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ABSTRACT

The coolability of solid self-heated fuel debris in water is a topic of
major interest in probabilistic safety analyses of light-water reactors.
Many experiments have been undertaken, using simulant heating methods and
simulant materials for the particulate, to investigate the dependence of
the dryout heat flux (i.e. that heating rate at which liquid coolant is
no longer able to adequately penetrate the debris bed, such that local
temperatures may rise considerably in excess of the coolant's boiling
point). In most cases the observed dryout power is consistent with a
semi-theoretical model developed by Lipinski*, and, in a slightly
different form, by Turland and Moore**. The paper considers further
developments and applications of these models. The particular topics
discussed are (i) the transient approach to dry-out for deep beds, (ii)
the effect of a gradation in particulate size (i.e. the mean particle
diameter varies with position in the bed), and (iii) the inclusion of a
dried-out layer in a one-dimensional model.

* Lipinski R.J. A model for boiling and dryout in particle beds.
NUREG/CR-2646 (1982).

* Turland B.D, and Moore, Katharine. One dimensional models of boiling
and dryout. In 'Post Accident Debris Cooling : Proceedings of the Fifth
Post Accident Heat Removal Information Exchange Meeting, 1982' (Muller u,
and Gunther C, eds), G.Braun (Karlsruhe), 192-197 (1983).

(Paper presented at International Meeting on Light-Water Reactor Severe
Accident Evaluation, Cambridge, Mass., USA, September,1983).
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1. INTRODUCTION

Particle beds of fuel debris, cladding and struc-
tural material may form in a number of circumstances
during severe accident sequences hypothesised for
light water reactors. For instance, for degraded
core accidents in which core cooling is eventually
restored, mainly solid debris in the core region
may fragment if sufficient degradation has taken
place. 1If core cooling is not restored molten
debris is likely to contact water in the lower head
and, should the vessel £ail, also in the reactor
cavity. In these circumstances the debris may be
quenched and fragmented to form solid particulate.
If there is a continuing supply of water to the
debris, and the water can percolate throughout the
debris bed the fission product heat may be removed
by boiling water and the debris is said to be cool-
able; in these circumstances, provided containment
integrity is maintained, the consequences to the
public from the accident are likely to be insigni-
ficant [1,2]

dany experiments [e.g. 3,4,5] with both water at 1
’ar and simulant coolants have been undertaken to
investigate the dryout heat flux of well-defined
self-heated particulate (dryout is said to occur
then liquid coolant is no longer able to reach some
rarts of the debris bed so that local temperatures
1ay be considerably in excess of the boiling point
'f the coolant). Along with the experiments, corre—
-ations and mathematical models for the dryout heat
‘lux have been developed. Models have the advan-
‘age that they can be validated against experiments
rith both simulant and real materials. The experi=
lents showed that when the particle diameter was
bove about lmm most of the particles remained fixed
n the bed and thus a model based on flow through
orous media was possible. Hardee and Nilson [6]
roduced a model in which the drag on each phase at
given liquid saturation was proportionmal to the
uperficial velocity (volume flux) of that phase,

nd in which liquid was drawn into the bed by gravity.

he dryout flux was calculated by maximizing an
xpression in the saturation; the dryout heat flux
as found to be independent of the depth of the
ayer. This original model was extended by the in-
orporation of drag terms that are quadratic in the
uperficial velocity rather than linear [7], and by
he introduction of a saturation-dependent pressure
ifference (the 'capillary pressure')between the
iquid and vapour phases [8,9,10]. This latter term
ives a depth dependence of the dryout heat flux.

1e fullest description of the resulting model is
iven by Lipinski [9] who shows that reasonable
jreement between the observed and predicted dryout
Jwer can be obtained for a wide range of coolants.

: should be noted that the models described in [9]
id [10] are based solely on conservation laws and
lenomenological models of flow through porous media
lat were already well-established in the literature.

Although the models have been used primarily to esti-
mate the dryout power, that of [9] also predicts the
dependence of saturation on height in the steady
state and can also be used to estimate the steady
state thickness of the boiling region in a bed which
is partially dried-out. The model development in
[10] also retained transient terms in the conserva-
tion equations, thus allowing the prediction of the
evolution of saturation with time. A summary of the
model developed in [10] with some generalisations is
given in section 2; the equations are presented in
full vector form. It seems that a one-dimensional
treatment is satisfactory for most boiling and dryout
analyses; however it appears that this is not the
case for experiments involving the quenching of hot
solid particulate [11,12] where the same equations
should apply. The higher dimensional equationms will
allow the validity of the 1-D models to be investi-
gated.

The coolability of homogeneous debris beds is now
well-understood, but experiments [e.g. 13]and model
calculations by Lipinski [9] have shown that strati-
fication of the debris or a gradation in particle
size can have adverse effects on the coolability.
This is investigated further in section 3.

For the analysis of accident sequences it is useful
to be able to follow the transient behaviour of the
debris, and calculate the steaming rate, and heat=-up
of the debris if it is uncoolable. So far it is

only possible to make detailed transient predictions
up to the onset of dryout. This is discussed in
section 4 where the limit of no capillary pressure
(usually implying large diameter particles)is examined.
Qualitative comparisons are made with the experiments
of Hofmann [14]. The inclusion of a dried-out layer
is discussed in section 5 where a simple transient
model is developed using steady state relations for
the boiling region.

2. MODEL FOR A BOILING REGION OF A SELF-HEATED
DEBRIS BED

2.1. General model equations

The model is restricted to that part of the debris
bed which remains fixed. The debris bed is charac-
terised by a porosity (&) and a permeability (K)
which may be functions of position.

Conservation of coolant mass implies
3
e 3¢ ((A-s)p, + sp,) + V.l U, + P U =0 (D)

where s is the liquid saturation, U denotes superfi-
cial velocity (volume flux per unit area), p denotes
density, and the subscripts £ and v indicate liquid

and vapour phases respectively. E

The liquid and vapour phases are assumed to be in



equilibrium at the boiling point (non=-equilibrium
models are possible but these require a further
heat transfer relationship). In this case a local
heat balance implies

v ((1-s)p ) + ?-(nvl_lv) q/hf (2)

54

is the latent heat of vaporization of the
coolant.” q is the heat source to the coolant per
unit volume of bed; for boiling and dryout calcula-
tions it is the decay heat per unit volume, but it
may also be calculated by an independent relation
from the particle temperature (e.g. in quench model-
ling).

where X
o

Equations of motion are written for the two coolant
phase separately; these are based on the Ergun
equation for a single phase and the concept of rela-
tive permeablllty [see 15 or 16 for a discussion of
flow in porous media]. Subtracting these equations
of motion one obtains

pv UVUV v, U
Vho+o0.01d |w |- Ze [1.200 diy |
o (1-e)v — (1-e)v, ~&
v v '8
=K [g(aﬂ-ﬂv)g - (e, - PR)] (3

where P denotes pressure, g the acceleration due to
gravity, d the mean local particle diameter, ¢ the
relative permeability and W the pore velocity.

The pressure in the two phases are different, but
related by the capillary pressure (PC):

' 1

a(e/K)* J(s)

P -P = (4)

e v e
where ¢ is the surface tension and J(s) is a dimen-
sionless function of saturation (the Leverett func-—

tion).

2.2 One-dimensional form and dimensionless groups

For most applications (see above) the one-dimensiomal
form of the equations is sufficient. Furthermore,
the use of non-dimensional groups allows ome to dis-
tinguish the important processes in a given experl—
ment or application. To form the non-dimensionaliza-
tion a typical heat flux density ¢D-Ko(p1-pv)gkfg/vv

is defined (this is just the dryout heat flux from
the simplified form of the Hardee-Nilson model);
heights are scaled accordingly: £ = a, z/¢ . The o
subscript denotes a reference value.

Equations (1) = (4) can then be written in the form

iy o3, -4
5t 8 Qo )
v, + v, =+ (1-80) [Sa(eDrdel /g, )
Q
v, o Af|v| Y +Af|V£|
2 1-s 2, Bs
f by Cf ¢£
_1. EI df _EdIds M
;24T TS EE
for one-dimensional problems. T = qot/(sva),f = d/d

gives the variation of mean particle diameter with

height, and v° is the(dimensionless) net flow of
fluid into the botteom of the bed.

The dimensionless groups are B = v, /u 5

Cc = pv\)v/Ep v ), A = 2 .0l d ¢ /((1 t-:)p v ;\fo}
= (sKo)-cqolfg/(vv¢o).

importance of the quadratic drag term, whilst E is

a measure of the importance of capillary pressure.

For water at 1 bar B = 0.0144 and C = 0.0434. Assum-
ing the Kozeny form for the relative permeability

A is a measure of the

[16] and € = 0.42, for d_ = lmm, & = 1.28MW m 2,
A= 0.81 and E = 9x10 8 °q_; i€ d® = 3mm, & =11.5MW
'E = 21.8 and E = 3.4 ﬁ 107%q there q_ 1is in

Wm 5 A typlcal value of q_ for decay heal condi-

tions is 2 x 108 (Wm™3). At%100 bar values of @
are multiplied by 23.9, of A by 23.6 and of E by
0.013.

Various forms of the phenomenological functions

,¢ J are available in the literature. For
L¥1ustrat1ve calculations the 51mp11f1ed forms of
the relative permeability functions ¢ 1 - s and
¢, = s where N = 1 (simple separated flow model)
or N = 3 (better fit to data [15]) are used. The
Leverett function used is

J(s) = 1.5 - 9.2s + 88s2/3 - 880s3/27 (0<s< 0.3)
= 0.62 - 0.4s (0.3 <5 <0.8)
= 14.7 - 53.2s + 6652 - 555°/2 (0.8 <5 < 1)
which is based on data in [15].

3. STRATIFIED AND GRADED BEDS

Experiments [e.g. 13] have highlighted the possible
adverse effects of a layer of fine particulate over-
lying a coarse layer; the dryout heat flux can be
lower than that of the fine particulate alome. The
steady state version of the model described above
has been used for a number of sample calculatioms
based on the parameters used in [13] for both
layered and graded beds.

3.1,

For 1ayered beds an interface condition is required
this is obtained by integrating equation [7] over

a region of thickness ¢ spannlng the interface.
Taking the limit as the region of integration is
decreased we obtain

Two—-layered beds

U
E [f] =0 (8) (8)

where [J/f] denotes the jump across the interface.
For a continuum model to be valid § should cover
many particles, thus & >> dq_/¢ So provided that
d << E ¢ /q , equation (8) 1mp1ges

FJ(SC) = J(sf) (9)
where F is the ratio of the diameter of the fine
particles to that of the coarse. s_and s denote

the limits of the saturation on the coarse and fine
sides of the interface. Figure 1 shows a plot of

s. as a function of s and F. It is seen that large
jumps in saturation can occur.

In the limit E + O equation (9) is no longer appli-
cable. A jump in saturation still occurs, but this
is because the saturation at any height is now
determined uniquely by the heat flux at that height
and the local bed properties. If the latter change
discontinuously so must the saturation. In the

E + 0 limit the dryout heat flux of a lower coarse



layer and an upper finer layer is just that of the
finer layer irrespective of the distribution of
internal heating.

Returning now to E non-zero, Figure 2_shows example
calculationsfor uniform q = 2 x 105Wm ? for a coarse
layer with particle diameter 0.004m, and a fine
layer with particle diameter 0.0012m(the particle
diameters chosen here have no significance other
than that they were used in [13]). The purpose of
Figure 2 is to identify those combinations of coarse
and fine layer thickness that are just coolable by
boiling. First, a series of steady-state plots
(solid lines) of saturation against height are con-
structed for fine layers of varying thickness,
including cases which would have dried-out regions
(i.e. the saturation is zero at finite height).

Secondly the steady-state saturation profile for the
deepest layer of coarse particles that can be cooled
without dryout is comstructed. Part of this is
illustrated by the line consisting of dashes from
the origin. We use this line which shows potential
values of s when the coarse layer is just coolable
by boiling,cto construct a further curve using
equation (9) which shows the possible values of
liquid saturation at the bottom of the fine layer
(sf); this is shown as a chained line. Again this
cutve applies to the case when the coarse layer is
just coolable by boiling.

As the heat flux in the bed at any height is pro-
portional to the height, and the heat flux must be
continuous at the interface, the diagram may be used
to determine which combinations of coarse and fine
layers can just be cooled by boiling. This is
achieved in the following way (mnote that the diapram
is for a fixed volumetric heating rate):

A depth of coarse layer z_is chosen, and the
values of s and s, corresponding to this depth
are found. "The saguration profile for the fine
layer (solid line) is then followed from

(s., z ) until it intercepts the line s = 1 at
he1ghtcz , say, which is the total depth of the
layer that is just coolable by boiling. The
saturation profile for this case simply follows
the dashed line up to the interface at (s_, z )
and then the solid line (not necessarily Tllu§-

trated) from (sf, zc) to (s = 1, zt).

‘t is seen that there is a range of values of z

‘rom O to almost z_ (the depth of fines alone tHat
‘an be just cooled by boiling) for which the total
.epth of the two layers that is just coolable by
woiling is less than z_.. Whereas z. = 0.37m, the
inimum value of z_ = 6.13m, which oGceurs for

o = 0.12m. Simildr diagrams can be drawn for any
ombination of particle sizes and volumetric heating
ate., Because of the shape of the capillary pressure
unction all such systems will show a similar
ehaviour.

2. Comparison calculations for layered and graded
beds

hen the particles are graded in height there are no
umps in saturation. If the mean particle diameter
ecreases with height one obtains, as noted by
ipinski [9], a term on the RHS of equatiom (7) that
ends to impede the flow. However the total capil-
ary pressure gradient is on average still favour-—
ble to drawing liquid into the bed, so that apart
rom the mal-distribution of the capillary pressure
radient across the bed one would expect the dryout
2at flux of the graded bed to be at least o (the

dryout heat flux of a uniform debris bed consisting
of the fine top layer particles only in the limit
when capillary forces become negligible).

Example calculations for water at 1 bar are shown in
Figure 3. These show the variation in dryout heat
flux with bed height for the following debris bed
configurations

(1) 0.004m particles (coarse) only

(ii) 0.0012m particles (fine) only
(iii) 0.06m coarse superposed by a depth of fine
particles
(iv) a uniform gradient in particle diameter

between coarse particles at the bottom and
fine particles at the top

(v) 0.06m coarse layer superposed by a uniform
gradient in particle diameter from coarse
to fine

as (iii) but with no heating in the fine
layer. This corresponds more closely to
the effect of the heating method used in
[13].

In all cases € = 0.42 throughout the bed. The limits
as the bed depth is increased in (i) and (ii) are
denoted @C and ¢F'

It is seen that the graded beds considered do have
dryout heat fluxes lying between ¢_ and that of a
similar bed comsisting of fine pargicles alone,
except where the gradation is very gradual in which
case the dryout heat flux marginally exceeds that of
the fine bed of the same depth. The reduction in
dryout heat flux is greater when the gradatiom is
confined to the upper part of the bed.

(vi)

The two layer beds (iii) and (vi) show the much
greater reduction when there is a discontinuity

in particle size that forces a jump in saturation.
The lowest dryout heat fluxes are found for the case
where the heating is concentrated in the lower coarse
layer (vi), for which a limiting heat flux, %_., as
the depth of fines is increased, of less than one-
half that of the fines alone is predicted.

A detailed analysis of equation (7), in particular
of the locations of the zeros of ds/d&, shows that
%, can be at most ¢_,. For the particular coolant
and bed data considered in Figure 3, the diameter
of the fine particles would have to be at least
3.1lmm, when the diameter of the coarse particles is
4mm, for ¢5 to equal @F.

The results obtained for (vi) agree qualitatively
with the experimental results [13], but the values
of the limit on the dryout heat flux differ by

about a factor of 5, compared with a factor of about
2, for cases (i) and (ii). The additional reduction
may be due to a reduction in porosity close to the
interface or may suggest the need to modify the
capillary pressure function. Both the experimental
and the calculated results become reasonably close
to the respective limits when the depth of unheated
particles is about 20mm.

4. THE APPROACH TO DRYOUT WHEN CAPILLARY PRESSURE
EFFECTS ARE SMALL

4.1 General considerations

We now consider the transient behaviour predicted by
the boiling model. It was seen in Section 2.2 that
for millimetre-sized particles in water the parameter
determining the importance of capillary pressure, E,



is small. Equations (5) to (7) usually give a
second order quasi-linear partial differential equa-
tion for s of parabolic form. However when capil-
lary pressure effects are neglected (E = 0) this
reduces to first order, and becomes hyperbolic.
this case the method of characteristics (see e.g.
[17] may be used to obtain solutions.

In

The characteristic equations are found by consider-—

ing V_ and V, to be functions of s and §. For con-
stant qo and £ = 1 they are
dg ds -
5 8 gq and T %3 1
2
oo |2 L L .
where 8 v, [Bs(¢ ) + Alkvlas\(l_s)¢ )]
v v
Bla) -4 53]
s ¢E s swz
_1 241V | 1 2A1V, |
-k [0 2] e 2]

-(1 - BC)

and g3 C¢£

2A1v, |
5]

It may also be shown that

o
Vv =E =
along a characteristic where 50 is the constant of
integration. If the characteristics start from the
bottom of the bed Eo = 0; otherwise £ 1is determined
by the initial conditioms.

Solutions
following

1

of the characteristic equations have the
properties

s decreases monotonically along a
characteristic

(ii) characteristics starting at the bottom

of the bed at time t_ all satisfy a single
equation H(E, T - 7 =0 for T >T

Thus in the region covered by these
characteristics 3s/3t = 0O

(iii) the only boundary cendition acceptable at
E = 0 (bottom of the bed) is s =1

if the bed is initially saturated with
liquid a top boundary condition is not
required during the early part of the
transient, however in some circumstances
if the bed is uncoolable a top boundary
condition will be required at some stage

(iv)

(v) 1if the heating rate changes at t = 0 or
the bed is initially fully saturated
there will be discontinuities in the
partial derivatives of liquid saturation
across the characteristic passing through

£ =1 = 0.

When E is small, but non-zero, boundary layer
analysis shows that instead of the discontinuity (v,
above) there is a thin layer around the character-
istic across which the partial derivatives change
very rapidly. Further if E is non-zero an upper
boundary condition is always required. This matches
on to the E = 0 solution through a boundary layer at
the top of the bed.

When a top boundary condition is required for E = O
(iv, above) it may be obtained by analysis of the
boundary layer that does form at the top of the bed

in the case of small non-zero E; this boundary
layer matches the solution of the hyperbolic equa-
tions to the top boundary condition (usually s = 1).
However the limiting condition for E + O is not

S =1 (see below).

To pursue the analysis of solutions when E = 0
further, three cases must be considered:

(i) bed coolable
(ii) bed uncoolable and vo 3 vk =
BC (V1 + 4A = 1)/2A
(iii) bed uncoolable and v9 < yx

4.2.

As the bed is coolable a steady state solution exists
It is achieved in a finite time, satisfies s = 1 at
the bottom of the bed, and no upper boundary condi-
tion is required.

4.3 Bed uncoolable and Vaa v

Characteristics are such that E increases monotoni-
cally with . Dryout is assumed to occur when and
where s = 0 is first reached. If fluid inertia
effects are negligible (A = 0) 3s/3E is zero in the
upper part of the bed and dryout first occurs in the
region & > v/ (BC).

4.4 Bed uncoolable and v0 < yx

The characteristic through £ = T = O has a turning
point at which dE/dT = 0, occurring at £ = Ep < &
where £ 1is the non-dimensional bed depth ard §
corresponds to the maximum depth of a stable boiling
layer. As characteristics starting from £ = 0 and
some T > O are just translations, along the T axis, a
the characteristic passing through £ = T = O the
solution for s will break down, through characteri-
stics crossing, before s has fallen to zero. This
breakdown may be resolved by introducing a discon-
tinuity in saturation, mathematically analagous to a
shock. It appears at £, and propagates downwards;
below it the saturation profile is identical to the
steady state solution that would have been obtained
if the bed had been sufficiently shallow to be cool-
able; above it the saturation is lower and decreas-
ing with time. If Y is the (non-dimensional)
position of the shock at (non-dimensional) time T,
the position of the interface is given by

ar _ _ (%]
dar = [s ]

Bed coolable

m'

where [ ] are used to denote the jump across the
interface.

To continue the analysis further, attention is
restricted to A = 0 (inertia effects negligible).

Tt is found that three possible situations arise,
two of these being illustrated in Figure 4, in which
B = 0.0l44, C = 0,0434 (for water at 1 bar) ¥ =1
and V@ = 0. In Figure 4a the region in which dryout
starts extends from the shock to the top of the bed
(situation A), but in Figure 4b the region in which
dryout starts, although still having its lowest
point on the shock, does not extend to the top of
the bed (situation B). The third situation arises
for a shallower, but still uncoolable bed, in which
dryout initially occurs at a point on the shock,
rather than over a region of the bed (situation C).

In situation A no boundary condition is ever require
at the top of the bed. In the other two situations
there exists a characteristic for which the line

£ =E, in &, T space, is tangential. Let the value
of s 3nd T where this characteristic touches the top



of the bed be s_ and T_ respectively. No top
boundary condition is required while T < T However
once T > T a top boundary condition is required.

By considering the boundary layer at the top of the
bed when E is small but non-zero it can be shown that

the boundary condition required when E = 0 is

s =5 at £

=& when T > T .
m m m

Further, for situations A and B the (non-dimensional)
time to dryout is independent of the (non-dimensional)
bed depth and the efflux through the bottom of the
bed, and is the same as for the case described in
section 4.3, The region in which dryout first occurs
is, however, a function of the efflux through the
bottom of the bed. For situation C the (non-
dimensional) time to dryout increases and the
(non-dimensional) position of dryout decreases as the
(non-dimensional) bed depth is reduced.

G5 Comparison with experiments and other
theoretical work

Compared with the number of experimental studies of
dryout heat fluxes, relatively little work has been
done on time dependent phenomena in debris beds as
they approach dryout.

iowever, in one set of experiments the approach to
Iryout has been observed [14]. Before dryout
sccurred an interface was seen. Below this inter-
‘ace there was heavily boiling liquid, but above it
:he liquid saturation was low. The interface moved
lown the bed with time. These observations are
\qualitatively) explained by the results given in
iection 3.3, where the shock-like discontinuity in
-iquid saturation is the model analogue of the
:xperimentally observed interface. Results in
‘ection 4.4 also (qualitatively) explain the observed
ocations of the onset of dryout.

iergeron [18] has also developed a transient model.
'he model does not include capillary pressure
ffects and also neglects some small terms included
n the equations developed here. The results dis-
ussed above are in general agreement with [18],
ifferences being attributable to the small terms
hat we include but Bergeron neglects.

THE INCLUSION OF A DRIED-OUT LAYER

s noted in the introduction the models described

o far cannot be applied for the whole region once
ryout has occurred. However, the equatlons given

n section 2 should still apply to any region of the
ed in which there is two phase coolant flow.

o L Steady state considerations

ipinski [9] argues that, in the steady state, the

2at flux is a known function of height, so the
aturation profiles may be calculated by integrating
ownwards from the top of the bed. At some height

1e condition s = 0 may be reached, and according to
ipinski this gives the equlllbrlum thickness of the
>iling region. Below this, in the dried-out region,
:at transfer is predominantly by conduction. At the
iterface between the dried-out reglon and the boiling
:gion this conducted heat flux is used to boil liquid
olant and produce a flux of vapour through the
»iling region. Because s = O at the interface in the
'del calculations, it is possible that vaporisation
iy spread over a finite thickness of the bed;

wever the saturation profiles for 1.2mm diameter
irticles in Figure 2 do show that non-neglible values
! s occur close to the bottom of the beiling layer.

Attempts to include a finite vaporisation layer in
the model analogous to the condensation layer des-
scribed in [19] have not proved successful because
of the unphysical forms required for the heat trans-—
fer coefficient between the heated particles (with
vapour at the particles' temperature) and the liquid
assumed to be at the boiling point. Once s > 0 the
model would require that at least all the local
volumetric heating is taken up by the liquid. Below
we use the interface description based on Lipinski's
work.

The steady-state maximum temperature T in the bed

can be found using
T =Ty +4 zE/Zke

where T, is the boiling point of water, k_is the
effective thermal conductivity of the bed and z

is the depth of the dried-out region. An adiabatic
base has been assumed here, and in the calculations
described below. At temperatures of interest the
conductivity of the debris is ~ 3 W m ! k7! whilst
that of steam at 1 bar is 0.025 Wm~ K~! at 100 C,
but 0.135 Wm™" K~! at 1000 C. Limits on the bed
conductivity can be found [20]; at 1000 C these
are 0.5 Wm > K' ¢ k_g 1.5 Wm? K}, where

€ = 0.42 has been assumed. Because of the lack of
connectivity of the more conductive phase k_1is
likely to lie between the lower limit and the
estimate of effective medium theory [20] which in
this case is 1.1 Wm™' K~ Taking q = 2 x 10° W m™®
(as assumed for Figure 2 and used in all calcula-
tions below) and ke =1Wm! K™ it is found that
unless z_ is less fhan 0.05m the maximum bed temp-
erature 1n the steady-state will reach the melting
point of the fuel.

5.2, Transient Modelling

The heat-up rate of debris without any cooling is
sxmply given by q/(p cd(l - g)), where the sub=-
script d here denutes debris propertles Taking

p, = 10% kg m™? and ¢ 600 J kg™! K71, this is
0957 ¢ s71. Thus to feat the bed from 100 G to the
melting point of the debris would take over 4000s.
One can compare this with the time required to set—up
a steady-state boiling profile. Using Figure 4 it is
seen that dryout is reached when 1, the non-
dimensional time is about 80; this corresponds for
water at 1 bar to a time of 23s. At this time the
steady-state profile with s = 1 at the top of the
bed and s = 0 at the bottom of the boiling layer has
not been achieved, and the modelling of this transi-
tion is incomplete; however it is likely to occur
on a similar timescale. Furtker adjustments to the
saturation profile as the heat flux from the dried-
out zone varies are also likely to occur om much
shorter timescales than that for the heat—up of the
dried-out zone. Thus one may assume steady state
behaviour in the boiling region, but consider trans-
ient behaviour in the dried-out region.

For a given bed it is easiest to use an approximate
analytic form for the heat transfer characteristics
of the boiling region. One such form which reflects
the constant gravity head and the dependence on
thickness of the capillary pressure term is

o Zc
¢=¢'(1+z—)
b

where ¢ is the heat flux through the top of the
layer, z, is the thickness of the boiling region,
and ¢° and z® are constants to be fitted to the

(10)



detailed calculations. The magnitude of 2% is
determined by the importance of the capillary
pressure: 1if E = O then z& = 0 and indicates that
in this limit the boiling region would vanish if the
heat flux to be removed is greater than 3°. For

E > 0, z  1is also greater than zero so the boiling
region has a finite thickness. The form of equation
(10) is most appropriate for A << 1, and other
functional forms may give better fits; however for
the fine particles (d = 1.2 x 1073m) of Figure 2

(A = 1.4) the values ¢° = 6.54 x 10° W m 2 and 25 =
4.25 x 107%m do fit the data for ¢ from 7.5 X

10° W w2 (dryout) to = 4 x 105 W m™2 to better than
107%. These values are used below.

Assuming that the debris was quenched initially and
that the final bed is not coolable by boiling because
of the ensuing accumulation of debris, there will be
no heat flux from the dried-out region to the boiling
region at the start of the transient (t = 0). Thus
at t =0, 2 = q 2z, and the boiling layer has the same
depth as the bed with the same q that would just be
coolable by boiling. ¢ gradually increases as the
conduction profile in the bed builds up. The trans-—
ient equation for temperature is

a - e)pd 4 %% = %z (ké %%) +.q 3 z<h—zb (11)
with boundary conditions 3T/8z = O if the lowest
surface is adiabatic, and - kéBTfaz) =¢ - q z_ at
z=h-z_, where h is the height of the bed. Equations
(10) and (11) form a coupled system of equations

that determine 2, - The solution of equation (2)
gives
-1 21 - qlict/ (o e, (1-e))? (12)
23z e’ Mdd
z=h—zb

- - ., 32
where G(t) ~ 1 for t < (Dd cd(l e) (h-z,) /ke)'
Substituting (12) into (10) implies

\ 3
(ket/(pd/cd(l—e));“c(t) +qz = @"(1 + %b) (13)

Taking G(t) = 1 in the example calculations it is
found that 2y = 0.34 at £ = 0. This is only reduced
to z, = 0.31 at t = 4200s, the time at which melting
of tBe debris would be expected to start, irrespect—
ive of the value of h provided it is greater than

0.40m to satisfy the condition on G(t).

Thus while the debris remains solid the boiling layer
is 1likely to have a similar thickness to that of the
depth of bed which is just coolable by boiling for
the same heating rate, not that predicted by the
steady-state model. The bulk of the heat generated
in the dried-out zone raises the temperature of that
region and is not used to generate steam. Thus the
steaming rate is only marginally enhanced over that
from the bed which is just coolable. The transient
model described here can be extended for other
boundary conditions provided there is no gas genera-—
tion from below (e.g. because of concrete decomposi-
tion).

CONCLUSIONS

In this paper we have described various developments
and applications of the model for boiling and dryout
in debris beds based on conservation laws and the
phenomenological equations for flow in a porous
media. These include

(i) the equations being developed in full
vector form for variable particle diameter
and volumetric heating rate,

(ii) an investigation of the conditioms in which
capillary effects determine the jumps in
gaturation in a multi-layered bed,

(iii) a detailéd comsideration of why the dryout
heat flux from a two-layered bed may be
considerably less than that of particles of
the finest layer alone,

(iv) a comparison that shows that gradations in
particle size have much less effect in
reducing dryout heat fluxes than strati-
fications. The depression of dryout heat
flux is largest for the heating method used
in [13],

(v) the use of characteristics to predict the
dependence of saturation on time for beds
in which capillary effects are small. In
certain circumstances in which the bed
eventually dries out, a discontinuity in
saturation arises before dryout occurs, as
observed in Hofmann's experiments [14],

(vi) an investigation which showed there were
difficulties in introducing a vaporisation
layer analogous to the condensation layer
previously used by the authors, and

(vii) the development of a simple transient model
for the post-dryout behaviour of a bed of
initially quenched particles. This showed
that while the debris is still solid, most
of the heat generated in the dried-out zome
raises the local temperature; the thicknes
of the boiling zone is close to the bed
depth that is just coolable by boiling,
rather than that predicted by the steady-
state model.
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Figure 1. Two-Layered Bed.
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Figure 3s Dryout Heat Fluxes.
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Fig 4 The onset of dryout in the no—capillary
7] pressure limit. The bed is assummed
fully saturated at T = 0. The solid
— lines denote characteristiecs (all those
shown start close to the bottom of the
bed at T = 0). The dotted line denotes
i the top of the bed (£ = 2 in Fig 44 and
£ = 0.92 in Fig 4B). The arrow denotes
that the characteristics in the region to
the right are merely translations of that
] L ] ] | | | l drawn. The discontinuity in saturation
0 20 40 60 80 starts at point X and propagates along

T the broken line. The bed dries out
initially over the region indicated by
the hatching. The calculations are for
water at 1 bar, with A = v2 =0 and ¥ = 1.
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