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Abstract

An investigation of very low frequency (u;<<‘v§?i) magnetic
fluctuations in a two-fluid model is carried out. This shows that
such modes do not make a significant contribution to cross field
transport. Test-particle diffusion due to an ensemble of quasi-
static fluctuations is discussed. It is found that there are
significant differences in the low collisionality limit between
periodic and infinite systems. Necessary conditions for field lime
ergodicity due to equilibrium constraints are derived. A novel
asymptotic magnetic surface construction is used to derive bounds

on test-particle diffusion, where all relevant time-scales are taken

into account.
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L INTRODUCTION

It is generally accepted that electron energy transport in present
tokamaks is not in accordance with neoclassical/classical theory. This
fact, together with the non-observance of the bootstrap current
(BICKERTON, 1972) and the failure to describe impurity transport
correctly (see for example TFR GROUP, 1982), have led to doubts con-
cerning the validity of neoclassical theory. On the other hand, the
ion transport is approximately neoclassical and Spitzer resistivity
appears to be correct in the toroidal direction, at least. Interestingly,
recent investigations of various auxiliary heating methods in Stellarators
have demonstrated a marked improvement in confinement properties as
the ohmic current is reduced. Indee&, for HELIOTRON-E (IIYOSHI, A et al

1982) operated with zero net current it has been claimed that both ions

and electrons behave neoclassically.

The present theoretical understanding of the above phenomena is
clearly very unsatisfactory. An adequate theory must at least offer
a correct qualitative description, as well as being self-consistent
within its own terms of reference. Furthermore, it should be able to
account for effects due to particle and energy sources. In the present

paper, however, we shall restrict our discussion to ohmically heated

tokamaks with prespecified sources.

There are two possible ways in which a plasma theorist can react
to the above situation. First, that the neoclassical theory has been
incorrectly derived from kinetic theory. Given that certain aspects of
the theory are approximately substantiated by experiment, then at least
part of the present analysis would appear to be valid. Second, and
this is the view which we have followed in previous papers (THYAGARAJA
et al, 1980, HAAS et al, 1981), that neoclassical theory is essentially
correct for the instantaneous state of the plasma, but turbulence must
be invoked in order to interpret the observed radial electron thermal
conduction as derived from the averaged two-fluid equations of motion.
As we have noted previously (THYAGARAJA et al, 1980, HAAS et al, 1981)

in order to obtain the effective radial electron thermal conduction, Ria

it 1s necessary to have an appropriate form for the parallel electron



thermal conduction coefficient, K“e. While the classical form
(BRAGINSKII, 1965) is suitable for highly collisional plasmas, it

is inadequate for conditions where the mean free path is large
compared to the dimensions of a tokamak. Since the methodology of
neoclassical theory does not allow the determination of parallel
transport coefficients, a first-principles derivation of these is
strictly necessary, but to our knowledge this has never been carried
through. In our previous work (HAAS et al, 1981) we introduced a
heuristic form which leads to values of iz in qualitative agreement
with several experiments including ALCATOR (COOK et al, 1982). Recent
ECRH studies on TOSCA (ALCOCK, et al 1981) have indicated K“e to be
of order one hundredth of the classical value, and on substituting
the appropriate TOSCA parameters into our heuristic form, we find
agreement to within a factor of two. In support of a turbulence
interpretation it has recently been suggested (MOLVIG et al, [981)
that low frequency turbulence could destroy the bootstrap current;
these authors remark that the level of turbulence required is too

low to influence the Ware Pinch effect.

The objective of the present paper is to use the two-fluid
equations to explore further the inter relationship between anomalous
thermal transport and the concepts of magnetic turbulence and ergo-
dicity. 1In section 2 we consider whether low-frequency modes can

lead to an enhancement of thermal transport. We find that only

frequencies greater than or of order i?l can produce a significant
enhancement. This implies, that very low frequency phenomena do not
significantly contribute to anomalous thermal conduction, or for that
matter, particle diffusion. As we have commented before (HAAS et al,
1981)while it is possible that time-dependent magnetic fields are
ergodic, our derivation of Kle makes no explicit reference to this
concept. TFor the static case the magnetic fluctuations are time
independent 'ripples' on the mean fields. It is well-known that
these ripples modify the standard neoclassical formulae. Hence when
we refer to neoclassical theory it is with the assumption that this
effect has already been incorporated. Current theories of anomalous
transport are based on the idea that an ensemble of ripple fields,
which in general are expected to be ergodic, lead to enhanced transport

across the mean surfaces.



In section 3 we consider an ensemble of quasi-static small amplitude
field fluctuations in a periodic system such as a tokamak. The test-
particle diffusion in such a model is discussed and certain ambiguities of
interpretation are noted. In section 4 we first derive some necessary
conditions for the occurrence of ergodic regions in steady-state tokamaks.
Secondly, we discuss a novel asymptotic magnetic surface construction and
consider its consequences for test-particle transport across mean—surfaces.
Section 5 contains a discussion of several specific points arising from

our paper. Finally, section 6 presents our conclusions.

2. VERY LOW FREQUENCY MODES AND ENHANCED TRANSPORT

Using the two-fluid equations, we have previously (HAAS et al, 1981)
presented a somewhat simplified turbulence interpretation of anomalous
transport. Following this work, we assume a cylindrical model for a
tokamak of minor radius a and periodicity length 2nR; we further
assume that all perturbed quantities are of the form

5f = 6E(r) exp [i(wt R = ug ] (1)

R
when for convenience the m, n, w dependence of the amplitude is

suppressed.* Mean or unperturbed quantities are denoted by the suffix

T Pao etec,

zero. As before we assume the mean quantities, n,» Teo’ 16
to be constant along the unperturbed field lines, §O. Unlike our
earlier work we now take full account of the electron motion. Our

immediate aim is to determine whether or not very low frequency modes
can lead to significant enhancement of electron thermal conduction.
By very low, we mean those frequencies for which the ion inertia is
negligible compared with the pressure gradient term in the ion

equation of motion. For typical tokamak conditions this implies that

*Note the present notation is different from that of our earlier
papers. We no longer use the explicit parameter €. Thus in terms
of our old notation, Af and &f denote the same quantities, namely

the actual perturbation in position space. The corresponding Fourier
amplitude is denoted with a carat as in Eq.(1l).
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the frequency has to satisfy the ilnequality Wi2m << Ery 30 kHz.

Neglecting inertia and resistivity, the electron motion in the

6 and z directions is governed by the equations

L
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where the poloidal and 'toroidal' electric fields are related through

the radial component of Faraday's law,

im g - in = - 1w 4p
— SE, -~ % OE, = 8B _ (4)

From these equations it is simple to derive

Q 8B
(SA = _E- _r
ver ky B (5)
o
k.B B B
where 0 = w + k.v =__9=-@mO _0b,1n oz (6)
- B e and ku » T BO R Bo

o - Qi 6BL
Vir "k, B )
o)
where _Qi = w + E'Eio Henceforth for convenience, we omit the carat

over linearised quantities. Using Equation (7), the ion continuity

equation can be written as



dn 4B (8)

where the term V.8v; has been neglected; this approximation is valid for
the frequencies of interest. In fact, Eq.(8). implies

(B, + §§).V(no + 8n) = 0 (8B &n), (9)
that is, the density is comstant to first—order along the instantaneous
magnetic field lines. Using Eq. (7) and taking cognisance of V.Qvi =0,

the linearised ion energy balance equation becomes

T. "%, ar 2 % o

6T. dT._ 6B i
1 3 . K\ .
(i - w E_F) ( /9 9; - lkn2 —£_> = o el

io 10 o] o

where all other 'fluttered' contributions such as equipartitionm, Kii etc,

are very much smaller. It follows that

(B, + 8B).V(T, + §T,) = 0 (8B GTi). (1L)

and hence the ion temperature is also constant to first order along the

instantaneous field lines. Combining Eqs.(9) and (11) with the total

momentum balance we find,

(Bo + 8B).V(Tg, + 6T,) = 0 (8B 8T ), (12)

where we have again neglected ion inertia. Thus the electron temperature

is also constant to first—order along the instantaneous magnetic field.

Given the above result we now calculate the enhancement. By

averaging over the electron energy balance equation we have previously

shown (HAAS et al, 1981) the effective perpendicular electron thermal

conductivity to be

Kle = Kie * Kne Fe, (13)



where the form factor Fe is given by

6B 2\ - B e / dTeD -1
r < r -

and A, denotes differentiation along the unperturbed fZeld. The

coefficient KL is taken to be neoclassical, while the form for K, is
e

unimportant for the present purpose. Using Eq.(12) we deduce that

K =2 K ok
il
T‘e ~ max [0 (wz(-n%z ) ), O(kZ—") ] . Thus for our model, we conclude
that very low frequency modes cannot enhance electron thermal conduction

over and above the neoclassical value.

We note that combining Eq.(8) with the electron continuity equation
implies V.gge = 0. This suggests that we can reverse our line of
argument. Thus if we consider frequencies and fluctuation levels such

that ]Vfgye| << W é—-, then Eq.(8) immediately follows from Eq.(5) and

)
the electron continuity equation. Consequently, an equation for 6Te

exactly analogous to Eq.(1l0) can be directly derived from the electron

energy balance. Once again we deduce Fe to be negligible without however,
having to neglect ion inertia. Inclusion of electron-ion resistive drag

in the above analysis makes only a minor correction comparable in size

with the classical Ele' Although thermal forces can contribute significantly,
provided V.Gve is negligible in the electron energy balance, then

Eq. (12) is again appropriate; hence the enhancement is unimportant,

We now summarise the physiecs of the above analysis. At low frequencies
both the ion and electron fluids essentially move with the time-dependent
field lines; this is the content of Eqs.(5) and (7). For these frequencies
the ion motion is incompressible and the inertia negligible, and hence
as shown, the density and ion temperature are constant along field lines
(Eq5.(9) and (11)). Through Eq.(9) the electron continuity equation shows
the electron fluid motion to be incompressible. Total momentum balance

combined with these results leads to the electron temperature also being

constant along field lines. Under these circumstances no significant
mean energy transport can occur. For an enhancement there must be electron

temperature variation along field lines, and this requires that work be

e



done on the electron fluid. Our argument shows that the neglect of ion
inertia and incompressibility of the ion fluid are equivalent. While

the incompressibility of the ion fluid implies that of the electron fluid
the converse is not necessarily true, except at low frequencies. The
above considerations also lead to Fi being small. Furthermore, since
Gver amd Gvir are 90° out of phase with the density fluctuations, the

particle fluxes,

<<f%v §E_j>>and //%v. EE.:>>
. er \\\\ ir o

n_ .
(o]

must vanish. Similarly the conwective energy fluxes are negligible.

It follows that if a significant turbulent enhancement of cross-field
transport is to occur, fluctuations of sufficiently high frequency must
be involved. In particular, very low frequency modes cannot be expected
to directly contribute to either anomalous energy or particle transport.
In principle it is still possible that these modes can drive high frequency

turbulence, and therefore, may indirectly lead to enhanced transport.

The above argument neglects the work done by the viscous stresses in
the electron fluid, which generally make a small contribution to the phase
as do other dissipative processes, for example, electron—ion equilibration.
As an example we consider the very interesting results obtained by KADOMTSEV
and POGUTSE (1979). These authors consider a single-fluid energy balance
equation in which only parallel and perpendicular electron thermal conduction
is taken into account. This model can easily be reworked in our two-fluid
framework with essentially the same results. The main point is that while
we neglect perpendicular thermal conduction in our proof that low freqﬁency
modes do not significantly enhance transport, KADOMISEV and POGUTSE consider
the effect of classical/neoclassical perpendicular conduction as a phase-
shift creating mechanism even in quasistatic conditions. Actually, as we
show in our appendix, the formulae of KADOMTSEV and POGUTSE (see their
Eqs. (21) and (22)) have non-negligible contributions only at the resonant
points. As we observe in the next section, such expressions are apparently
incapable of interpreting the experimental anomalies. This justifies our
neglect of dissipative processes with rates small compared to parallel

thermal conduction as effective phase-shift mechanisms.



3 STATIC STOCHASTIC FIELDS AND ANOMALOUS TRANSPORT

We now examine a very interesting alternative magnetic turbulence
interpretation of anomalous transport put forward by RECHESTER and
ROSENBLUTH (1978), and discussed by KROMMES et al (1982) and other
authors. This is possibly the best known of all magnetic turbulence
models of cross—field electron heat transport. The RECHESTER and

ROSENBLUTH formula for Kle is based on the following assumptions:

(1) The electron heat transport can be correctly derived by treating
the electron guiding centres as test particles and ignoring all collective

effects.

(2) The magnetic field in a tokamak can be statistically represented for
the purpose of calculating the average cross-field transport as a sum of

a mean magnetic field and random static magnetic fluctuations. The mean

magnetic field is assumed to produce a set of nested closed magnetic

surfaces and the fluctuations are small in amplitude compared with the

mean.

(3) The magnetic fields satisfy no other comstraint but V.B = 0;
in particular, the motion of the electrons is not related to the evolution

of the fields. In this sense the theory is purely kinematic in that the

electron diffusion across the mean surfaces is due to field line wandering.

(4) RECHESTER and ROSENBLUTH recognise that their formula does not give
the correct particle diffusion coefficient since the result for ions and
electrons would be different; this would therefore violate the overall

charge neutrality of the plasma. They assume however, that it does give

the correct energy loss rate for the electrons.



(5) They derive formulae both in the collisional (Tevth /qR<« 1) and

in the so-called collisionless limit. In the latter limit the thermal

diffusivity ﬁle/n is independent of collision time and therefore of

density.

The above assumptions imply according to RECHESTER and ROSENBLUTH a

thermal diffusivity - - given by

Xrae (r) = TRY o g Jdn | mnir)l 5 ( m-n%i;) ) (15)
m Bz

where q(r) is the safety-factor. This formula is derived from the

field line diffusion calculation given by ROSENBLUTH et al (1966). It

may also be written in the equivalent form

.[bm(r)lz — 5 l mm/q(r)‘

m,nq the - B2 (16)

where the Kronecker Gm - = 1 when m = nq and = O otherwise .
3

Before we go on to consider the Eonsequences of Eq.(16) it is
(r)
useful to clarify the physical meaning of l——————l— . An important

B2
Z

statistical property of the ensemble is the crrrelation functionm,

F(r,0,z) <B_(r,87z7)B_(r,87+6,2" +2)>, (17)

B2
A

where the average is over the ensemble of field fluctuations, and
stationarity has been assumed. Now F(r,0,z) is experimentally
measurable in a tokamak and must be periodic in 8,z (cylindrical model
with periodicity length 27R). It then follows from the well-known

Wiener-Khintchine theorem that,

. nz
F(r,8,z) =) ) - |b (r)[zel(me-FTF) . (18)
m n Bg oo



We now examine whether Eq.(16) can be used to explain anomalous

6, (x)]?
transport in tokamaks. Eq.(18) tell us J—EEEE———— is strictly defined
BZ
z
in a periodic system only when %% is integer. Since qf{r) 1is generally

non-constant in a tokamak we encounter a difficulty: tbhus when g is

. ; ; o F |bmm/q(r)i2 ,
irrational, which it is for almost every r, - ' is appsrently
8

zero from Eq.(18). If this is accepted, then  JP makes a contribution

to the total thermal conductivity apparently only at rational points
(which although infinite in number is a set of measure zero). It follows
that the temperature profile calculated using ; S will be flattened at
rational points, but otherwise identical to that obtained using xleNC
(neoclassical). The periodicity of F(r,0,z) similarly raises difficulties

over the interpretation of |dn in Eq (15).

The test-particle conductivity due to magnetic fluctuations can be

expected to have the general form

|bmn(r)|2 m-nq (r)
Xie = ™Vine ! G (‘ gq' ) (19)
Bg mI

where G replaces 6m - in Eq.(16). We have derived a formula of this type
b
for time dependent fluctuations (see Egq.(50)). In the next section we

obtain an estimate for test-particle diffusion, Eq.(45) which also leads

to a specific form for G and the widths Emn' Our principal aim is to
draw attention to the fact that in Eq.(16) some reinterpretation of
5m,nq is necessary. Furthermore, the comparison with experiment is
sensitive to this. In particular, it is not permissible to replace

m,n

8 q by unity without some justificatiom.

-10—-



4. RELEVANCE OF ERGODICITY FOR ANOMALOUS TRANSPORT IN TOKAMAKS

In the previous section we discussed steady stochastic magnetic

fields in tokamaks. There are two possibilities for the topology of

such fields; either there exists a set of nested closed magnetic
surfaces which are slight deformations of the mean surfaces, or there

are regions of finite volume in which the field lines wander ergodically.
In the former case temperatures and densities will in general be comnstant
on the magnetic surfaces and as we have shown, our model suggests that
there is no enhancement. It is generally assumed that it is the second
alternative that prevails. We now examine whether this alternative is

in fact compatible with the equilibrium conditions (pressure balance and

ohm's law) which any plasma must satisfy in a steady state.

(a) CONSTRAINTS ON ERGODICITY IN STEADY-STATE PLASMAS

The arguments we give below are quite general and apply even in
toroidal geometry as long as there exists a set of mean magnetic surfaces.
Since the static field perturbations are small compared to the mean, the
total volume of the ergodic regions must be a fraction of the total plasma
volume (MOSER, 1978). Any satisfactory theory must account for the
observed transport in the non-ergodic as well as in the ergodic regions.
Leaving aside this point for the moment, we consider a mean magnetic surface
N in a toroidal plasma. For simplicity we assume that the field lines
within the plasma volume bounded by the surfaces w0+aw and wO—Aw wander
ergodically and fill this region. Actually of course, the argument
applies to any ergodic set of positive measure within the plasma volume.

In a steady state the density and temperature of the ions and electrons
in the plasma are definite functions of position which are in principle
experimentally measurable. First we consider the case in which there

are no plasma flows within the ergodic region. Under steady-state

=-11-



conditions in an ergodic region, the total transport is effectively
determined by the parallel transport coefficients. This implies that
in these regions, the gradients of temperature and density are very
small, and hence the pressure must be uniform. It follows from the

momentum equations that the current must be force free.*

There are two possibilities to be considered. In the first, the
density in the ergodic region is non-zero. It follows, that in general,
Ohm's law cannot be satisfied since j must be parallel to B and the
latter is not parallel to the applied E. The second possibility is
that the density in the ergodic region is zero. In this case, the ergodic
regionis actually a vacuum and E= nj is not required. However thisimplies
the presence of cavities or filaments, so that density and temperature
distribution would not in general be monotonic decreasing functions of
¢ While in principle such equilibria may be possible, we do not believe

that there is any experimental support for such phenomena.

The argument given above applies only to equilibria in which there
are strictly no flows. This is a very restrictive assumption. In
general flow velocities small compared to ion sound speed must be taken
into account. We now analyse this case in terms of the single-fluid
formalisﬁ, that is resistive MHD with Ti = Te.

As before, the temperature and density in the ergodic regiom must
be uniform. The flows being small compared with the ion sound speed,
they do not affect the momentum balance. They do, however, play an
important role in Ohm's law. From the fact that pisuniform we deduce

that
i = o (r) B. (20)

Since V.1 = 0 and the field lines are ergodic, then « is constant in
this region. Since density and temperatures are uniform, the Spitzer

resistivity (taken isotropic for simplicity) is also uniform. If the

*#Indeed by definition the pressure must be uniform in an ergodic volume since
otherwise the field lines would lie on surfaces. More generally, in an ergodic
volume the equation B.VS = O cannot have a non-trivial single-valued function

S as a solution.

-12-



applied electric field is denoted by E_ and the plasma electrostatic

potential by ¢, the flow velocity v in the ergodic region must satisfy

vxB _ _ _
—===E =W *ne B (21)

and an equation of continuity which we provisionally take to be

V.v =0 (22}
The condition that Eq.(21) has a solution v is
B.V¢=-B.E + n a B? (23)
Eq. (23) has a solution ¢ in the ergodic region (volumeV)provided
Limit [“ds B.E
J S 2% =naq, (24)
L -+ @™ 2.. B
L
J ds B
o

where the integral is taken along an ergodic field line. Having calculated

¢ from Eq. (23), v is obtained as follows. We write
v =V + AB, (25)

where v, is given by

_c (26)
v, =%, (B * V) x3B
B
and A is determined from the equation
B.VA = - V.y . (27)

...13_



We note that B and o are themselves solutions of the eigenvalue problem

VXB=— a6B, (28)

in V with n.B = O at the boundary. It follows that ¥.v, cannot
identically vanish in V, since this would constitute an additional
constraint on B, incompatible in general with Eq. (28). 1In making
this statement we explicitly use the assumption that the region is
ergodic; thus B has no special symmetries. It then follows from
Eq.(27) that

1
5 V¥, ds=0 (29)

Egs.(24) and (29), tbgether with Eq.(28) are necessary conditions which
apparently overdetermine the problem. This suggests that the assumed
ergodicity of the B field is impossible in the steady-state, even if
flows are allowed. Even if an ergodic solution of these could be found,
3% (AB) is not generally zero. This implies via the parallel momentum

equation that pressure is non-uniform in the ergodic regiom.
We have assumed in the above that the incompressibility condition

is valid. This suggests that particle sources or slow time-evolution

is a necessary requirement for ergodicity.

_14_



(b) EXISTENCE AND IMPLICATIONS OF ASYMPTOTIC MAGNETIC SURFACES
IN TOKAMAKS

We consider a cylindrical model of the tokamak. The principal
features of this model are the following. The vacuum toroidal field is
taken to be BO and uniform throughout the minor radius. The mean

current density is denoted by joz(r). This produces a poloidal field

rBoz
= ]

of r. In addition to this mean field which clearly lies on magnetic

Boe(r). We assume that q(r) = is a monotoniec increasing function

surfaces r = const, we assume that a perturbation AB(r,8,z) is imposed
on the system. For tokamaks AB has to be periodic in 6, and z and must

satisfy some smallness conditions which we now formulate. Experiment

AB -3
—L| 210 . Actually since density fluctua-

B p
. . < =2
tions in tokamaks are of ordef a few percent then J¥L = 10 ~. Taken

indicates that typically

oz : _
together, these experimental limits imply that m, n are of order 100 or less.

A similar limitation on m, n can also be obtained from the consideration
that the shortest wavelength of the magnetic field perturbation must be
of order the ion larmor radius. These considerations suggest that AB in

tokamaks is effectively a finite Fourier series in € and z.

We now investigate whether B + AB lies on magnetic surfaces. We do
this by a construction which exploits the assumed smallness of the

perturbation. Consider the equation

(B, + 4B). VS =0 (30)

where S is a function of r, 6 and z which is required to be periodic in
§ and z. It is obvious that So(r) (arbitrary) is a solution to leading
order . However, these are the mean surfaces. We wish to construct

a solution which will satisfy the equation to first-order. This is done

as follows. We set

B .YS, + AB — =0 (31)
-0 1 r

-15-



9 Bc 8\ dSo
148 (Boz 2t T ) S T8 T 9 (32)
ABI M,N nz
where T = € E b (r) cos (mﬁ t 5 ), (33)
oz -M,_N mn

o)

with M,N denoting the maximum values of m,n respectively (boo(r)

In the above, € is the perturbation parameter. Strictly sine terms
should be included but do not alter the argument in principle. The

bmn(r) are well behaved functions of r. Writing

M, N
Sy = € Z E crmn(r) sin (ms * %) (34)

=M, =N

we find 9on satisfy the relations

-RdS_ q(r)bmn(r)

= dr m + ng(r) (35)

This solution appears to suggest that §, is well defined and small compared
with S which is so far arbitrary, except at a finite number of resonant
points, © = B where m + nq(rmn) = 0. We now exploit the arbitrariness

of SO to show that S; can actually be well-defined at these resonance

points. For this purpose consider the following function of r

)

(r
(36)
é(r) = z ‘ —
Z (m + nq(r))2
_'\-1

It should be stressed that ¢(r) is a well-defined non-negative function

of r for all values of r other than resonant radii. It should also be

_16_



stressed that ¢(r) can be defined even if M and N tend to infinity, in
which case, ¢(r) is a non-negative function of r almost everywhere

(ARNOLD and AVEZ 1968). We now define S0 through the differential equatiom

ds

%o [0

T
Since ¢(r) is non-negative and o <exp(-¢(r) < 1 then so(r) = Jo e_¢(u)du

is well defined and a monotone increasing function. With this choice

S clearly vanishes and has finite derivatives of arbitrary order at all
points. However, the behaviour of §; as a function of ¢ must be
investigated near resomant points ever?0 though it is zero at resonant
points. To see this, it is sufficient to restrict attention to a
particular resonant point B If we consider B in the neighbourhood

of r utting r - = X, we get
mn, P g mn ’ g

Re ¢(rmn * x)q (r_ )b (r )

e (%) ~ mn° mn - mn (38)
o ng” (r_ ) x
b (r \2 m* ’(rmn)
) (39)
N b (r_ +x) v ( A
ow mn ng (1’ ZZ (m +n C]_(l' n))z
m’#m, n’"fn

Thus, Umn (x) ~ % exp (— %2 )

| * .
The maximum of o occurs when x v D?., But this implies that the maximum
; mn

of =~ in the neighbourhood of Ty is 0 (g). This applies to all resonances.

S
o

*The above estimates for cmn(x) is considered here for the generlc case"
when b (r ) # 0. If b ) were zero as some theories require, then

Opn (X) vanishes and hence S n 0(e) anyway.

1/80
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The above procedure can obviously be continued to any desired order
in €. In second and higher orders, secondary resonances not contained
in ¢(r) are created and these are controlled as before by suitable
additions to ¢ . The form of S0 ensures that the resulting expansion is
not affected by the resonant denominators. Ultimately, it is only the
smoothness of q(r) and bmn(r) which determines the size of the successive
terms; we do not know if the series converges. It is not possible to
conclude from Poincaré's well-known result (see WHITTAKER, 1965) on the
non-existence of analytic integrals for Hamiltonian systems, that the
series for S is divergent. This is because Poincaré's proof applies only
to analytic S8, whereas our SO, although infinitely differentiable, is not
Taylor expandable. Thus we have only established the existence of surfaces
in an asymptotic sense. The magnetic field lines must be confined to these
surfaces provided we consider only finite lengths along them. Thus let us
consider the functiom S = S, + S;- A test particle moving along a field

line with velocity v (taken constant for simplicity) satisfies the

the
equation
dr B
TE " Vene B, - ket
It then follows that
d , - B i 2
d_t(so+ Sl) ol I EO'V(SO+ .Sl) = 0{g%). (41)

This equation implies that significant changes in So(r), and therefore of

. R .
r, occur only on time-scales of order —. The latter is a measure of
) ¥ V_'"_'EZ
the _3
particle confinement time in the absence of collisions. For g ~ 10 7,

the time is of order 1 sec for typical conditions, which is much larger

than the observed confinement times of about 30 millisecs.

We must emphasise two important points. First, our construction
refers only to the motion of particles for time-scales over which
SO + Slis an approximate invariant. Thus it does not shed any light
on whether a particle followed for an infinitely long time explores a
finite volume ergodically. Secondly, it does state that for sufficiently
small times (for any given level of g), irrespective of the topology of
the field lines, the maximum radial excursion of the particle with respect
to its initial position is limited. In our view confinement relates to
particle excursions on time-scales fixed by experiment. This means that

the topology of the trajectories is important only on those time-scales.
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We now show how the surface construction can be used to estimate a
test—particle diffusion coefficient. It is important to note that a test-
particle stays on a field line for a time T (collision time). Since
T, € aR/v, €, for example in PLT (n ~ 5X 1013 cm™3, T ,~1keV, R ~ 150 cms,
a~30cms, q~2.0 and € £ 107%) Te~6x 107%sec and qR/vtheE~ 3x10° " sec,
then So-l-S1 is certainly a good constant of the motion for ¢t = Ty This

. 2
fact enables us to estimate <(Ar) >.

From Eq. (40)
ds

8

% . VS, +0(e2). _ (42)

Integrating from t = o to t = Té' the change in So is given by

v
ds_ . sin ( DT, )
A5, = Vihe T ) By (1) v +-0(
m n e
R (m +nq)

2
& vthe e

- ) (43)

Ensemble averaging with respect to the magnetic fluctuations, Eq.(43) implies

v
= 2 ( the ) 4 2 g
sin —— (m+
<(ar)?> = 2282 | § <v2 (1) > RO -+0( -iriEi).
& mn
mn (m+nq)2 qzl'\’.2
(44)
Intuition suggests that the associated test-particle diffusion co-
efficient is given by
q2R2 L v
D~ = <(ar)2> =S94R 7 j sin? ( the (m+nq)te)- (45)
Te L m n (m-l-nq)2 q ,

The above formula has a number of interesting features which we now

discuss. We note that the formula is derived for a periodic system and

; ; R .
takes account of the two relevant timescales fle Te and 9 ). It 1s
the

independent of the choice of SO, as is required by physical considerations.
Furthermore, the formula only requires the specification of the spectral

functions <b2mn(r)>, and is otherwise independent of the nature of the modes.
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It is of interest to note that the formula contains the Knudsen number

v
_ ‘the Te P
Kn = T explicitly.

We first consider the limit of high collisionality (ie Kn <<1) .

In this limit we find

[
]

2 2 - 2

€ T <

L vthe e E E l:'mn (r)>
m n

AB_ 2
X,, (Braginski) <( B_r ) >, (46)

which of course approaches zero at s ™ 0. This form has been proposed

by CALLEN (1977). Next we comnsider the range qR/Vr << Te << _qR__,

v €
and obtain the khe

= g2 2 m+ng
D_L E2MRV lg”zl b (r)> 5( S ) (47)

Eq. (47) is obtained from Eq. (45) using the well-known results

I

. 2

1 sin "o X
Ll-inoo 2 = 'JT(S(J.'.')
a ox

and

ad(x)

(3)

A physically more transparent form is obtained by noting that for large

Kn

v T
. o the ‘e
sn2  Sin —-——(m+nq))
q“R \ aR s 5

v
the e

Y (m + nq)2

1]
o

if m+ng

- 0

if m+ng # 0 .

This results in

D =g ¥ (Braginskii) E ): <b;'m(r)> 8

L e m, - nq -
mn ? d
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As we show in our appendix this is exactly the result obtained by a re-
normalised Kadomtsev-Pogutse approach (Eq. (A5)). Eq. (47) is very
similar to that given in Eq. (15), except for the fact that it is appro-
priate to a periodic system. A similar argument indicates that at any
fixed value of Kn, the effects of high m, n modes are localised about

the resonant points.

Eq.(45) also suggests an upper bound to test—particle diffusion

given by,
2
9 259 <b-_(r)>
Dlmax _ E % R z E mn . (48)
e mn (m-!—nq)2

Although in general DLmax is singular at the resonant points, it leads
to a definite prediction for the temperature profile if interpreted as
a thermal diffusivity. It can be used to give a lower bound for the

central electron temperature for given heat sources and <b2 (r)>. It

2p2

ax R

is of interest to note that D involves -1 which is of the same
2p2
TR

order as our Knudsen corrected parallel thermaf diffusivity, =

Finally, we remark that any profile calculated from DL a¥ with
a suitably smooth source leads to a temperature profile which has all
the characteristics of So(r) and could indeed have been used in its

place in our surface construction.

We noted earlier the importance of distinguishing between a periodic
and an infinite system in discussing test=-particle diffusion. This
shows up even more clearly with regard to our surface construction.
For example, in an infinite system the function ¢(r) would not be

max p
do not exist. By the

well-defined and consequently S0 and Dl
same token,Eq.(47) would lead to a well-defined DL independent of

T since the sum over n would be replaced by an integral and

<b2mm(r)> is a smooth function of r. The fact that one has a diffusion

a

coefficient independent of collisions does not lead to a paradox since
in an infinite reversible system diffusion (ie irreversible behaviour)

is possible.
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5. DISCUSSION

In this section a number of specific points arising from our
interpretation of anomalous transport are discussed. We observe that
any turbulence interpretation of anomalous transport should take
account of both electrons and ions. Thus single—-fluid theories are
not satisfactory. Next we remark that collisional processes (eg.
parallel thermal conduction) play an important role even in the so-
called low collisionality regime. This follows from the fact that in
the total absence of all collisions, charged particles are permanently
attached to field lines and cannot on the average leave a mean magnetic
surface. Thus any cross—-field transport must depend on the basic
collision frequencies. In this respect there is an essential difference
between topologically closed configurations (tokamak, stellarators)
and systems with ends. In a system with ends, irreversible behaviour
(that is, particle or emergy transport) can occur through boundary
interactions. For closed systems with definite magnetic surfaces,
boundary conditions alone cannot lead to cross—field transport. Collisional

terms in the equations are therefore essential.

OQur calculation of KLe depends - crucially on three basic features.
First, the parallel electron energy transport is essentially diffusive.
] 27R) 2
Second, K, is of order 1 L2mR)

Lt 0 Tg
regime. Finally the magnetic fluctuation spectrum is taken to be given.

in the appropriate low-collisional

The frequencies of interest are between 10 and 500 kHz, and the amplitude

levels are between 10 ° and 10 “.

Next we discuss the relationship between our formula for KLe
2

Eq.(13), and the result of RECHESTER and ROSENBLUTH, Eq.(16). We define

e ~ Kne e (49)

where for our simple model (THYAGARAJA, HAAS, COOK, 1980)



o & ' (w=-0 )2
I1e ) SJ o szn (r,uw) [ — 7 ] (50)
mn °=< - 2 L = 2 2AS
=2 0% % (w, &)
with I = M
ne n a2
o
Q = - ( i ere % 2 erz \ (51)
juvis] r R / f
ma Boe a Boz
wa ¥ B, "R B,
J

w - £
In Egs.(50) and (51) we consider the limit m| - 50 for all

w
S
m, n such that C;n makes a substantial contribution to the sum in

Eq. (50), It follows that

=]

. 2 2 .2 2
lim x , = ma 1Y 8 (§ € mn (r)) J dw C o (r,w)
a+0 mn ==

w - ani (52)

It is interesting to note the structural similarity between X . and ¥ iar

given by Eq.(l6). Setting,

s //( §B )ﬁ;>> j ot
w } < 22 = dw C (r,w) w = 0 (53
mn N B on - mn mn
X, o is seen (in the limit a -+ 0) to be a sum of resonant contributions
of the dense set of surfaces m, n. Unlike X..'L‘*t X.Le depends on the
effective Doppler—shifted mode frequency immnl defined by Eq.(53). The

2
collision time disappears since we are assuming thae @11 lwmnl

a T
e
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However, X e defined in this limit by Eq.(52) is zero almost everywhere,
and according to our arguments in section 3 makes no effective contribution
to cross—field transport. This line of reasoning also predicts that the
high m, n do not contribute to I provided |&mnl << meuéén, as previously
noted (HAAS, THYAGARAJA, COOK, 1981). It is very important to remark that
this last conclusion relies heavily on the assumption that parallel energy
transport is diffusive. This assumption is strictly valid only in the
collisional regime (Kn << 1). The present status of our assumptions
regarding parallel transport in tokamaks needs to be clarified. Both

theoretical and experimental investigations are called for. The theory

must establish whether parallel transport at low collisionality is or is

not diffusive.

In our approach to transport due to an ensemble of magnetic
fluctuations, we do not need to refer explicitly to the ergodicity,
or otherwise, of field lines. Many current approaches appear to be
based on -CHIRIKOV'S (1979) well-known criterion for the occurrence
of ergodicity due to island overlap. As we have noted before, there
is no actual conflict between the conclusions deduced from our surface
construction and field line ergodicity. It is of interest to note,
however, that CHIRIKOV himself (loc. cit. p.308) remarks on the
limitations of the criterion with respect to certain numerical
investigations. We also remark that the considerations of KAM theory
do not have any direct relevance to our surface construction. This is
because the KAM estimates of ergodic and non-ergodic regions (ARNOLD
and AVEZ, 1968, and MOSER, 1978) do not apply to non-analytic functions
like So(r).

It is important to recognise that our formula for D_L (Eq. (45))
refers to a statistical ensemble of magnetic fluctuations. Hence, it
does not apply to the case of a fixed (non-random) perturbation, which
can give rise to a deformed surface. In this case the bmm(r) are
deterministic qualities and the problem is no longer a random walk; it

follows that the transport across such surfaces can only be classical.
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6. CONCLUSIONS

We have investigated very low frequency magnetic fluctuations
within our two fluid transport model and find that they do not
contribute significantly to cross field transport. Further, we have
discussed test-particle diffusion due to an ensemble of quasi-static
magnetic fluctuations and note a significant difference between periodic
(such as tokamaks) and infinite systems. Making use of a novel magnetic
surface construction, we estimate upper bounds to test-particle trans-

port in a periodic system, taking account of collisioms.
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APPENDIX

KADOMTSEV and POGUTSE derive (in our notatiom) the following formula

Kie

for x (= o ) Thus
le no

_ 6B_ 2
dk ¥ _ k2 (—— (m,n,kz))

_ 1 L “le "L \ Bg '
Xle = 72 § : / X Al
le i 2

In the above equation iie is the classical/neoclassical thermal conduction.

8By
The field fluctuation —ZL at a radius r is a function of m,n and a

B
perpendicular wave number kLF KADOMTSEV and POGUTSE show that Eq. (Al)

can be written in the form

SB 2
= = K % dk  6(ky) ( ae, ) (A2)
Xie =72 Xlle Z f ! B_

Eq.(A2) is exactly the same structure as the formula given by RECHESTER and
ROSENBLUTH (see Eq.(15)). Thus as our arguments in section 3 show such a

X cannot lead to anomalous transport.

le

Actually the same conclusion can be derived from Eq.(Al) from an even more
general point of view. Thus we can argue that the ile in Eq.(Al) should

actually be set to Kia thus deriving the following ''renormalised" equation

, 8B 2

le _ 1 dk vk ("-—)

— == L BB

Xile Y72 Z f = (A3)

2 2
ki + YkJ_

This equation can be rewritten as
enar 2
__) SB \2

ki Bo =i§:dk(r (A4)
:E:: ,/P + Ykz 2 - J/ﬂ & Bo)

Min—!
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It is easily seen that all points r such that k # 0 for any m,n, the only
solution of Eq. (A4) is Y = 0. Thus in fact it is easy to verify that

as a function of r the solution of Eq.(A4) can be written as

1 ‘SBI\Z
y (r) = 7 E fdk.l (—-B——} S (k) (AS)
m,n °

where §(k;) is unity if k; = O and vanishes otherwise. It is important to
note that this renormalised calculation does not lead to a '"resonance
broadening" of the Kronecker - & function as might have been expected. Again
Eq.(A5) leads to a oy which is non-zero only at resonant points. Thus we
conclude that the renormalised Kadomtsev-Pogutse theory predicts a R due to
field fluctuations identical in form with RECHESTER and ROSENBLUTH's

expression and with our own, Eq.(52) in a suitable limit.
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