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ABSTRACT

A linear stability analysis of the RSF, algorithm, as published
in the Journal of Computational FPhysics [1] is presented. It is
shown that the algorithm has weak stability properties which are

likely to lead to nonphysical effects dominating computational
results.
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1. INTRODUCTION

RSF [1] is a spectral code which follows the time evolution

of the Reduced MHD equations [2]. 1Its numerical results have been
central to much development of theory of non-linear tearing modes
and disruptions in Tokamaks ([2,3] and references therein). RSF
has shown quantitatively different behaviour of plasma variables as
magnetic Reynolds numbers are raised to values (S ~ 106) which are
beyond the capabilities of existing‘finite difference codes.
The purpose of this note is to indicate that in reference [1]
(1) the algorithm becomes unconditionally unstable at large S
(i1) the stability criterion given is necessary but not sufficient
i.e. timesteps chosen using the criterion may give numerical
instability
(iii) the algorithm is unconditionally unstable to flows perpendicular
to the magnetic field.
A stability diagram showing the range of stable operating parameters

in RSF is given.

The results presented here refer to the published algorithm .
The algorithm'implemented in the RSF program which was used to study
tearing mode activity [2,3] differs from the published one [6]. We present

a detailed analysis of that algorithm in a subsequent paper [5].



2. MODEL EQUATTONS

The large aspect ratio limit orders toroidal curvature out
of the equations. Consequently, the reduced equations may be
written in polar (r, 8, z) or cartesian (%, ¥, 2) coordinates with

z corresponding to the :toroidal direction as:-
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The definition of variables and operators follows [1].
With appropriate choice of z scale length, the magnetic field is
related to the flux function by
B=2x b+ 2

Equations (1)-(5) describe an incompressible magnetofluid
where poloidal currents and toroidal magnetic field variations are negli-
gible. Energy flows into the system through the wall Poynting
flux, is stored in magnetic and bulk flow energy and flows out by
ohmic dissipation. The model equations describe Alfvén waves and
tearing modes.

A dispersion relation may be obtained by linearising Eqs.
(1)-(5) about a uniform slab equilibrium in cartesian coordinates
with n=1, jo = Uo =0, §° = constant, Vv_ = constant, and taking

a disturbance ~ expli{wt - 5.3)]:—
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Equations (6)-(7) differ from the MHD results only in that k2
is replaced by its projection sz_ on the poloidal plane. The
modification of the Alfvén wave eigenfrequencies by the space-
time lattice is the source of the numerical instabilities listed

in Section 1.



3. DISCRETE APPROXIMATION

Equations (1)-(5) are discretised in polar coordinates (r, 0, 2)
in RSF by using a Galerkin method on a set of helical trial
functions ~ expli(m® - nz)], second order finite differences
to treat radial derivatives and two step second order accurate
time discretisation to deal with time derivatives [11].

The algebraic equations to be solved in advancing the system

from time t to time t + At are

gt * At/2 _ ut + %E_SE (8)
wt + At/2  _ q,t s At si % n‘(jt + At/2 _ jt)] (9)
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where Su and S, are the right hand sides of Eqs. (1) and (2)

v
with derivatives replaced by their fourier mode/finite difference
approximations. Implicit treatment of the Ohmic dissipation in
Equation (9) has a stabilizing effect which offsets partially

the destabilizing influence of explicit advection terms.



4. STABILITY ANALYSIS

To investigate the linear stability properties of the discrete
algebraic plasma model, we consider a uniform magnetised plasma
in slab geometry. We take a mesh in the y direction and fourier
modes in the x and z direction. This may be viewed as a local
approximation to the cylindrical geometry, where r, 6 and z map
respectively to y, x and z.

Equilibria are defined by selecting Uo’ Eo' jo’ % ¢, such
that Ss = S; 0. Dispersion and stability is analysed in the
same manner as for the continuum case: Fourier analysing the
linearised forms of Eqs. (8) - (11) and-eliminating reference

to the half timelevels gives an equation of the form

ﬁ"t + At _ [::,'It '
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for the perturbed variables ﬁ, @. The amplification matrix A
must have eigenvalues in the unit circle for stability [4, Chapter 4].

The dispersion relation for the numerical plasma model is
det (A - A1) =0 (13)
where A = exp[- iwAt],

Solving Eq. (13) for’ the case where the plasma is at

rest in the mesh frame of reference gives

A = [1 - 2g2(1 + ag) % Zg[_'az(g2 + 1)-2 - lﬁi] (14)
(1 + 2ag)
where
2
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and E and Kl are the fourier transforms of the discretised V and V-L

operators, respectively.



Numerically stable timesteps are those for which lxl <1,
Accurately represented wavelengths are those for which
iw' + (A - 1)/At is small, where w' is given by equations (6)

and (7).

4.1 LARGE S LIMIT

Jn the limit S -+ =, equation (14) reduces to A =1 - Zgz + i2g
giving
[A] =1+ hga]% >1 for g # 0

i.e. the algorithm is unconditionally wnstable at large S

4.2 FINITE S, ZERO FLOW

The curve a(g2 + 1) = 1 divides the g/a parameter space into
regions where A is real (evanscent roots) and A is complex
(oscillatory roots). The stability limit in the two instances

becomes

~g4 + 2ag3 + gz - 1 < 0; X real
g - ag - a < 0; A complex

The =iblished stability criterion [1] is g < 1: This criterion
is satisfied by equations (15) only at the point a = } i.e, The

published ariterion is #idcessdry but wot sufficient for stability.
4.3 NON-ZERO FLOW, K.B_ = O

Non-zero. flow does not simply Doppler shift frequencies as
in the continuum case. It allows the possibility of further
instabilities. Extending Eq. (14) to include uniform flow,:

v >is straightforward but tedious. For the special case

o
g.@o = 0, the vorticity (U) and flux (¢) equations decouple, and

the vorticity equation gives the stability criterion
4
1+ 4{(1(.%)-3.5] <1 (16)

i.e. the scheme is unconditionally unstable to flows for wavenumbers

such that E.@O = 0.



4.4 GENERAL CASE

Figure 1 summarises the region of the g-a plane for stable
operation for a range of flow velocity parameters b = (E.YO)IS(E.go).
Areas under the curves are regions of stability for given b. The
curve for b = 0 corresponds to equality in expressions (15).
Inspection of figure 1 reveals more stringent timestep limitations
at large S (small a) and at small K.B (large a), and a rapid

collapse of the stability region with increasing flow velocity.



5. FINAL REMARKS

The numerical stability of RSF .dépends: on the
timestep, radial mesh spacing and the values of (m,n) allowed
in the simulation. Thus, despite the weak stability properties
of the algorithm, it is possible to initialise computations with
RSF which are numerically stable. However, as the computations
progress, it becomes increasingly likely that the evolution of
§ and v, will move some of the permitted set of points in the g-a
plane into the unstable regions shown on Fig. 1.

To avoid confusing numerical and physical effects in the result
from RSF there are three complementary actions (i) maintain a
running check on energy comservation (ii) monitor the position
of the set of points in the (g-a) plane and (iii) perform
convergence checks for different timesteps. In ref [1], it is
reported that checks (i) and (iii) have been made. A further de-
sirable step is to modify the algorithm to improve the stability

properties.

H.R.Hicks of ORNL has kindly provided us with a copy of RSF
to enable us to test experimentally the results of our analysis.
We give in a separate paper [5] further analysis and computational
results concerning the simulation of tearing modes. We note here
that the computer code showed better stability than our inmitial
analysis suggested; this we have traced to differences between
the published algorithm and the coded algorithm. The algorithm
coded in the program has the first two terms on the right hand side
of Eq. (24), ref.[1l] evaluated at timelevel t + At/2 rather
than at timelevel t; this change ameliorates but does not eliminate

numerical difficulties with the algorithm [5].
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Fig.1 Stability boundaries in the g-a plane for a range of values of b. g is the stability parameter, a is the
ratio of physical wave damping to frequency and b is the ratio of the respective components of flow
velocity and wave velocity parallel to wavenumber, K. Numbers labelling the curves are values of b, and
regions of stability lie below the curve. The dashed line, g = 1 is the published stability criterion [1].
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