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Abstract

The effect of "diffuser" coils which perturb the magnetic surfaces in a
Tokamak = as in an "ergodic limiter"™ = 1is investigated by means of a simple
model. This model leads to an area-preserving two parameter map with
interesting invariance properties which describes the production of magnetic
islands and of an ergodic layer. As the strength of the diffuser is increased
the magnetic islands remain fixed but change their size in such a way that the
overall pattern, and the boundary of the ergodic zone, move away from the
diffuser. Analytic expressions are derived for this movement and for the

location of the ergodic boundary.
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1. INTRODUCTION

One method for providing additional control over diffusion in the outer
layers of the plasma in a large Tokamak such as JET is by localised coils
which perturb the magnetic flux surfaces in the vicinity of the wall
(FENEBERG, 1977; ENGELHARDT & FENEBERG, 1978; FENEBERG & WOLF, 1981). One
class of such devices (BELITZ et al, 1982) consists of a grid of current
carrying wires aligned with the unperturbed magnetic field lines in their
vicinity, see Fig 1. The field of this grid can resonate with the main field
so as to produce (i) rippling of the flux surfaces, (ii) island structures

among the flux surfaces and (iii) ergodic* regions in which the flux surfaces

are destroyed.

The effect of such a "diffuser" coil can be investigated by tracing
field-lines but such calculations are restricted to specific situations. 1In
order to illustrate the more general aspects of this type of diffuser we have
constructed the model described in the next section. This contains the
essential features of both the diffuser and the Tokamak and describes the
influence of parameters such as rotational transform, shear, diffuser
strength, diffuser periodicity and diffuser length. It also leads to an area
preserving mapping precblem with interesting invariance properties. Some

details of this mapping are calculated in the Appendices.

2. THE MODEL
In the model we separate the influence of the diffuser and of the shear
in the Tokamak field. The diffuser acts only over a small part of the
toroidal circumference in which shear can be neglected. The shear acts over
the remainder of the toroidal circumference where the diffuser field can be

neglected. Thus the model has two regions.

*"Ergodic" is wused in the collogquial sense current in plasma confinement
studies, not implying any strict mathematical definition. "Stochastic" and

"chaotic" are alsc used to describe these regions.



(i) The diffuser.

In this region there is a uniform field in the =z direction together
with transverse fields in the X and y directions. These transverse
components are periodic in x and independent of z and are assumed to

extend over a length {. Specifically the diffuser field is
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representing a diffuser grid of 'wave length' 2ma/m with a current I in
each wire sinusoidally distributed across the wire. The parameter a

corresponds to the minor radius of the Tokamak, x/a corresponds to the

poloidal angle O and y is distance from the grid, ie y = (a = r).

In this diffuser region the equation of a field line is
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Integrating these equations over the diffuser length £ shows that a field

line entering the diffuser at (xl,yl) emerges at (xz,yz), where
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This defines a "diffuser mapping" T, of the field lines which enter the

diffuser onto those leaving it. Of course this mapping has unit Jacobian and

so 1s area (= flux) preserving.

(ii) The Tokamak.

After leaving the diffuser, a field line continues round the remainder
of the torus under the influence of rotational transform and shear only; its
position (x2,y2) will thus be mapped into (x3,y3) by a simple twist mapping
Tage

X3 = Xy + @+ Py,
(4)

Y3 = ¥

where o is the displacement of a field line due to rotational transform,
equivalent to 2ma/q, and B 1is the displacement due to shear, representing

(2ma/q?) (dg/dr) in the real Tokamak.

Combination of the mappings T, and T,q gives the mapping of field

lines once around the complete torus. It is convenient to remove the
inessential parameters by writing X E-EE and Y E-g(y + o/B). (This places
the origin Y = 0 at a point where the rotational transform is an integral
multiple of 27/m) . Then the model is described by the basic map

T12 X T23 = M



X9 = X1 - pe*Yl cos X,

Y, = Y, + log{cos(X; - pe Tl cos X))} - log{cos x,]}
(5)
X3 = xz + sY2
where
_ T m2 2T (measures the strength of the diffuser relative to the
P = a%s_ ' toroidal field.)
and
o 2na dg (measures the strength of the shear in the original
qz dar ' Tokamak. )

Note that the effect of the diffuser depends only on the two dimensionless

parameters p and s.

3. BEHAVIOUR OF THE MODEL
We shall see that the model described above exhibits all the expected
characteristics, including ergodic behaviour. It is therefore worth noting
that neither of the two individual mappings T;, or T,; can ever themselves
be ergodic. Of course the Tokamak map T,3 was designed to have invariant
(= magnetic) surfaces ¢ = y. But the diffuser map le also has exact

invariant surfaces given by
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Furthermore, if we had considered simply a superposition of diffuser and
Tokamak fields round the complete torus, the resultant field would still have

possessed exact invariant surfaces, given by
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an example of which is shown in Fig 2. It corresponds not to an ergodic

limiter but to a simple magnetic divertor. It is only because the diffuser
field is confined to part of the toroidal circumference that the model

exhibits ergodic behaviour.

Turning to the mapping T itself we note that since it is periodic in X
we need study it only in the interval (0,2m). A second important point is
that if pele exceeds unity then Y, may become complex! This corresponds
to field lines which pass between, and encircle, the grid wires. We have
discarded any such lines from the figures shown below. [Note that this

=¥
phenomenon cannot occur if pe < 1.]

Some illustrations of the field line behaviour in our model are given in
Figs 3-6. These show the results of iterating the mapping T some hundreds
of times. The samples shown are for s = 27, (a typical value for a Tokamak)
and illustrate the effect of increasing diffuser strength. As might have been
expected, in the zone closest to the diffuser the field lines are almost
entirely chaotic. Further from the diffuser there is a zone of mixed chaotic
field lines and complex "magnetic island" structures, while further still from
the diffuser the Tokamak flux surfaces are almost entirely intact and only
slightly rippled. As the strength of the diffuser is increased these zones

move further away from the diffuser with a corresponding increase in the width

of the chaotic region.

The behaviour described above is typical and expected; a quantitative
explanation for it will be given in the next section. However it is important
to realise that strikingly different structures can also be created by the
diffuser. For example Fig 7 shows a case with very weak shear in which one
obtains a very large magnetic island with strong deformation of the magnetic
surfaces but an almost imperceptible chaotic region. It seems, therefore that
the diffuser is effective in creating an ergodic =zone when the shear is
appreciable, but if shear is too weak it may only distort the surfaces and act

more as a simple magnetic limiter.



The behaviour as the shear is increased, at fixed diffuser strength, is
shown in Figs 8-10. The magnetic islands get smaller but there are more of

them and the chaotic regions expand and engulf some of the islands.

4. INTERPRETATION
We now turn to the interpretation of these results. The mapping T is

invariant under a (renormalisation like) group of discrete transformations:

Y > Y + 21k/s

(8)
P * p exp(2mnk/s)

where k is any integer. This invariance enables us to "translate" the
results for one particular diffuser strength into results applicable to a
whole sequence of stronger or weaker diffusers. This is already suggested by
Figs 3 and 5. The ratio of the diffuser strengths in these two cases happens
to be close to exp 27m/s and it will be observed that the patterns are
similar if one of them is displaced by AY ~ 27/s. For example the island
structures at Y ~ 0.5 in Fig 3 appear at ¥ ~ 1.5 in Fig 5. A case in
which the comparison is exact is shown in Figs 11 and 12, where the respective

values of p differ by a factor of 100 but the patterns are identical.

This invariance property allows us to derive an important result
concerning the location of the boundary of the stochastic region. If for some
value of diffuser strength p the boundary occurs at Ye, then if (log p) is
increased by 2n/s the stochastic boundary is displaced a distance 2n/s.

Hence the general behaviour of the stochastic boundary is given by

e
d(log p) - Allog p)

4ay AY
e

= 1 (9)
leading to an explicit form for its position, viz

Ye = g(s) + logp . (10)



We will later determine the function g(s), but first we examine more

carefully the meaning of this displacement of the stochastic boundary.

So far it has been shown that the stochastic boundary is displaced
towards larger Y as p 1is increased, approximately according to Egq (2), and
that the whole flux surface pattern is exactly displaced towards larger Y,
when ©p is increased by exp(2n/s). One might conclude that this is simply
because the field structures created by the diffuser move outwards as the

diffuser strength is increased. This is not correct. To see this consider

the location of the "magnetic islands". These are situated at fixed points of

the mapping T. A sequence of such points is given by

=¥
T + pe cos X
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and for pe < 1 they are approximately
% Pe-Zmn/s
(12)
_2mm  p e-Zmn/s

m s s
Thus these islands are almost equally spaced at intervals of 2n/s along a
line close to X =7 (this can be confirmed by close examination of the
figqures) .and their location changes only very slightly as p is increased.
How can this be reconciled with the overall outward displacement of the flux
pattern as p increases? The answer is that the islands indeed do not move
significantly as p increases; instead the size of each island changes, and
the stochastic region round it grows, so that when p has increased by eZn/s
each island resembles the island which was immediately below it before p
increased. This together with the exponentially small change in the island

position exactly restores the whole flux surface pattern but displaced by

21/s, the spacing between the corresponding islands.



The width of the islands can be calculated by a form of perturbation
theory introduced by DUNNETT, LAING & TAYLOR (1968) - [see Appendix A]- In

this way one finds that the width of the island centred at ~ 2mu/s is

2p 142
&Ym (s ) exp(-mn/s) , (13)
. . 2n/s , th
confirming that when p is increased by a factor e the width of the m

island becomes identical with the width which the (m - 1}th island had before

p was increased.

One could also use this estimate of island width, together with the oft-
quoted island overlap criterion (CHIRIKOV, 1979; ROSENBLUTH et al, 1966) for
the onset of stochastic behaviour, to determine the location of the stochastic

boundary. The spacing of the islands is 2mn/s so that overlap occurs at

v
]
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In fact this 'overlap' criterion is not a reliable one, although it gives the
correct trend, and a more accurate estimate of the position of the stochastic
boundary (defined as the last complete flux surface as one approaches the

diffuser) can be obtained.

As shown in Appendix B, in an appropriate asymptotic limit the mapping T

reduces to the simpler map

X'" =X + sY + A sin X
(15)
sY' = sY + A sin X
where A = spe-Y' Replacing X + 8, sY » -¢ and taking the inverse, this
becomes
B' = 6+ ¢
(16)
' = ¢ + A sin 6



which is exactly the Chirikov-Taylor standard map which has been exhaustively
studied [see example LICHTENBERG & LIEBERMAN, (1983)] and whose stochastic
boundary is known with great precision to be A = 0.971635! (GREENE, 1979).

Consequently for the present model a more reliable estimate of the location of

the stochastic boundary is
Ye = log(sp) + 0.03 . (17)

In terms of the Tokamak parameters this means that the thickness of the

stochastic layer is

a 21 2m 241 d 1
Ar = = log{? . a E(‘E]la} (18)

Note that increasing either diffuser current or Tokamak shear produces a

thicker stochastic layer.

5. APPLICATION
We now consider the application of this model to a large Tokamak such as

JET. As an illustration we take the parameters of this to be

Minor Radius a = 100 cm
Major Radius R = 300 cm
Toreidal Field Bo = 25 kgauss
Poloidal Field B = 10 kgauss
Toroidal Current I, = 5 M Amp

For the diffuser we assume a grid of wires at a spacing of 16 cm (wavelength

32 cm), and a length of 80 cm, each wire carrying a current of 100 kA. 1In our
model these parameters correspond to

m =20, p =4, s =27.

The corresponding surfaces are shown in Fig 13. For the same parameters

Eqg (18) predicts the thickness of the stochastic layer to be Ar/a = 0.16,



which is in excellent agreement with the figure. A comparison of the location
of the stochastic boundary deduced from computer plots with the location
predicted by Egq (17), for some 25 different cases, is shown in Fig 14
confirming that the agreement extends over a wide range, indeed for all

sp > 1.

6. CONCLUSIONS
We have described a model which illustrates the effects produced by a
grid-like diffuser coil which perturbs the magnetic surfaces in a Tokamak.
This model leads to a two-parameter mapping which allows one to investigate
the influence of diffuser current, diffuser length and diffuser periodicity as
well as that of the Tokamak shear. The effectiveness of the diffuser is

measured by

and that of the tokamak shear by

For small shear the effect of a weak diffuser is to ripple the magnetic
surfaces, creating a large island structure with associated separatrices but
very little stochasticity - rather like a magnetic limiter. For more typical
values of shear and stronger diffusers the effect is to create a fully
stochastic zone near the diffuser, surrounded by a zone where both island
structures and stochastic regions are present. As the diffuser strength is
increased the location of these island structures is almost unchanged but
their size alters in such a way that the overall effect is as if the complete

pattern moved outwards.

A remarkable feature of this model is that by exploiting the invariance
properties of the mapping one can describe all these effects analytically

and determine the width of the stochastic layer.
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APPENDIX
In this section we show how the widths of the magnetic islands may be
determined by an appropriate form of perturbation theory and, most
importantly, how the boundary of the ergodic zone may be determined in an

appropriate asymptotic theory.



A Size of Magnetic Islands

The width of the magnetic islands at X ~ T, Y ~ 2mm/s can be
determined by perturbation theory, treating the diffuser field pe-Y as

small. [This is formally equivalent to expansion in powers of p.]

If the mapping T is formally expanded to first order in p it reduces

to
x' = x + sy + g(x,y)
A1
y' =y + hi(x,y)
where
= =y . =Y
g = spe sin x - pe cos X
A2

h = pe . sin x

[N.B. this mapping is area preserving only to order p2.] Now any flux surface

d(x,y) satisfies
blx,y) = ¢(x + sy + g, y + h) A3
so if the flux surface is also expanded in powers of p;
Gix,y) = %, y) + olx,y) + ... A4
we have
WOx,y) = ¢0x + sy, v . As
But ¢ must be periodic in x so this can only be satisfied everywhere if

¢0 is a function of y only - as one expects since this represents the

situation without any diffuser.



Then in first order

0
¢ 26

olix,y) = ¢l(s + sy, y) + hix,y) . oy

[Note that ¢l depends only on h(x,y) and not on g(x,y).] Since ¢1 is

also periodic in x we can write
1= + b i 7
¢ Z am(y) cos mx m(y) sin mx , A
then from Egq (A6) one finds

¥ MW oty = sy/2)

1=
¢ 2 " dy ' sin(sy/2) : g

If, as in conventional perturbation theory, the unperturbed flux surfaces are
taken to be given by ¢0(y) = y then ¢l diverges at each of the islands!
As pointed out by DUNNETT, LAING & TAYLOR (1968) this divergence is a
reflection of the fact that under the perturbation the topology of the flux
surfaces must change. This change can be accommodated by making a suitable
choice of the function ¢0(y), which is in reality arbitrary. In the present

problem a proper choice is
¢? = cos(sy/2) . A9

Then

=y
¢ = cos(sy/2) + SP: cos(x = sy/2) A10

and is (to this order) finite. Since ( 1is constant on a flux surface this

yields the width of the magnetic island centred at x = 7, y = 2mm/s as

- S
o/ A11

= 13 =



B Ergodic Boundary

As mentioned in the text, the above estimate of island size may be used
in conjunction with the "island-overlap" criterion to estimate the position of
the boundary of the ergodic zone. However a better estimate can be found as

follows.

The calculation in section A above, essentially an asymptotic expansion
in powers of p with p + 0, is not really consistent since ye + = 1in
this limit. The correct expansion for treating the ergodic boundary is one
with p = 0(g) and s = 0(1/&) so that ye remains finite as € + 0. The
deformation of the flux surfaces is also 0(¢g) in such an expansion so we
must write y =y + 8y with sy = 0(1). Then with this ordering the proper
asymptotic limit for the mapping T, as & >0 is

¥

x' = x + sy + spe_ sin x
B1
1 = -y _-:
sy' = sy + spe sin x .
Or X' = x + 2!
B2
z' = z + )\ sin x

where A = sp exp(-§). Note that this asymptotic map, unlike (A1), is exactly
area-preserving. It is also a form of the well-known Chirikov-Taylor standard
map whose properties have been extensively studied and for which the ergodic

boundary is known to be A = kc = 0.971635.
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Fig.1a Arrangement of diffuser coils in a Tokamak. Fig.1b The model coordinate system.

Fig.2 The effect of superposition of diffuser and Tokamak maps.
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Fig.5
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Fig.6

The effect of increasing diffuser strength for a typical Tokamak shear (2n).

(Parameter values as indicated).
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Fig.7 An example of weak shear where there
is little evidence of chaotic behaviour.
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The effect of increasing shear for fixed diffuser strength.
(Parameter values as indicated).
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An example of exact pattern replication for widely differing diffuser strengths.
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Fig.13 Surfaces generated using JET-like parameters.

Fig.14 Comparisons of the estimates of the chaotic

boundary position from the theoretical and

computer model.
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