thus it follows that <W> is a
function of r only. Combining Eqs. (1) and (2) we derive
4 5w = F(<w> + &W, S) (4)
dt ] L]
which on averaging, lead
0 = <F(<W> + 6W, S)> . (5)

These are the equations which determine <W> in terms of S and the
various cross—correlations of éW. Returning to Eq.(4), we separate
the right hand side into terms linear in &W and collect all higher

order terms into a "source" I .

d _ 3F(<W>, 8) &W + ¥ (<W>,8W,S), (6)
TS - O Sirgs

oF ; v ; >
Note that 5o is a symbolic expression for the linear operator
acting on 8W; the linear part is, in general, dependent on both
6W and its spatial derivatives. Since <8W> = 0 it follows that

<I> also vanishes.

In general, the correlations of 6W in Eq.(5) can only be calculated
when the complete solution to the non-linear equation, Eq.(6), is
fully known. Since this involves a knowledge of <W >, our problem, is
at the very least, extremely difficult. Given that a self-consistent
solution to the above problem exists, in order to make further progress
we make two important assumptions. First, taking <W> as known from
experiment, we assume that the correlations of 8W can be derived using
only the linear terms in Egs. (6). A necessary condition for this

is that |6W|<« [<W>|. Second, we assume that the spatial variation and

power spectrum of a particular component of 8W - the radial magnetic

fluctuation say - is completely known from experiment. It follows



that if overdeterminacy is to be avoided then one equation of the
linear system (d/dt &6W = linear terms) must be discarded. In the
remaining linear equations this known fluctuation appears as a
driving source and all other fluctuations can be determined in terms
of it. Thus the correlations and fluxes which occur in Eq.(5) can
then be expressed entirely in terms of the power spectrum of the

assumed fluctuation.

We now discuss the implications of the above procedure. We
remark that even if <W> is completely known the linearised equations
alone cannot possibly provide an explanation of experiment. The
reasons are obvious: a linear dissipative system has in general,
only amplifying and decaying solutions, and furthermore, the
amplitudes are themselves indeterminate. Thus it is the non-linear
source X which effectively saturates any instabilities and leads to
a final steady state of stationary turbulence. Although non-linear
terms are essential in maintaining statiomary turbulence, our
investigations indicate that these terms enter mainly through themomentum
equations, and are due to the Lorentz force. This suggests that
the momentum balance be used to determine the unknown non-linear
momentum sources, ». Thus it is the total momentum equation which we
choose to discard. With a complete specification of the magnetie
fluctuations (say) the linear equations can be used to express all
other fluctuating quantities in terms of %£§' With these relatiouns,
all the correlations required by our theory are now calculable. It
should be remarked, however, that phase-shifts between the various
fluctuations are essential for the occurrence of non-zero particle
and energy fluxes. The various dissipative terms (electron and iomn
thermal conduction, viscosity, resistivity ete.) which are present in
the full two-fluid equations can provide mechanisms for such phase-
shifts. Investigation suggests, however, that for frequencies
(é 0.5 MHz) and modes (m < 100) of interest, the electron and ion
parallel thermal conductivities are the most important phase-shift
producing effects. Thus for simplicity we neglect all other

dissipative terms.



Although the above procedure is crude, it should be good
enough to yield results which are at least qualitatively correct.
A completely satisfactory investigation of our two-fluid turbulence
interpretation of transport requires the solution of the full set of
non-linear equations. This problem, which is currently under consideration,
should give the spatial dependences and frequency spectra of all
fluctuating quantities. Evaluation of the corresponding steady particle

and energy fluxes would then indicate the wvalidity or otherwise of

the fluid turbulence interpretation.

THE LINEAR EQUATIONS

In this section, we consider the linearised equations of our
quasi-neutral two-fluid system. Following convention, we denote ions
and electrons by the suffices i and e, and equilibrium quantities by
the suffix zero. In equilibrium, the ions are assumed to be at rest¥®
and all equilibrium quantities are taken to be functions of r alone.

Thus the current density, io(r), is given by
i) =-en (r) u (1), (7)

and the pressure balance is

EPO 1 ; -

dr ¢ ('JOBBOZ Joz Boe) (8)
where P, 1s the total plasma pressure, By & By, # Piy" We write
every fluctuating quantity, &f, in the form

8f = 8f(r) exp [i(wt + m6 + ne/p) ], (9)

where for convenience we suppress the frequency and mode (m,n) dependence

of the amplitudes.

For the ions, the components of the linearised momentum equation

* This assumption is not essential and is only made for mathematical
simplicity.
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Following the discussion of Section 2, the ion energy balance equation

is taken to be

3 e om - dTio 2
= iwST. + &U, . Lou,
5 R | TR0 & ir dr ) ¢ noTlo g égl

\

~

[ - GBE dTio
= 1h.K“i\1K|6Ti . o= ) , (15)
o
mBoe nBoe
where ky = ~ * 5 .
o o
2 2 2
B0 = Boe(r) + Boz(r)
Neglecting electron inertia, the components of the electron
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These equations must, of course, be supplemented by those of

Maxwell. Thus the radial and 6- components of Ampere's law are
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Noting that P, = nTE and p; = nTi, the above independent

equations suffice to determine the fifteen unknowns d&n, 5Te, 5Ti, Sge

5Ei’ S8E and 6B. Before proceeding, however, it is useful to define

the following quantities

” 8B
E:L ._._r
ky B
o
Sp(r) = Gpi(r) + 6pe(r)
8T dT .
- 1 oi 7
A, = i— + £
L TDl Toi dr
8T dT
- e 1 oe [
A =l 71 + £
e T T r Y (26)
~ dn
An = i gﬂ + L 7?2 £
) By ®F
- 5 .
At 4B . -Jf —2 .
P P, P, dr

where P, = nOT0 with To(r) = Toe(r) + Toi(r). Carrying through the

eliminations (see Appendix) we find the equations to reduce to a
coupled first and second order differential equation in the variables

z and AP. These equations correspond to forms of the ion continuity

and total momentum balance, respectively. As we described in Section
2, however, we assume a single fluctuating quantity to be known as

a function of r, w, m, n, and discard the total momentum equation.
We now summarise the linear relations which we shall require to

evaluate the various correlations.

Thus we have
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where the diamagnetic frequency w* is defined to be
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the prime denoting differentiation with respect to r. With the
definitions of Eq (26), the electron and ion energy balance equations

can be expressed very simply as

38
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2 K\Ie kil2
-2 = (30)
n §
(0]
and
2 —
2 3 y ot Po o f3%i o )
i n w pt p\2T. n
K. . k.2 ) ol
2 5 "l n
1 - 3 1 s
Do

B o b #ooit k B h (32)

From Egs. (30), (31) and (32) we deduce that

P w* " po n (33)
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The equation of continuity for the ions then gives
1 d o 1 d
T I (r) = = (rG (r, w) An)+ H(r, w) An (35)
where
! 2 2 r
H _Poy [k” Vth _pono_t_u_*"G(r,w)—], (36)
% 7
P, W i Jo W |
2 _ . . .
and L To/mi' Given the profiles of the mean quantities (Toe, Toi’

n_ etc), w, my, n and £ (say) as a function of r, then Eq. (35) can be
used to determine 5n/nO and hence all other fluctuating quantities. It
follows that we can then evaluate the correlations arising in the particle

and energy fluxes defined later.

4, ANALYTIC CALCULATION OF TRANSPORT

(a) Ambipolarity

We recall that in equilibfiﬁm, the ions are at rest and
currents. flow inithe® and z-directions omnly, that is jor(r) =0.

By Ampere's equation it follows that

1.3 & R01.> = 05 (37)

11



This implies, that in the mean, magnetic fluctuations in a closed
system like tokamak can only lead to ambipolar transport. This
result, which is independent of the size of the fluctuations, implies
interesting consequences in two—-fluid theory. We note that in
general

jr = en(uir - uer), (38)

and hence averaging we derive

<jr> =e <nfu;, > - e <néu_ > . (39)

It is a consequence of the mass difference of electrons and ions, how-
ever, that <6n5uir> is not generally equal to <6némer>. Thus there
appears to be a contradiction between Egqs. (37 and (39). This apparent
paradox is simply resolved by observing that although u and Yo
can be taken to be zero, we must allow the possibility that <u. > and
<u, > are non-vanishing. Actually, following standard practice in

turbulence, we require <u. > =u,_. and <u__> =u where the
im 2ir er

2er ’
twos denote second-order in the amplitude levels. Thus the content of

Eqs. (37) and (39) should be expressed as

<_]r> = e{<6n6uir> + noVye ~ < 6n Guer> - UZer} =0 . (40)

These considerations indicate that the electron and ion particle fluxes

are given by

]
I

<éndu > +n
er

b
er o Z2er

and (41)

e
]

; <fndu, > +n_u,. .

iT ir o 2ir

For reasons which will become clear later, we shall refer to the quan-

tities @ =<énfu__> and ®. = <8éndu._> as the nominal particle
er er ir ir

fluxes. If the plasma is in a stationary state then the mean conti-

nuity equation for the ioms is

-dii;(rF.)+S (r) =0, (42)

1
T ir op



where SD (r) 1is the particle source. If the latter is known then Eq.
(42) determines Fir . Since - as we show later - the nominal fluxes can
be evaluated, it follows that u,. . can be determined. The quasi-

tralit diti F. = i .
neutrality conditiom ( b Fer) then yields Uy

It should be noted that the above discussion of ambipolarity rests
on the concept of periodicity. This should be appropriate within the
body of the plasma. In the proximity of limiters or divertors, however,

periodicity will be broken and the fluxes need not be ambipolar.

We should emphasise that our view of ambipolarity within the body
of the plasma rests firmly on two considerations. Firstly, the mean state
of the plasma is not time dependent. Secondly, Ampére's law being a
linear relation between fields and currents, it must result in zero mean
current perpendicular to the mean magnetic surfaces in any closed periodic
system. Indeed, if these currents were non-zero (that is, particle
transport is not ambipolar) the system could not be in a steady-state
since <Ve¢j> # 0. The usual arguments for ambipolarity invoke radial
electric fields. In our view radial electric fields do not drive radial

velocities but lead to flows in the poloidal and toroidal directions only.

(b) Particle Diffusion

We consider tokamaks which are (i) sufficiently large or demse so
that the neutral atom mean free path is short compared with the plasma
minor radius, and (ii) characterised by low levels of impurities, that
is Zeff = ], Under these conditiomns the particle source in Eq. (42)
can be neglected in the central regions of the discharge, and this implies
that both the radial electron and ion fluxes must vanish (Fer = Fir =0).
Furthermore, during steady operation the plasma density in these regions
is typically parabolic. Coppi and Sharky (1981) have pointed out that
such experiments can be readily interpreted in terms of a simple phenom-
enological procedure. Thus they assume - without specifying whether ions
or electrons are being considered - that the particle flux can be written

as

F=—D——9+nof1. (43)

. . -1
The first term represents an anomalous outward diffusion (D ~10" cm®sec )

and the second an anomalous inward particle flow (ur ~ =103 cm sec_l).

13



With this approach it is possible to correctly simulate PLT, T-10,
Alcator-A and ASDEX (The Asdex Team, 1981). Furthermore, the same
prescription leads to successful simulations of gas-puffing experi-

ments (Coppi and Sharky, 1981; Strachan et al., 1982).

The theoretical basis of the above method can be understood from
our present work. Thus if we can assume that the nominal particle

fluxes can be written in the forms

dnO -
“er =-D dr * nb ger (44)
dn
(6] =-D—2+q 1
i dr o ir, (45)

~

then we can identify Ur with u +u or equivalently,

2er’
Thus the inward phenomenlogical velocity is capable of

E.l-" + U, . .
ir 2ir
a turbulence interpretation.
Another possibility, not envisaged by Coppi and Sharky, is to
replace Eq. (43) by separate fluxes for the electrons and ions, that

is

dn
F_==-D —2+n u
er e dr o er
(46)
dn
F = - _0_+nu
ir 1 dr o 1ir

Setting F =F, =0 then D./D = u. Ju Again, the inward
er ir i’ e ir’ e

e
ion and electron radial velocities can be given @ turbulence inter-
pretation

(e¢) Energy Fluxes

In an earlier paper (Haas, Thyagaraja, Cook, 1981) we derived
electron and ion energy balance equations for the mean temperatures,

T and T .. Taking account of the second-order velocities u
oe ol 2er

and Uoip o W rederive these equations and present the resulting



expressions in a more physical form. The electron energy balance

is
aT
3 (e \ ’
-2—11\'—8T+L1 -VT}"'HTeVEE
— 3% n
- v.(K"e U T .Levl Te) Tom T, (Ti-Te) S (2
i el

where S  signifies all sources and sinks not explicity shown.
e

Note that K"e and Kle denote the instantaneous values for the
parallel and perpendicular thermal conductivity coefficients
(assumed known); the bar over the latter is to distinguish it from
the effective perpendicular thermal conductivity, KJ_e (see Eq. (55)).
An analogous equation pertains for the ions. Following our earlier
paper, we fluctuate all quantities, retain terms to second-order and
perform the average defined in Eq. (3). The mean energy equations

then take the forms

1 d .
~ &3 Qe(r)) + S;Z (r) =0 (48)
and
-1l 8 @) +5% (@) =0 (49)
r dr i ol ?
where Q_ , Q. denote the effective heat fluxes and s * , s* are
e i oce oi
the effective sources. The latter can be expressed as
* Te U
soe - Soe(r) +.3 EI'?; (Toi - Toe) - <6Pev.§-ue>
dT
1 d ; 3 oe
Poe T dr (r u2er) 2 Fer dr F <6Te Gsp:> (o)
and
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where Soe(r) and Soi(r) are the mean energy sources and include
ohmic heating, radiation losses, etc. The symbol GSP denotes a
fluctuating particle source and arises from use of the fluctuated
continuity equation. As before, the particle fluxes Fer and Fie

are defined to be

=
I

<fdn du > +n u
er er o Z2er

and (52)

<8n Su. > +n u
ir o

]
]

ir 2ir

The effective electron energy flux, Qe(r) , 1is

o (0 = q, “@ + ™ (@), (53)

where the conductive part is given by

Q cond - -x dlroe (54)
e le dr °
with Ko =<K >+<K > 1‘E (55)

-1

8B_ 2 8B dT__
and Fe ™ (—lf)> +<B_o By (GTe) ( dr ) ; (56)

Note that <K > and <K > denote K and K evaluated in
le ne le e

terms of the mean quantitities n_ s Toe’ B0 etc. The convective

16



conv ) .
part, Qe (r) , can be written in the form

QeC.OI'.lV (r) =

|

n <8T Su >. (57)
o e 2T

Throughout the rest
of this paper we shall assume the fluctuating particle sources GSP
to be negligible.

Analogous expressions can be derived for Qi(r).

We now derive a relation between Qe(r) and the nominal electron particle
flux, &
e

As in Section 3 we assume amode of given m,n and .
We have already defined the radial displacement amplitude

E in Eq.
(26); we similarly define

<>
1
(o3
?[8
O
—
1)

and ¢ = — . (58)

(o]
o
™

From these definitions, the equations of Section 3, and the immediate

preceding expressions, it is straightforward to show that

2
-_T K" k" 21'1’ A A A~ A ~n o~
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1+ 4 (Che n) o
9 n
° 2
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Al B O I I
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and
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3 n £ 4 B o, Q)
3
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Combining these equations we obtain

_s sty o
Qe(r) =72 Poe B (£ 98 B 2 Toe q)er' (61]
However, since
= - "* "*" 2
¢er n_ Q (£ vF+ E*V), (62)
it follows that
Qe - Toe er - Toe <6n6uer> (63)

That is, the total electron heat flux as defined in Eq. (53), is equal
to the energy carried by the nominal electron particle flux. We note
that this result has been established for a single mode (m,n) and

frequency (w). Since, however, the ratio Qe/ﬂénéuer>is independent

of m,n,w, it immediately follows that the same relation can be derived
between the total heat flux (over all m,n,w) and the total nominal
particle flux. This is a striking result and has an important bearing

on the interpretation of experiment. Indeed, it can be used to interpret

the ideas of Coppi and Sharky. If we assume that szgperlment is
related to Qe(r) by
exp dToe
Q (1) = -k —=, (64)
then using Eq. (63) this implies that
dT T dn
o - - gEXP 1 ce _ _ 1 oe Lexp o]
er le T dr T "n TLe dr
oe oe o
This enables us to write Fer in the form
T! dn
- _L _oe yexp _ o
Fer - T Wy le dr * B5t2er” (65)
oe o

This immediately suggests that the electron flux takes the Coppi and

Sharky form with

D = 1 oe _ exp (66)
o

—————— " = u -
e T n’ Tle e Jder
e o
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Thus we conclude that the measured perpendicular electron thermal
conduction and the electron particle diffusion are simply related

and have the same order of magnitude (as assumed by Coppi and
Sharky). To the extent that Coppi and Sharky's phenomenological
values for D and u agree with the experimentally determined Ki:p,

the above deductions check the theory independently of any assumption

about profiles, mode numbers, amplitudes and frequencies.

The simplicity of the relation, Eq. (63), is ultimately due to
the neglect of electron inertia and other higher-order effects in
Ohm's law. For the ions theinertial terms are not negligible
(Thyagaraja and Haas,1983) and hence we cannot derive a result as
simple as that for the electrons. It turns out, however, that = _1T

ol ir
is 0(1). This further suggests that Di and De must be different, and
similarly for u and u,- Coppi and Sharky's apprgach, however,

implicitly assumes these quantities to be the same.

(d) Total Momentum Transport

As with energy transport we can fluctuate the total momentum

balance equation and derive mean momentum transport equations for the
r, O and z directions. In view of the lack of detailed knowledge of

the power spectrum, we touch on this only briefly.

Let us suppose that the radial magnetic field fluctuation GBI/Bo

is expressed as follows

6B © ® i (2)
T{ = ): Z { ‘Pn(m) (r,t) cosmb cos EI—{Z— + len (r,t) cosmb sin%
o m=1 n=1
(3 &
+ ‘Pm,n (r,t) sinmb cos n_RZ + Tr(n,)n (r,t) sinmb sin n_RZ } s (67)

with GBe and GBZ taking similar forms. The Fourier coefficients in
these expansions will be related by V*B = 0, and possibly by other
relations involving the dynamics of the turbulence. It is now straight-
forward to express the current fluctuations, §j, in terms of the ¢B

expansions using Ampére's law. With these expressions the mean Lorentz
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§j x 6B
force < :—7?—— >, can be calculated in terms of time averages like
1 t“'1 ( (1) &
J : \W o (L E) )dt. In general, a mode of given m,n can contribute

o
to this force only through an interaction with itself. Thus two modes

of different m,n cannot give a non-zero contribution to the average
force. However, it is important to recognise that in the presence of

(1), W(Z), ?(3), W(A) and their counter-

dissipation, the amplitudes V¥
parts in SBB and de will be correlated. In general, these correlations
give rise to forces in the r,f and z directions. The force in the r -

direction is rather small compared with the equilibrium Lorentz force

ixB
-9 although it is possible - particularly with large amplitude
§j x 6B dp,
modes - that the < —— >r force is of the same order as prral On the

other hand, in the poloidal and toroidal directions there is no force

' j x B

due to the mean pressure gradient or :97;:9-. Thus it follows, that in
the poloidal and toroidal directions the mean Lorentz force due to the
turbulence must drive mean ion velocities. For typical values of
turbulence, the mean Lorentz force can be balanced by ion viscosity,
giving rise to poloidal and toroidal flows small compared with the ion
sound speed. It appears, however, that under disruptive conditions the
size of these flows could become comparable with the ion sound speed.
In this situation, ion inertia becomes important and could lead to a

breakdown in equilibrium.

(e) Resistivity

We now consider the experimental fact that the toroidal resistivity
in a tokamak is of order the Spitzer value. This is despite the fact
that €lectron particle and energy loss rates are known to be much greater
than neoclassical. Thus for our approach to be consistent with experi-
ment, it is necessary that toroidal resistivity be unaffected by

turbulence. It is this point which we now investigate.

We have shown elsewhere (Thyagaraja and Haas, 1983) that the
resistive terms in the electron momentum balance equation are smaller

v_%xB

than the reactive terms, and E%—Vpe , by a factor of 10--3 or

less under typical tokamak conditions. In the absence of resistivity
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we show below that the turbulent correlations must exactly cancel and
therefore cannot drive any mean currents. When perturbations due to
resistive terms are taken into account, owing to the smallness of the
resistivity, the phase-shifts of the turbulent correlations are
correspondingly small and hence any turbulent—driven current is of
higher order. It follows, therefore, that the mean current is
principally driven by the externally applied electric field. We now

give the argument.

The electric field in the plasma can be decomposed into three

components. Thus

E= Eext * Eo * Eturb L (68)

where E - is the applied electric field resulting from the

transformer. The component Eo is the time-independent electrostatic

field which is determined by the equilibrium or mean state of the

~

plasma; due to axisymmetry it has no toroidal component. Eturb
denotes the turbulent or fluctuating part of the electric field; it
has the property that <E > = 0., We note that the resistive time-

turb

scale, of the plasma is much longer than the typical turbulence

g s
time-scale, which according to our interpretation, is of order the

electron collision time, Ty Typically, 1Y and T, are related

through 1, Vv w2 a? v . We assume that the time-scale of E
R pe Z e -ext
is also of the order that is, E ~ <j >. The

R? ext spitzer “o
following considerations apply only in thiscircumstance. In order to

simplify the discussion we neglect electron inertia and viscosity and

take n to be scaler. Thus the electron momentum equation (Ohm's law)

takes the form

%X B
E s g8 = _ 1 :
E‘ext * Eo k Eturb - { c en VPE} +nj, (69)
In the limit TR/Te >1,
Eext
<> Jo tor (70)
and the equation becomes
~ Eex § ]
T T — . 1
B * Erurp c on Py (71)
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Taking the toroidal component, noting the axisymmetry, and averaging,
we find the left-hand side of Eq. (71) to vanish. It follows that the
average of the toroidal component of the right-hand side also vanishes.

It is important to note that the individual terms on the right-hand
i 1 - ‘ ; W
side, for example <:—-e *Vp > ,» do not vanish. This is because the
en —“tor ‘e

phase-shifts between 6én and Bpe , say, are created by other dissipative
processes, such as parallel electron and ion thermal conduction. These
proceed on the turbulence time-scale and in our interpretation lead to

the enhanced perpendicular electron thermal conduction.

Returning to Eq. (69), we now have

Ye><g 1
turb =T c T en vpe +nj - <n> Jo tor . (72)

[fests

E +
=0

Taking the toroidal component and averaging, as before, we have

» Eex B 1
. B~ = 3 + i
<%tor ( c T vpe)> N> <Jior’2 =én & tpr> ! W)

where <jtor>2 denotes the second-order part of the mean current.
Thus our analysis is consistent with the view that the toroidal
resistivity in a tokamak is given by the Spitzer value, and that tur-

bulence only leads to an unimportant correction.

Finally, we note the analogy between the above argument and our
treatment of the electron energy balance equation. If we take this
equation to be V-ge" = 0, that is, we neglect inertia, work done etec,
then we cannot derive an anomalous Xie since Fe (in Eq. (56))
vanishes. Thus the average of L A is determined not only by the size
of the fluctuations but also by phase-shift creating mechanisms such
as electron inertia, for example. To the extent that the latter are
small, the effective normal heat-flux is also small. Returning to the
generalised Ohm's law in the limit TR/Te » 1, the effective phase-
shift creating mechanism is the resistivity, and to the extent that

this is small, turbulence does not significantly modify the toroidal

(Spitzer) resistivity.
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DISCUSSION AND APPLICATION TO MACROTOR

We clarify a number of issues relating to the work of this paper

and consider some applications. Firstly, for our interpretation we
require complete knowledge of one fluctuating quantity, 1§1 » Say.

The mean quantities are governed by the mean transport eqéﬁtions which
we have derived. However, they cannot be completely evaluated without

a knowledge of the fluctuations. While in reality both the mean and fluc-
tuating quantities are self-consistently determined by the full non-linear
equations, our interpretation is based on approximate relationships
between different fluctuating quantites; these take advantage of the
experimental fact that the fluctuations in tokamaks are generally of
small amplitude. Paying due regard to the non-linearity,a careful
choice of the equations enables us to express all fluctuating quantities
in terms of %;?. Although these calculations are formally linear,

since they involvethe undetermined mean profiles, they are actually
non-linear. Thus the turbulent correlations appearing in the mean
equations are very complicated functions of the mean profile and the
assumed power—spectrum of 7;?. In this sense our theory is non-linear. -
It must be remembered, however, that in reality the fluctuations are
related non-linearly, and to the extent that we use linearised relatioms,
our theory is only approximate and needs to be checked against a full
non-linear calculation; the latter is necessarily numerical and remains
for the future. Even without such a calculation our approximate

equations provide an interesting qualitative description of certain

aspects of tokamak transport.

We now discuss the nature of the mean energy equations, Eqs. (48)
and (49). In fact we shall only consider the electron energy equation,
as the discussion for the corresponding ion equation is similar. We
remark that turbulence contributes two distinct effects. Thus the heat

flux Qe(r) involves turbulence correlations like those contained in

Fe and Qeconv (see Eqs. (56) and (57)). It also contributes terms such as

1 d . 4
- . - e G . Eq. 50 .
<6peV Gue> and Poe T dr (ru2er) to the effective source (Eq )

Both these effects can be of importance. The question arises as to
whether all turbulence contributions should be incorporated into a single

effective heat flux, Qeff’ with a source comprising only those terms
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which depend solely on the mean quantities,Toe, n_ etc. Thus we can write
n

-1 (g (r))"‘S () +3-22(, -1 )=0 (74)
T dr eff*"7, oe m. T, oi oe ?

where Qeff = Q_e + Qs’ (75)

with QS to be derived from

1 d B 1 d
T dr (rQs) - <6pe v'6Ee>+poe T dr (ru2er)
(76)
3 d 3
"2 Fr dr Toe Y2 <'STeGSp>

In this form,however, we observe that the effective heat flux cannot be
expressed entirely in terms of local correlations. By a local correlation,
for example <én éuer>, we mean one which involves fluctuations at a
particular radius, r. We note that Qs(r) involves an r— integration over
local correlations, and in this sense, is a non-local quantity. In our
view, the mean energy equations are most naturally written in terms of
local correlations, which reveal the physical origins of the various terms.
There are, in fact, two physically acceptable ways of doing this. The
first, which we have already given in Eqs. (48) and (50), refers to the
transport of the internal energy of the electron fluid (CvTe E<% n Te).

The second, which we give below, refers to the transport of enthalpy

cond

(CPTe = %@ n Te). In this form,Qe is unchanged but Qeconv becomes

conv(r)

D
e =g m, <6T, du,.>. (77)

G

It follows that Qe = <6pe6uer>. The appropriate effective electron energy

source is now written as

L 43 elo <8u_.V6p >
Soe Soe(r) E;'?; (Toi - Toe) * SOU,.VOPg
d 5 d 3
o) - —_ ) - (
+ Yer I Poe 2 Fer dr T0é+55pToe 2 <6TEGSP>. e

However, our original form for the mean electron energy equation, Eq. (48),
seems closer to intuition, since in this case Qe is directly related to

the nominal electron particle flux, @er.

We now draw attention to the significance of Uoop Returning to
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our earlier discussion of the mean energy transfer, Eq.(63) can be

written as

Q =T _F__ - (79)

e oe er Poe u2er,
which is a consequence of the linearised phase relations. For those
tokamaks where particle sources are negligible in the central regions,
Fer = 0. Thus if Qe is to be identified as an outward energy flux,
then Upop MUSE be inward. Indeed this shows the crucial role played

by Yoy in our interpretation of these experiments. More generally,

it suggests the importance of turbulence in explaining experiments.

Turbulence affects the mean energy balance in two distinct ways.
Firstly, it leads to an energy flux Qe expressible in terms of local
correlations, and secondly, it provides turbulent sources. Experiment-
alists, however, only include mean sources in their energy balance studies.
Thus an experimentalist really measures the heat flux Qeff as defined
in Eq.(74). From the Qeff so calculated the experimental thermal

conduction coefficient, KLSXP is obtained from the definition
» .

daT
exp oe

le dr ° (80)

Qeggtr) ® - K

While estimates suggest that Qe (as defined in Eq.(53)) and Qeff tend
to be of the same order, there is no reason to believe that they are
exactly equal. Thus Eq.(64) is only correct in an order-of-magnitude
sense, as is Eq.(66). To establish a more precise relation between

Qe and Qeff requires a complete knowledge of the power spectrum.

It is of interest to apply some of the ideas developed in this
paper to an actual experiment. The MACROTOR observations of Zweben
et al (1979) provide a useful test. MACROTOR has a minor radiiis
a =45 cm and major radius R=90 cm, The toroidal field is of order
3 kG and the machine runs with a density of order 5x 1012 em > and
Te'N 100 eV ,at a current of 50 kA and a power of 100 kW. The bulk electromn
energy confinement time is estimated to be 1 ms. The machine shows
both coherent and incoherent density and magnetic fluctuations. Zwehen

et al do not give much information concerning the coherent fluctuations
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except to say that they are of low frequency (7kHz), of large amplitude
and consistent with an m = 2 tearing mode. The high frequency components
(30 - 100 kHz) form the incoherent part of the spectrum, although well
above noise level,

|Br! -4

¢ 10 Y w6 10

(81)

<0~
j=<]

T

for frequencies, v, in the above range. The corresponding fluctuation

spectrum was also measured and is reproduced in Fig. 1.

It is of interest to examine whether the incoherent component alone
is sufficient to explain the observed electron energy confinement time.
We first consider the electron energy transport implied by the theories
of Callen (1977) and Rechester and Rosenbluth (1978). Thus according

to them we find

E 2
_ |"r] 3 2 -1
Xle ﬂthhe E =z 107 cm” sec (82)
a2 ; s ; ; i s
Hence T E ~ —~ 2,5 sec., which is inconsistent with 1 ms. Conditiomns
¢ ‘le Tepabe
in MACROTOR are such that the Knudsen number (Kn = R ) is of order

unity, and hence this machine is operating in the collisionless/collisional
regime. Thus replacing the collisionless form of Xlle (='nthhe) by the

collisional form (v 're) should lead to roughly the same value for

2
the

T .3 in fact we find 7 _ ~ 1 sec. Thus the ¥ estimated from the above
eE eE le

formula is smaller than the 'observed' value by a factor of 103.

An interesting feature of the incoherent modes is the relationship
between the absolute values of the density and magnetic field fluctuationms
shown in Fig.l; the experimental results do not suggest a simple
algebraic relationshop between %?.and i?l' This experimental fact,
however, can be simply and directly inté}preted through Eq. (35). Thus we
consider a mode with given m, n, w and formally integrate Eq. (35) to

obtain
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where G and H are given by Egs. (34) and (36) respectively. Noting

that
~ nJ "
; )
A =1 S O £
n n n
o 0
¢B .
d — = k&
an 5 &>
o
65 6Br
the above equation expresses = in terms of-ﬁr—. We remark that in
o} o "

- . i b n
deriving this relation we make use of the boundary condltlon-a— + 0 as

) 3 . - 3 3 . o -
r + 0. This conditions is consistent with the experiment observationms.

6B . o . :
If we take |??£| to have the radial variation shown in Fig. 1, then

[8) ~
Eq. (83) yields a profile for |2
(o]

and magnitude with the experimental curve. This result pertains to

| which is consistent both in trend

the range of m, n, w typical of MACROTOR. Thus, summing over all
modes, we are able to interpret the observed non-local relation between

the magnetic and density fluctuations.

By considering the functions G and H we can give a simple qualitative

~

. . n . :
explanation of the behaviour of g—-. First, we note that these functions
o
depend only weakly on m, n and w; their behaviour with r (as r =+ a) is

virtually independent of these parameters. To illustrate this we assume

a Gaussian temperature profile for TOe and a parabolic density profile for
. 0 1 . 3
n - It 1s easy to see that w*® E?-N Fa Tt~ 0. This implies that rG +
o

constant and H is finite as r = 0. Thus irrespective of the behaviour of

£ (provided it remains finite), Eq. (83) shows %E + 0 as r + 0; furthermore,

% P o
as r + a then G behaves like %— 5% with a multiplying factor of 0(1). The
(0]

% P

form of<% _g as r + a is given by Eq. (29), namely,
(0]

eT B B
E*p_,o=+——(—).l /_Eﬂ-l-ﬂ Oe(a)\ = 4 CTO lE Boe(a) (1 _EQ(a))
w pl eBo w \ a B0 R Bo / eB0 w R Bo n .
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Clearly since To + 0 as r + a then |G| tends to zero irrespective of
m, 0, w. It is easy to verify that in the same limit |H]| remains finite.
This means from Eq. (83) that even for é > 0Oasr ~ a, |§24 rises with
r and can have large values towards the boundary. Thus our0 theory is
qualitatively capable of accounting for this feature of the experiment.
Numerical calculation also suggest that Eq. (83) predicts density

fluctuation of approximately the correct size (up to 30% at the edge
8B
; T -4

f —— ~ 10

or the given BD 1 £f
calculated using experimental profiles and the deduced gE-profile falls

o
short of the heat flux needed to explain the experimental electron energy

). It is interesting to note that the Q
- e

confinement time of 1 m.sec by a factor of 103. Thus suggesting on the
basis of our model that incoherent modes alone cannot account for the

experimentally observed transport.

Zweben et al do not give the level of the coherent field fluctuations

except to state that they are somewhat larger than the incoherent

amplitudes. However, assuming B—Or— ~2.0 x107° (m=2, n=1)

for frequencies of order 7kHz we find a value for Qeff which leads to a

confinement time of a few millisecs. This result can be checked using

2 sec

Egs. . x PR ;| ~ 11
gs. (55) and (56). Thus taking Xllg ¥ Vene Te ¥We have Xy, 21{10 cm
5 o | .
at 7 kHez, Te ~ 1 and therefore Xig ™ 8x 10" cm sec = leading to
T - ~ 3 m secs. It is of interest to note that the linear (2,]1) tearing

ek

mode eigenfunction can be made compatible with our two-fluid equations
(Thyagaraja and Haas, 1983) by requiring the real frequency w to be
chosen so that the electron and ion velocities are finite at the resomant
point. Thus referring to Eqs. (27) and (28), this condition amounts to
setting 2= 0, which is also equivalent to w = - w* at the fesonant
point. Taking a density profile proportional to (1 - rZ/az)é and a
temperature proportional to (I = rz/az)ﬁé, we calculate the j, profile
assuming Spitzer resistivity to be proportiomal to (1 - rz/az)z. The
experimental value of q at the edge is gq(a) =3.0. Taking the plasma
current to be 50kA, we obtain a gq-profile which has gq(o) = 1.0. This
specification of equilibrium is compatible with the MACRCTOR observations.
The (2,1) mode is linearly unstable and the resonant point occurs at

r ~ 0.8a. It is of interest to note that at this point w* calculated

from the equilibrium profiles (Eq. (29)) is 6.94 kHz , very close to the
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observed value of w of order 7.0kHz . We must mention two caveats to
our estimate of the transport due to the (2,]) mode. The assumption
that the finite amplitude profile has the same radial variatiom as the
linearised cylindrical eigenfunction is questionable, although possibly
close to the truth. More importantly, MACROTOR being a tight aspect-
ratio machine, the linear (2,1) mode is toroidally and possibly non-
linearly coupled to many other low m,n modes. Ignoring these couplings
means that our estimates can be no more than qualitative. Of course
the full answer depends on all the other contributions to AQeff and
cannot properly be assessed as a function of r unless c’SBr/B0 for all
the low m, n modes is known both in amplitude and phase as a function
of r. This must await further experimental observations or calcula-

tions based on non-linear theory.

A new feature of our present calculation, as opposed to our
earlier work (Haas et al. 1981), is the fact that both electron and ion
parallel thermal conduction are possible phase-shift mechanisms. That
ion parallel thermal conduction can influence electron transport is a

consequence of quasi-neuttrality, It is of interest to ask which of these

effects is the more important. In a qualitative form this question is
answered in the table. Thus we investigate four cases appropriate to

MACROTOR; we consider an m=2, n=1 mode at 7kHz with a representative
éB

7?5 profile. At a particular radius r=3-5cm we calculate the
o

various fluxes indicated in the table. The four cases differ only in the

values chosen for x"e and XHi . In case (1) Xue and X"i are

m2R® s _TERS
T X1 T,
e 1

X e is arbitrarily taken to be 10® larger than in case (1), with Xug

In case (2)

calculated using the formulae Xig =

unaltered. The table shows that this reduces the electron fluxes

(<6u §32>, Qecond, Q. Qe eff) by approximately a factor of two. The

er n
ion fluxes are virtually unaffected. Case (3) is the same as case (2)
except that Xis is 10% times larger. The electron fluxes are apparently
increased, as are the ion fluxes. However, case (4) shows that a further
ten-fold increase of Xn g leads to a drastic reduction of all fluxes.
These runs show that the ion parallel thermal conduction is at least as

important, if not more important, than electron parallel thermal conduction
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in producing phase-shifts of low-frequency, low amplitudes modes. Case (3)
also suggests that there is an optimal value of Xp; At which the given

mode would lead to the maximum transport.

Conclusions

Using the two—-fluid equations we have derived radial mean energy
equations for both the electrons and the ions. We are able to express
the corresponding heat fluxes and turbulent sources in terms of corre-
lations between the various fluctuating quantities. The general proper-—
ties of tokamak equilibria ensure that these systems are ambipolar in
the mean. For this to be self-consistently satisfied, however, we have
to include second-order radial velocities in the mean-state (equilibrium)
for both electrons and ions; this procedure is typical of turbulence.
Furthermore, these velocities play an important role in interpreting the
'phenomenological' simulations of discharges for which particle sources

are negligible (Coppi and Sharky, 1981).

To evaluate the correlations involved in the fluxes and sources we
have used linear relations, but with parallel thermal conductivities
included as phase-producing mechanisms. We have found the electron heat
flux (conduction plus convection) to be equal to the energy carried by the
nominal electron particle flux. Consideration of the momentum transport
leads to a mechanism for disruption which is different from that usually
proposed. We have given an argument as to why turbulence does mot

influence the toroidal resistivity in tokamaks.

Finally, we have applied our analysis to an interpretation of
MACROTOR. For this device classical (Braginskii) forms for the parallel
electron and ion thermal conductivities are appropriate. We have assumed
the radial magnetic fluctuation profile to be similar to that of experi-
ment and find the density fluctuation profile to rise monotonically
towards the boundary, as observed. Furthermore, if we assume the coherent
(7kHz) modes to have amplitudes typical of tearing modes (SBr/B0 & 10_3),
then we deduce an enery confinement time consistent with experiment.
Interestingly, the parallel ion thermal conduction proves to be a more
significant phase-producing mechanism than parallel electron thermal

conduction.

These qualitative results suggest that a two-fluid turbulence
interpretation of transport is plausible. However, thorough vindication

or otherwise must await a full numerical simulation.
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Appendix

In this appendix we give the steps involved in deriving our final form
for the ion continuity equation, Eq. (35). First, we multiply Eqs. (17)
and (18) by in/R and - im/r respectively, and add; eliminating the
electric field components through Eq. (23) then leads to Eq, (27) for the
radial electron velocity perturbation. Making use of the equilibrium
equation, Eq. (8), and substituting for Saer in Egs. (17) and (18), we
derive expressions for the poloidal and longitudial fluctuating electric

field components. Thus

8B, == b +E’3A+93 £ (A1)

0 en “Fe dr c oz
dp ~
A l nf,.n s] w &
= = — + — -— ’
SE, en R (lépe dr ) c Boo g Whey
- 1 SBr A
where § = B C The calculation of 5Er on the other hand, involves

i

(o] ~
the ion motion. Substituting for SEe in Eq (11) we obtain

8a =——-‘—-———iﬂa"-5—“ﬂ§-—en‘°s 858, = wf A3
if m o iw r P T Y E c oz \"%ir s A3
It follows that Eq (12) gives
dp en
~ _ 1 _ 1_n _ E o 2 ___0 f ~ _ =
dulz m = { R Sp R A% £ + = BoG \Guir wE)} ; (A4)
Multiplying Eqs (24) and (25) by -% and —-% respectively, and adding,

we can now derive a form for Gﬁr . Upon using Egqs. (21), (A1) and (A2),

~

GEr can be expressed as

&p d 4

e 1 [ n? mz) d (. 1 Py A) fren.. 2
6E = = -— — A i + A o
o 2 | (Rz * L2/ dr ten en & &)* o2 (Guir wE)

R2 * 72

B
2 nw 7 1 d ~w (P8 m \
*7B =mE ?E(rE)E(R ?Bozj} , (45)



Whereas §Ee and 6§z have been expressed entirely in terms of electron

~
pressure and magnetic perturbations, BEr also involves the radial iom
velocity perturbation. Thus it is now necessary to obtain an appropria

form for &4 .
er

te

We derive Sair from Eq (10) by substituting from Eqs (A3), (A4) and

(A5). After considerable algebra we can write 6ﬁir in the form

w < -1 [Po 4 iw Yo To’
A. = —_— = > + !
éulr m(1+w.M)E+D {p'w'ﬁp"'w.eB (T Ap AP)
ci ) ci 0 o
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el
eB
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i
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4n_e?
i
“oi m 2
e i
2
il
M=D Qﬁ + BOBZHR)
ci o k°r .

and w* is defined by Eq (29). To keep the analysis within bounds
we restrict ourselves to frequencies such that w « w,; » For present
tokamaks this implies that D ~ 10 and M <« 1. Thus sﬁir can be

greatly simplified, and we obtain

which is the result quoted in Eq (28).

Using Eq (8), the poloidal and longitudinal components of the ion
velocity perturbation given in Eqs (A3) and (A4) can be put into the

- Al =

(A7)

(A8)



simpler forms

R ip A en B w*
50 =ﬁ{£ﬂ. 4 _0 0z } (A9)
i mn w|r c P’
io )
R ip & enB %
0y, m et {3 22 0} (410)
it P
It follows straightforwardly that
2. 2
I s Po 4 K Vey
Vv §Ui = - (r[w£+Po, w AP]) '_w'— AP (ﬁ]])
To
where vtﬁ == s Our final form for the ion continuity equation, Eq (35),
1

now follows, the mathematics being simplified by the use of the quantities
defined in Eq. (26). As mentioned previously, a second equation relating
E and AP can be derived. This is the radial component of the total
momentum balance and can be obtained from the equations of Section 3; the
details of the derivation have been described in an earlier paper

(Thyagaraja and Haas (1983)).
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Fig.1 (a) Spectrum g’f ﬁ’r taken at 10cm into the plasma during the steady state of a typical discharge.
(b) The variation of |By| vs coil position for f=~ 25 kHz. The spectrum shape remains fairly constant over
this range of coil positions. Also in (b) is [Tl [pms/n profile as measured in the ion saturation current of a

Langmuir probe. The ion-saturation-current profile itself looks similar to the profile of I"B}I,(Zweben et al
1979).
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