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ABSTRACT

The behaviour of charged particles in a mirror machine with a spatially-
modulated central field is examined by adopting a model in which the modula-
tion has the form of a square wave. This enables the equations of motion to
be solved algebraically and particle orbits may be computed for long periods
in the machine. The non-conservation of magnetic moment allows particles in-
jected through the mirrors to be temporarily trapped, and by considering that
mirror reflections randomise the Larmor phase of a particle, a statistical
distribution of lifetimes is obtained corresponding to the injection of a beam

having a finite spread in initial parameters.

Containment properties are derived for a variety of resonant and non-—

resonant modulation systems,

*(Department of Natural Philosophy, Glasgow University)

U.K.A.E.A. Research Group,
Culham Laboratory,

Nr. Abingdon,

Berks.

January, 1965 (C/18 MEA)



4, SUBSEQUENT TRANSITS
5. INTERNAL REFLECTIONS
6. PHASE RANDOMISATION AT THE MIRRORS
7. PARTICLE CONTAINMENT
8, VARIATION OF THE NUMBER OF MODULATION PERIODS
9. STAGGERED MODULATIONS
10. NON-ZERO &
11. VERY LONG LIVED PARTICLES AND SMALL h
12, STOCHASTIC TRAPPING
13. CONCLUSIONS
14. REFERENCES
TABLES
TABLE 1 EFFECT OF VARYING & 1IN UNIFORM MODULATICN SYSTEM
TABLE 2 EFFECT OF VARYING n IN UNIFORM MODULATION SYSTEM
TABLE 3 EFFECT OF VARYING n 1IN STAGGERED MODULATION SYSTEM
TABLE 4 RESULTS OF TWO 1000 PARTICLE RUNS, EACH WITH ONE INTERNALLY
REFLECTED PARTICLE
TABLE 5 EFFECT OF VARYING h 1IN STOCHASTIC TRAP

CONTENTS

INTRODUCTION
THE SQUARE WAVE MODEL

FIRST TRANSIT

APPENDTIX

MATCHING OF SQUARE-WAVE AND SINE-WAVE MODELS

Page

12

12

14
14
15

16

17
17

18

18

19

20



1. INTRODUCTION

The containment of charged particles for long periods in a mirror machine generally
requires that, in the absence of collisions or collective effects, the magnetic moment of
a particle should be an adiabatic invariant. A consequence of this requirement is that
particles cannot be accumulated in a stationary mirror field by injection through the
mirrors. If however the adiabatic condition is relaxed, so that the magnetic moment may
change significantly in one transit of the machine, it becomes possible to trap particles
which have been injected through one of the mirrors and to contain them for periods which,
although necessarily limited, can be long enough to result in appreciable accumulation of

particles in the system. Such an arrangement we call a non-adiabatic magnetic trap.

Although any non-adiabatic effect can result in trapping, the system with which we
are principally concerned is one in which particles are injected into a mirror machine
along the magnetic iines of force and acquire a large magnetic moment on their first tran-
sit due to a resonant interaction with a small, spatially-periodic modulation of the cen-
tral field. Particles will be lost mainly by the inverse of the capture process, but this
does not occur until they have made, on average, an appreciable number of transits between
mirrors. This system was first proposed and demonstrated by SINELNIKOV et al (1960 a, b)
and some detailed numerical calculations of particle orbits in a trap of this kind were

carried out by LAING and ROBSON (1961).

In the latter paper, which we shall refer to as L-R, the model trap consisted of a

central field of the form

H, = Hy (1 + h sin (2nz/N ) ), where h « 1,

Z
bounded at each end by adiabatic mirrors, In a typical case, where the modulation con-
sisted of 5 periods with h = 0.05, a particle injected along a line of force at a

radius M7 from the axis had 50% of its energy converted into motion transverse to the

field when its velocity of injection V satisfied the resonance condition:

ell,
m

27V = « A

This particle was then reflected by the end mirror (mirror ratio > 2) and it was
shown that the transverse energy could be further increased on the second and third tran-
sits by adjustment of the two mirrors so as to reflect the particle back into the modula-
tions with appropriate Larmor phase, The subsequent history of the particle then consisted

of variations in transverse energy on successive transits until the magnetic moment was

- s



reduced sufficiently for it to escape through one of the mirrors.,

Using step-by-step integration of the equations of motion, orbits should be computed
for up to about 25 transits of the system; it was not possible to Tollow a particle for
longer than this without accumulating serious rounding-of [ errors or using an excessive

amount of computer time.

In the present paper we consider a way of overcoming this difficulty by choosing a
model magnetic trap in which particle orbits can be calculated algebraically. The sinu-
soidal modulation considered previously is replaced by a square wave of the same wavelength,
consisting of regions of uniform magnetic field having values alternately Hy (1 + h) and
Hg (1 - h), as shown in Fig.1. Although this system is clearly non-physical on account of
the discontinuities in the field, it will be shown that it has closely similar properties
to the sinusoidal system. This is because when the characteristic length over which the
field varies is already of the order of the Larmor orbit diameter, further reduction in the
characteristic length does not significantly alter the effect of the field change on the
magnetic moment of the particles. This can be deduced from the calculations of HERTWECK
and SCHLUTER (1957) for particles in a time-varying field; their results can be applied

to a spatially-varying field by means of a simple transformation.

Using the square-wave model the orbit of a particle can be followed for its entire
lifetime in the trap, which may consist of only two transits (the minimum) or may in some
cases involve a path in the trap equivalent to many thousand transits between mirrors. The
detailed history of a particle is extremely sensitive to small changes in initial condi-
tions: this arises principally through the phase-changing properties of the mirrors. The
injection of a beam having a small spread in initial parameters can be simulated by taking
the same initial conditions and assuming the mirrors reflect particles with random phase;
by computing the orbits of several thousand particles a statistical distribution of life—
times is obtained, together with information about the density and velocity distributions
inside the trap. 1In this way we have studied the containment properties of a variety of
modulation configurations and have attempted to draw some general conclusias on the optimi-

sation of such systems.

2, THE SQUARE WAVE MODEL

As in L-R, we adopt cylindrical co-ordinates in whicih the model field is now
H= (0, 0, Hy f(z)), where f(z) is the step function 1 + h, 1 - h alternately which

replaces the function 1 + h sin (2nz/\) used in L-R,



In any region between discontinuities the field is constant, so for region i in which

the field is }%fi we /may write the equations of motion, as derived in L-R,

2 ra
dr - 2 g2 sas 0310
dq‘,z r 1
d*z _ 5
dz? vee (2.2)
elly . . a
We have used T = %wt, where w= e v asa dimensionless time variable, rs is a

constant of the motion proportional to the canonical angular momentum of the particle:
physically, r, is the radius at which the particle has zero mechanical angular momentum,

which is identical with the radius of injection .

A first integral of (2.1) and (2.2) gives the energy equation

@7y (@) (R )=y e (2.3)

where the parameter v is the second constant of the motion and is related to the total

velocity V of the particle by V = kuw.

The general solution of (2,1) is

2 —
r®=a, +p; cos (2fj_1: + cpi) eee (2.4)
where
r.4
2 2 _ _0O
ai-ﬁi— =z ses (2.8

At any time the state of the particle is adequately described by only two parameters, ay

+
and the phase 2fiT P

Physically,

a_ =2 2
r?=rf+rp + 2rp cos (2f; 7 + g;)

with r. and r, the guiding centre radial co-ordinate and the Larmor radius respectively,

G L
(Fig.2), so that

2

= p3? 2 p -
@ =R+ rL and ﬁi 2PLTC

At a discontinuity in the field, r and %% will be continuous, the latter since the

effect of the discontinuity is a singular radial field, which does not affect motion para-
2

llel to it, Thus applying continuity of r* and gg across the boundary between region

i and region i + 1 we have,

Gy + Py 608 @ = Gy ot Pyoq008 ¥ oy

.ee (2.6)
£y By singy =T, 4 By q8iny; 44



where we have put 7 = 0 at the boundary and have used Yy and ¢ for the phase of a
particle at the beginning and the end respectively of the region denoted by the subscript.
These are related by

o. = . + 0, sus (2:7)
where the phase change Gi is given by

6, = — eee (2.8)

Here 51 is the axial length of region i and u;, = (%Z i The quantity u; can be
T

derived from (2.3) and (2.4).

Introducing
(ny» ;) = B (cos ¢;, sin y;)
0, = a; +m; cos ei - Z; sin Gi
we obtain
Ty .
Fai & F (n; sin 6, +z, cos 6,)
i+1
aee (2.9)
_ 4 r'o
Mj 1 é<o_1 o (Z;i+1+ £2 )>
1+1
and thus, using (2.5)
r.d
= 1 At 0\
@41 T 2 (%i b M ® =) won (23180
1 i+l

This enables us to calculate o from ai and the phase change ei. Thus, given the

+1
initial conditions, we can compute the trajectory of the particle through the modulations.

An important parameter by which we describe the state of the particle is the nommal -

ised magnetic moment & given by ) (ﬁz)r
- dz
E = _-i-. = 1 = g.:'!‘-.
77 -

This can be derived from a using (2.3), giving

2f

i :
g = 37 (o7 -7y
After n periods of modulation (consisting of 2n regions) we have f = 1 and
2 2
£ = Ve (a2n+4 = T

The reciprocal of this quantity gives the mirror ratio required to reflect the particles



We now compare the square wave and the sine-wave models by computing £ as a func-
tion of v for the first transit, Following the convention used in L-R we take the
modulation wavelength as 2n so that all the 61'5 are equal to mw. The resonance con-

dition is therefore v x 2.
The initial conditions for a particle injected along the field are

)

at vy, =1

=0,( o

o o

The only adjustment needed to match the two models is in the value of h. It is shown in
the Appendix that for vanishingly small h, equal values of E are obtained when v = 2
if
¥y
hsquare—wave T4 hsine—wave eee (2.11)
The E~v resonance curves which are obtained using this relation are given in Fig.3; 1t

can be seen that there is close agreement between the two models.

3., FIRST TRANSIT

For a particle injected along the field lines into a modulation of given n, the mag-
netic moment £/ acquired on the first transit is a fun;tion of v, h, and rg. It is
convenient to take r, = constant and to plot g; as a function of v. and h. The re-
sults can then be presented as-a map with contours of constant g; projected on to the
v-h plane, This is done in Fig.4 for the case n = 5; the area shown is the region of
the main resonance, v & 2, Alternatively we can take h = constant and plot g; as a

o
pected since the perturbation theory given in the Appendix shows that gi is a function of

function of v and r_. The resulting map is closely similar to Fig.4, which is to be ex-

the production hro.

It can be seen that Ei has a resonance both with respect to v and, for large g’

1

with respect to h (and ro) as well. The significance of the v resonance is obvious;
the ro resonance corresponds to spatial selectivity of injection radius, and arises from

the non-linearity of the system.

In what follows we decide the injection conditions by selecting a particular value
of gi and, with T = constant, choosing from the g/~-h-v diagram the minimum value of
h which will produce it, thereby also fixing v. This procedure will be justified in

Section 7.



4, SUBSEQUENT TRANSITS

If a particle which has acquired £ = E; on its first transit passes into an adiabatic
mirror of ratio R it will be reflected provided gﬁ > 1/R, and will return to the mod-
ulations with the same £ but with a Larmor phase ¢ which depends on its detailed path
in the mirror. The state of a particle at any point can be adequately described by the
two parameters £ and ¢. A transit through the modulations changes both £ and ¢; a
reflection from a mirror changes ¢ only. We can therefore define transfer functions

F,, F,, F,, such that

%ﬁ =F, (gn’ ﬂn)

eee (4.1)
{ -
O = F, (Eos w)
represent the effect of the modulations, and
et = Fo (510 o) eer (4.2)

together with

%n+1 = %n
represent the effect of a mirror, where (&,,4;) and (E&,¢$) are the states of the

particle at the beginning and end respectively of the mth transit.

Thus starting with the initial state (0,0) we may compute the history of a particle
by successive application of (4.1) and (4.2); the particle is lost from the trap if at

any stage g’ falls below the value 1/R,

Given the modulation structure (n,h) and the constants of the motion of the particle

(ro, v), F and Fp may be constructed by computing particle orbits in the manner des—

1
cribed in Section 2. F, may then be presented as a map in which contours of constant Ed
are projected on the (&,9) plane. In Fig.5 this is done for n=5, h = .042 and ro = 2
v = 2,21, As can be seen from Fig.4 this combination of parameters will give E' = 0.5.

Only contours of £’ up to 0.5 are shown; above this value patterns of great complexity

result which are not conveniently represented in this way.

Only the reverse transit is shown in Fig.5. A complete description of F, requires
two maps, since in general the function will be different for forward and reverse transits
(we define a transit as forward if it is in the direction of injection). TFor a system in
which all the 8i's are equal, the difference is small and arises because a particle first

encounters an upward field step on a forward transit and a downward field step On a reverse



transit (Fig.1). If the modulations are made symmetrical by adding an additional half-
period only one maplis required for both directions.

Sincg the F1 maps give a complete description of the action of the modulations in
changing é it is appropriate to compére the results from the square-wave model with a
similar map obtained from the sine-wave model. Fig.6 shows a reverse transit map for a
sine-wave system with n =5, h = .05 and Py = 2, v = 2,15, This combination of para-
meters gives 51 = 0.475 and although not exactly equivalent to the case of Fig.5 the
general similarity of the maps illustrates the correspondence of the two models.

The important region of these maps is where g' 1is small; for emphasis the contour
' = 0.1 is shown thicker than the rest. A particle which at any stage enters the modula-
tions with (E,¢) falling within this contour will be lost after that transit if the
mirror ratio is less than 10, The £’ = 0,1 valley projects from below the line £ = 0.1

to above the line & = 0.5, so that for any value of £ < 0.5 there is a certain band of

phases for which a particle will be lost.

In Figs.5 and 6 the contours g'= 0,033 and E' = 0.01 are also shown, corresponding to
'escape valleys' with mirror ratios of 30 and 100 respectively. As the mirror ratio in-
creases these contours shrink towards a singular point &' = 0, which represents the only
escape route when the mirror ratio is infinite. It lies on the line g = 5; and corres-—

ponds to a particle taking exactly the inverse path to its original resonant capture orbit,

The function F, which determines the phase of a particle after passage through the
modulations can be derived in a similar fashion to Fl, but we shall not do this here as

it does not reveal features of fundamental interest.

5. . INTERNAL REFLECTIONS

When calculating the orbit of a particle through the modulations, it sometimes happens
that at a particular discontinuity the value of gi+1, as derived fram §E; by the methods
of section 2, is greater than unity, Since £ > 1 is forbidden by the conservation of
energy, this indicates that the particle cannot enter region i+1, and is reflected at the
field step, We term this event an internal reflection. Whereas adiabatic reflection is a
consequence of the conservation of energy and the invariance of the magnetic moment, reflec-
tion at a field step arises from the conservation of energy and of canonical angular
momentum, The condition for reflection depends on both Ei and the phase ¢ at the field

step, and the range in (E,¢) .over which reflection occurs is shown in Fig.7 for single



lield steps I-h - 1+h, and 1+h » I=h, with h = 0,039, It can be seen that reflec—
Lion can occur in both cases, but over a smaller range of (Z,y) for a step in which the
field decreases, Also, lor £ = 1 there is a range of phase for which a particle will be

transmitted, even through a step of increasing field,

Also shown in Fig.7 is the range of (&Z,7) over which reflection occurs at a field

transition given by

H=112h cos z

where the orbits are now computed by numerical integration between z =0 and 2z =T,

and h = 0.05 according to the scaling relation (2.11).

-~

In contrast to the results for the discontinuous step all particles with sufficiently
large £ are reflected by the increasing field, At £ = %EE , which is the value for
adiabatic reflection, reflection occurs over hall the phase range. For a decreasing field
step, there is no reflection. In addition, when reflection occurs at a discontinuity, &

is unchanged, but upon reflection from the cosine step £ undergoes a change dependent on

phase.

Thus although internal reflections can occur in both the square-wave and the sine—

wave cases, there are detailed differences in the predictions of the two models,

6. PHASE RANDOMISATION AT THE MIRRORS

To derive the function F3 which determines the phase with which a particle returns
to the modulations after reflection at a mirror, we consider a mirror described by the
expression:

R—-1 iz }
H = 0<]+ 2 (]"'COSL) esn (Gn])
v a
where R 1is the mirror ratio and L the distance between the minimum and maximum of the
field, Using the method given in L-R we derive the phase change in this mirror:
P e T . K(k)- (R=1) . E(k) ws s Ba2]
m+1 m vié(R—l)é

where

(2o
k=l =

and K(k) and E(k) are the complete elliptic integrals of the first and second kind

respectively.,

- 8 =



It rollows from (6.2) that a group of particles having phase @é and a small spread
in magnetic moment between & and E+8E will acquire on reflection a spread in phase

given by

| asr | e
et T TR ) [0 O - e

) E(k) - (R - Tj—g) K(k)} ver (6.3)

Taking typical values R =4, E = 0.5, v =2, we derive that Bﬂn+1 will be greater

than 2w if

L6E > 0.25m vee (604)

Putting L = 5, which is, in our units, the length for which a mirror of the above form
will reflect particles adiabatically (GARREN et al, 1958), we find that a spread &f = .05

will result in ¢ being completely spread through 27.

A beam of particles injected into the trap will acquire a small spread in & on their
first transit, due to the épread in initial parameters (ro, v). For the case we have been
considering a spread Bro = 0,1 (ro = 2) will result in 651 = 0.05 (g; = 0.,5) and so
ensure complete phase spreading on the first reflection. We see [rom Fig.5 that on the
reverse transit the spread in phase will have a far greater dispersive effect on E; than
the spread 5&2, and after this transit the particles will all take widely different paths
through the system. At each successive passage through the modulations there will be a

further dispersion in £, brought about mainly by the phase-spreading properties of the

mirrors at each reflection,

In order to calculate the average behaviour of a group of particles with a small
random spread in initial parameters it seems therefore legitimate to start each particle
with the same initial conditions, but to randomise its phase at each reflection*, The

model is then independent of the shape of the mirror field and F, becomes a random number

between 0 and 2m.

7. PARTICLE CONTAINMENT

Starting from the same initial conditions (ro,v), we use exact calculations for F,
and a random number generator for F, and obtain a statistical distribution of lifetimes
in the trap by computing the orbits of, typically, 1000 particles at a time., To keep the

results independent of the length and shape of the mirrors we count only the time spent in

* A similar suggestion has been put forward by GRAD and VAN NORTON (1962) for slightly

non—-adiabatic orbits in cusp geometry.



thz central, modulated region and normalise the time to To! the time a particle would

take to transverse this region if all its energy were in motion along the field, Thus
2n

0. 4
I-O"" Z _‘.'.]:. LN (7.])

1

which [or the system we are considering, with all 61'5 equal to =, is

2nm
TO = v e (7l2)

The normalised mean lifetime T thus obtained is then the ratio of the line density

of particles in the trap to the line density in the injected beam,

For our first case we take a system n =35, h = 0,042 and choose initial injection
conditions ro =2, v =2.19. From Fig.4, these particles acquire E! = 0.5 on the
first transit. The distribution of containment times is presented in histogram form in
Fig.8 for two values of mirror ratio, R = 10 and R = 100 respectively. The histograms
are plotted logarithmically with respect to time in order to show the main features of the
distribution: at the smaller mirror ratio a large fraction of the particles is lost in
the Tirst few transits (t < 10) but there is a long tail extending out to 1t = 1000 with
a pronounced maximum in the region of < = 100, The mean lifetime T in this case is 31,
For the larger mirror ratio the initial loss is greatly reduced and the maximum correspond~
ingly enhanced: the mean lifetime is 100, The heavy initial loss with R = 10 can be
qualitatively predicted by noting the size of the escape region (&’ < 0.1) in Fig.S.

£

The maximum in the tail is attributed to particles having achieved 5urficiently large £

to undergo internal reflections, which enhance their lifetime,

The statistical accuracy of the mean lifetime was checked by performing 5 runs of
1000 particles each: the standard deviation was 8%, To check the validity of our assump—
tion of phase randomisation we performed two further runs of 1000 particles in which the
pﬁase was randomised only at the first reflection and thereafter calculated exactly using

(6.2) with R= 10 and L = 10. The results were within the standard deviation of the

previous runs.

The variation of T with mirror ratio, other parameters be;ng kept constant, is shown
in Fig.9. It can be seen that T is relatively insensitive to R below R = 10, but
then increases nearly linearly with R. The relationship in the latter region is given

quite closely by

0,94

T = 2,63 vewe §leid)

- 10 =



The increase in T coincides with the contraction of the size of the escape hole in (E,9)
space towards the singular poiht (/= 0); T is approximately inversely proportional to

the area of the escape region on the (§;¢) map.

To investigate the variation of T with small variations in v and h we chose from
Fig.4 several points for which the (v,h) combination gave E! = 0.5 and performed con-—
 tainment calculations with R = 10, For increased accuracy we took 5000 particles in each
run: the results are shown in Fig.10 as numbers on the gl= 0.5 contour, It can be seen

that T is largest for the smallest values of h and v.

The above results all suggest that the containment of particles in a non-adiabatic
trap may be regarded as a diffusion in (2,9) space from a source at g = g; to a loss
boundary at g = %'. Randomisation of phase represents complete diffusion in the ¢-di-
rection at each mirror reflection; each transit of the modulation results in diffusion in
the g -direction, with a step which, as we would expect fram perturbation theory, is
larger the larger h. With source and sink fixed the mean containment time should increase
with decreasing h: this is found to be the case (Fig.10) and so justifies the method of

choosing h and v wused in Section 3.

The effect of varying g;, adjusting v in each case to minimise h, is shown in

Table 1. As Ei is varied from 0,3 to 0,7, T goes through a broad maximum. At small

E{s T is reduced because of the larger fraction escaping on the first reverse transit.
For large g;, although particles are initially trapped into more highly contained orbits,
h is larger and the escape region is also extended into the region of high g, so the

area of (E,p) space available for contaimment is decreased.

An important by-product of these calculations is the steady-state distribution of
particles in £-space. By accumulating the time a particle spends in the range & to
E + 8 and normalising to the mean containment time T, we obtain a typical distribution
shown in histogram form in Fig.11, Also shown dotted in this diagram is an isotropic dis-
tribution in velocity space: it can be seen that the distribution in the trap is somewhat

enhanced in the regions of high £ and we attribute this to the occurrence of internal

reflections.

In an attempt to assess the importance of internal reflections on containment we
carried out calculations in which internal reflections were artificially suppressed: this

was done by ignoring the time a particle spends between an internal reflection and its

= if=



subsequent entry into a mirror. For our typical case (Fig.8) the mean containment at R = 10
was reduced from 30 to 20 and the hump in the containment histogram around ¢ = 100 dis-
appeared. Thus in this case particles which suffer internal reflections make a very sig-
nificant contribﬁtion to the mean containment, and it is in this respect that the
predictions of the square-wave model might differ from what would be observed in a more
physically realisable system, due to-the detailed differences in the nature of the internal
reflections discussed in Section 5. However, a discussion of this point is not within the

scope of this paper and in what follows the effect of internal reflections will be included.

8. VARIATION OF THE NUMBER OF MODULATION PERI(ODS

We have examined a number of configurations with different n, choosing h and v
in each case to give g: = 0.5. The results are shown in Table 2, As n is increased h
can be decreased (we should expect nh = constant from perturbation theory) and T arises
approximately linearly with n hp to n= 12, As n goes to 15, T decreases, as now

the non-linearity of the system requires that h must be increased to achieve the same
g

An increase in n is accompanied by increased selectivity of input conditions and a
reduction in the size of the escape region. For example, we show in Fig.12 the initial
resonance diagram for n = 10, and in Fig.13 the reverse transit F,; map for this system.

These figures should be compared with Figs.4 and 5, which refer to n = 5.

9. STAGGERED MODULATIONS

The decrease in axial velocity which accompanies the increase in g on the first
transit makes it impossible to preserve exact resonance throughout the system if all the
ai's are equal and the effect of this non-linearity is particularly apparent at large n.
An obvious way of overcoming this difficulty is to arrange that the modulation wavelength
decreases progressively to keep the field discontinuities in step with the Larmor rotation
of the particle. It can be shown that the phase change ©6; in each section must be =,

so that each ei 1s given by

da, e. (9.1)

1
= pesmm=al h F——
£ where u (dr i

i 2f . i

Taking v = 2, T = 2, and a given value of h, we construct the modulation system

by calculating the first transit _orbit in the manner of Section 2, applying (9.1) to

- 12 -



determine the length of each region. For given h and n, the effect of staggering is

to reach a larger value of g:' than in the non-staggered case: alternatively, to reach a

given gi the h required is now smaller.

As before we take g; = 0.5, and construct systems with n from 3 to 15, The results
of containment runs of 1000 particles in each of these systems are given in Table 3. It
can be seen that the containment time T for each value of n is less than for the cor-
responding case with non-staggered modulations, even though h has been significantly re-
duced. The reason is apparent from an examination of the F, maps. The maps for n = 10
are shown in Fig.14, Two maps are necessary because forward and reverse transists are now
significantly different. The main anti-resonance occurs on the reverse transit where the
size of the escape region £’ < 0.1 is now appreciably larger than in the non-staggered

case (cf Fig.13). There is also a large escape region in the forward transit, although it

does not extend above E = 0.4.

The range of input conditions over which particles are captured is increased by stagger-
ing the modulations. The (&, h, v) map for the first transit with n = 10 is shown in
Fig.15 and should be compared with the corresponding map for uniform modulations in Fig.12,
However, our containment results apply only over the small range of input conditions
(ro, v) which produces a 10% spread about the chosen value of g; (from Section 6 this
gives phase randomisation at the first mirror reflection). For both the non-staggered and

or

staggered systems the range ?79 = 5%, as can also be deduced from the perturbation theory
(o]

given in the Appendix.

10. NON-ZERO E,

So far we have only considered injection of particles along the field (g1 = 0).
Clearly g, may have any value up to 1/R, and with non-zero E r it might be expected
that the value of h could be reduced. However, with non-zero g, the value of g;
depends on the input phase, and since the injected beam has to traverse the first mirror
before reaching the modulations the considerations of Section 6 apply: we must therefore
assume that all input phases are present so g; will have a substantial spread of values.
In Fig.16 we show the maximum and minimum values of E; as a function of h, for £ = 0.1
and n = 5. For small h the spread in gi is practically symmetrical about £,, and so
with a mirror ratio of 10 about half the injected particles are lost on the first transit.

At h = 0.035 however, all particles have gi > 0.1 and are trapped, but h is not
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significantly different from when g, = 0; a containment run with 1000 particles gave
T = 19.2, Thus it appears that if all particles are still to be trapped, injection with

non-zero g, has no advantage over injection along the field.

11, VERY LONG LIVED PARTICLES AND SMALL h

For h < 0.035 in the previous example, a fraction of the injected particles is not
captured on the first transit. To see whether this disadvantage could be offset by in-
creased containment of the trapped particles we performed 1000-particle containment runs
with h down to 0.005. The statistical accuracy of these runs was very bad and this was
found to be due to the presence of a few very long lived particles which had a profound
effect on the mean containment time. From Tables 1-3 it can be seen that as h decreases,
the fraction of particles undergoing internal reflections decreases, but the number of
internal reflections per particle increases. Table 5 summaries the results of two runs
with h = 0.01 in which there is only one internally reflected particle in each group of

1000; in the second case this has a lifetime of 85,932,

The very long life of this particle was not due to its being trapped exclusively in
one of the modulation regions since a normalised spatial distribution, obtained as a by-
product of the calculation in a similar manner to the normalised velocity distribution,

did not show any local increase in density. It seems rather that this particle is one that
has reached a very high & by diffusion in E-space and the occurrence of internal reflec-

tions is simply an indication of this,

To obtain statistically significant mean lifetimes for this case we should have to
perform containment runs for several hundred thousand particles and such calculations are

beyond the scope of this work.

12, STOCHASTIC TRAPPING

For small h and g = 1/R we see from Fig,16 that the spread in g, causes about
half the particles to be lost on the first transit: the necessity for a resonant perturba-
tion is now questionable, since a similar spread is produced by any small non-adiabatic
effect., We therefore consider as our final example a system with only two field steps
(Fig.17) and take the distance between the steps to be sufficiently large that we can
apply the concept of phase randomisation at each step: this system we call a-stochastic

trap and could represent a mirror machine with slightly non-adiabatic mirrors. Results of
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containment runs at different h are summarised in Table 5, for R = 10 and 51 = 0.1,
1 3 i . ' gl

As might be expected, as h decreases T increases, while the spread gi — El -

on the first transit decreases, We can take &E = gi - E; min 28 the width in E-space

of an injected beam for which all the particles have a chance of capture. The most sig-

nificant result is that the product TO8F appears to be constant within the. accuracy of

our calculations,so that the particle density in the trap is proportional to the beam den-

sity in Z-space irrespective of the value of h.

In order to compare stochastic and resonant trapping, consider a beam with radius
g = 2 and width %;? = 5%, initially having & = 0. If this beam is injected into a
resonant trap the best value of T we have found is 80 (Table 2). If, however, the same
beam were to acquire g, = 0.1 by being passed through a simple resonant system before
injection into a stochastic trap, the spread Bgi/Ei = 16%, and the minimum h which
would give all particles a chance of capture is slightly less than 0.01. The T for the

entire beam is then about half the T for gi = 0,1, (Table 5) that is about 200.

13. CONCLUSIONS

The use of the square wave model allows us to calculate the orbits of large numbers
of particles in non-adiabatic traps and to build up a statistical picture of containment,
Although resonant trapping enables all injected particies to be caught on the first transit,
containment is limited by the anti-resonant escape process; we find that in spite of heavy
initial losses, stochastic trapping appears to offer greater possibilities for particle
accumulation than resonant trapping., However, very long lived particles appear in cal-
culations on resonant trapping with very small h, but unfavourable statistics prevent any

general conclusion being drawn in such cases.

Where we have compared the behaviour of particles in fields which change discontinuously

and fields which vary sinusoidally over a distance of the order of a Larmor diameter we
find close correspondence except for particles of such large g that reflection is possible
at the field change. There are then some differences in behaviour which may affect the
quantitative accuracy of some of the containment results but which do not affect the gen-

eral conclusions of this work,

- 15 =



14. REFERENCES

GARREN, A., et al. (1958). Proceedings of the Second International Conference on Peaceful
uses of Atomic Energy,Geneva, 31, 65. United Nations, N.Y.

GRAD, H., and VAN NORTON, R., (1962), Nuclear Fusion, 1962 Supplement, Part 1, 61,
HERTWECK, F., and SCHLUTER, A., (1957). Z. Naturf., 12a, 844,

LAING, E.W., and ROBSON, A.E., (1961), J, Nucl. Energy Part C, 3, 146,

SINELNIKOV, K.D., et al., (1960a), Zh, Tekh, Fiz., 30, 249; Soviet Phys.-Tech. Phys., S,

220,

SINELNIKOV, K.D., et al. (1960b) Zh. Tekh, Fiz., 30, 256; Soviet Phys,-Tech. Phys., Gy =
236,

- 16 =



TABLE 1

EFFECT OF VARYING £ IN UNIFORM MODULATION SYSTEM
R =10, n =5, 5000 PARTICLES
£f 0.3 0.4 0.5 0.6 0.7
v 2,09 2e13 2,19 2,29 2,40
h 0.029 | 0.035 0.042 0.050 0.064
MEAN CONTAINMENT TIME T 17.7 33.9 31,3 32,2 22,4
AVERAGE NUMBER OF MIRROR
REFLECTIONS PER PARTICLE 9,1 15,1 13.7 13.8 10.4
PERCENTAGE OF PARTICLES LOST
AFTER FIRST REVERSE TRANSIT 43.6 32.4 21.8 18.0 21.8
PERCENTAGE OF PARTICLES
INTERNALLY REFLECTED 2.4 2.2 20,2 51.6 65.5
AVERAGE NUMBER OF INTERNAL
REFLECTIONS PER PARTICLE 154 84 57 27 17
TABLE 2
EFFECT OF VARYING n IN UNIFORM MODULATION SYSTEM
R =10, g!=0.5, 1000 PARTICLES
n 3 5 7 10 12 15
v 2,16 2,21 2,24 2,26 2,25 2,19
h 0.064 | 0.042 | 0.033 | 0.030 | 0.026 | 0.043
MEAN CONTAINMENT TIME T 22 27 42 61 80 42
AVERAGE NUMBER OF MIRROR
REFLECTIONS PER PARTICLE 10 12 18 26 35 18
PERCENTAGE OF PARTICLES LOST
AFTER FIRST REVERSE TRANSIT 33.4 27.5 19,1 10.3 8.8 18,5
PERCENTAGE OF PARTICLES
INTERNALLY REFLECTED 42 19 16 17 14 31
AVERAGE NUMBER OF INTERNAL
REFLECTIONS PER PARTICLE 15 53 106 180 312 133
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EFFECT OF VARYING

TABLE 3
n IN STAGGERED MODULATION SYSTEM

R=10, £!= 0.5, 1000 PARTICLES
n 3 5 4 10 15
v 2 2 2 2 2
h 0.058 | 0.035 0.025 0.017 0.012
MEAN CONTAINMENT TIME T 25 29 35 42 49
AVERAGE NUMBER OF MIRROR
REFLECTIONS PER PARTICLE 1 13 15 19 22
PERCENTAGE OF PARTICLES LOST
AFTER FIRST REVERSE TRANSIT 37.0 32.4 25,5 23,7 16,9
PERCENTAGE OF PARTICLES
INTERNALLY REFLECTED 36 22 15 9.5 4,4
AVERAGE NUMBER OF TNTERNAL
REFLECTIONS PER PARTICLE 20 40 71 125 326
TABLE 4
RESULTS OF TWO 1000 PARTICLE RUNS, EACH WITH
ONE INTERNALLY REFLECTED PARTICLE.
n=S5, h=0.0l,r =2 v=205R-= E, =0
FIRST RUN SECOND RUN
T FOR 1000 PARTICLES 31.5 100.8
T FOR 999 PARTICLES 13.6 14,9
LIFETIME OF INTERNALLY
REFLECTED PARTICLE 17,945 56 s
NUMBER OF INTERNAL
REFLECTTONS 2,460 12,194
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TABLE 5

EFFECT OF VARYING h IN STOCHASTIC TRAP
v=2,r =2 R=10, £ = 0.1. 5000 PARTICLES

h 0,04 0,03 0.02 0.01
MEAN CONTAINMENT TIME T 19 148 200 413
AVERAGE NUMBER OF MIRROR
REFLECTIONS PER PARTICLE 55 68 92 195
PERCENTAGE OF PARTTCLES LOST
ON FIRST TRANSIT 46,7 47,7 48,9 48,9
PERCENTAGE OF PARTICLES LOST
AFTER TEN TRANSITS P70 77.5 79.4 80.0
PERCENTAGE OF PARTICLES
INTERNALLY REFLECTED 8.3 6.8 4.0 2,1
MEAN LIFETIME OF INTERNALLY
REFLECTED PARTICLES 1,334 2,005 4,567 17,792
£ 0,159 0.143 0.128 0.113
i max
S 0.055 0,065 0.076 0.088
I
T B~ By rwyd 5.3 5.2 4,8 5.0
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APPENDIX

MATCHING OF SQUARE-WAVE AND SINE-WAVE MODELS

Following essentially the method outlined in section 4 of L-R we can develop a

similar perturbation theory of the square wave model for the first transit.

Let r=r0+hr'l+...

Then the equation of motion in ith

region can be written, to first order, as
d®r,

F 4 4rs = - 2 e | cee (A1)

where g, =0 for i =0 and 2n + 1, and for O <i <2n+ 1, g =* 1 according as
1 L] i g

i is even or odd, respectively. The general solution in ith region is given by

2z 1
r,; =A; cos (v + ;) =% rog; eee (AL2)
and the phase change between any two successive boundaries is, to this order, 6 = 2n/v.
Continuity across a boundary is expressed by the equations
_ 1
Ai+1 e P +1 g

— = &
r & 1= A cos (cpi +8) -k r.&; veo (AL3)

Ai+l sin @, .= Ai sin (cpi + 8)

! ~
By =08 g %1y (8~ 8,
: and C. =
Ai sin ¢, i 0

0

Let X.
i

Initially, Xi

In general, (A.3) can be written as

X =L (8) X, +C . (AL4)
where
0os 6 -sin 6
L8) = C.in 6 cos 9)
so that we can solve for X obtaining
2n+1,
2n
- P
X2n+1 - Z L C2n~p
p=0
2n )
p 1, 2n '
=r, (-LP x =% (1417 x |
L )
p=0

where

- 20 =



i.e.,

X ™ Ta [“ Al SIS S NS A S L2“)] X vos (ASS)

This result can easily be expressed in terms of 8, but we wish simply to use (A.5) to
match & for the square wave and sine wave at v = 2, for which value 6 == and

L =-1. Thus.

2n -1
L»;?l x2n+1 = -2nr0 L X = 2nrox
and so for the square-wave model
4h? 2 _ 4222
=3 | 2n+l| = 4h*n°r ees (A.6)

With the same value v = 2, and using the result previously obtained in L-R (Eqn.

(4,.6) with misprint corrected) we have for the sine~wave model

8r2h?
E = —g-—-— (1 - cos 4z
v =2 (V -4)2 v
eee (A7)
i 2 2.2
=% hnr,
Comparing (A.6) and (A,7), we find the values of g coincide if
h (square-wave) = % h (sine wave). ..o (A,8)
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Mean containment times plotted along &, = 0.5 contour
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Contours of & as a function of h and v, first transit
n=10, 15 =2
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Contours of £ as a function of & and ¢, reverse transit
n=10,h=0.03,1,=2, v=2.26
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Contours of ¢’ as a function of & and ¢, staggered modulations
n=10, h=0.0173, =2, v=2
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Fig.17 Stochastic trap  (CLM-P70)












