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Abstract

The invariance properties of the underlying equations under scale
transformations provide information about plasma transport. By applying
this argument to specific models, in which the magnetic configuration and
the physical mechanism of transport are identified, this information can
be sufficient to completely determine the transport coefficients in a

turbulent plasma. 1In this way the electron energy transport due to

resistive fluid turbulence is examined in Tokamak and Reverse Field Pinch
configurations. The resulting confinement times have interesting

implications for the performance of the two systems.
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1 Introduction

One of the most important problems in fusion research is that of
anomalous energy loss in toroidal confinement systems. This determines
the relation between overall energy confinement time and the parameters of
the system -the so-called "scaling law" for confinement. Usually, one
attempts to calculate anomalous transport by identifying some linear
instability, estimating its saturated amplitude and deducing the transport
corresponding to this saturated state. Each of these steps introduces
uncertainties and in reference /1/ we introduced an alternative approach
to the problem based only on the invariance properties of the equations
describing the plasma. In this paper we show how this alternative method
can be used to determine the losses arising from turbulence in a resistive

fluid plasma. The technique can also be applied to other forms of

turbulence.

The previous work /1/ showed that the invariance properties of the
basic plasma equations under scale transformations led to constraints on
the possible confinement laws. Unfortunately, in that application, these
constraints gave no information about purely geometric factors such as
aspect ratio and they became less severe, and therefore less useful, as
more physical processes were introduced into the basic model. [In these
respects the technigue resembled dimensional analysis.] In the present
work these limitations are overcome by applying the argument not to the
basic plasma equations but to more specific models which already
incorporate some knowledge of the system or which refer to a specific

physical mechanism for turbulence and energy loss.



Thus in section 2 we introduce the tokamak limit into the resistive
fluid equations; then the invariance requirements fix the manner in which
aspect ratio enters the confinement law - geometrical information not
available from dimensional analysis. In section 3 we incorporate the
concept that transport is governed by turbulent fluctuations of short
wavelength perpendicular to the magnetic field. This leads to a local
transport coefficient and introduces a second scale-length detached from
the plasma radius. This permits a second application of the invariance
argument which specifies the dependence of the transport coefficient on
the magnetic Reynolds number S and determines the manner in which the
safety factor g - another geometrical quantity - enters. Finally in
this section, we show that when detailed characteristics of the turbulence
are incorporated in the model then the transport coefficient is completely

determined by the invariance principle.

In section 4 we extend the argument to the important case of
anomalous losses along stochastic magnetic field lines in a tokamak - a
process lying outside the resistive fluid model. 1In section 5 we carry
out a similar analysis for the reverse field pinch. In section 6, we
discuss the implications of these results for tokamak and reverse field

pinch confinement.

2 Scale Invariance in the Tokamak Limit

Strauss /2/ has demonstrated the simplification of the resistive mhd

equations for a tokamak in the large-aspect-ratio limit (e = a/R << 1).



The simplified, or 'reduced', tokamak equations follow from the ordering
(a/R) ~ (B /B,) ~ (p/Btz) where B, and B_ are poloidal and toroidal
magnetic fields and p 1is plasma pressure. In a coordinate system
r,8,C, where r,8 are polar coordinates in the poloidal plane (so that
R =Ry - r cos 6) and ¢ 1is the toroidal angle, the poloidal field and

the fluid velocity V_are expressed in terms of stream functions ¢ and
P

¥. Then

= (1)

where B0 is the toroidal field at R = R0 and e is a unit toroidal

vector.

The flux function ¥ evolves through the induction equation

R
oY . - 0. 2
Bt By 2r¥e + nVl ¥ &
where
ey = 03 .
RV ER T TR (3)

and 7n 1is the resistivity. The velocity stream function satisfies the
vorticity egquation
e.V x (R2vp)

o = =(BeV) V2 = = (4)
i R0
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where p 1is the density and

e 3t + ZP-V (5)

The set of reduced equations is closed by the equation for convection of

pressure

Equations (1)-(6) provide a model for a large aspect ratio tokamak
which we will use for our invesigations of anomalous transport. Following
reference /1/ we first seek all the scale transformations of dependent and
independent variables which leave the full set of equations invariant.

Then the confinement law must transform appropriately under such

tranformations.

The scale transformations which leave (1)=(6) invariant are



Al t » Alt' ¢ > A1-1¢1 n-> ll_lﬂ, p > 7\129

Ay By > ABy, 6> M6 T AY, p>A,%, p oA
(7)

By a > A, ¢ > A%, ¥ A%Y, noag%n, p oAy
A R0 > RQRO’ p »> Kh'zp, p =+ Kk‘lp

Under these transformations the confinement time <t scales as hl so
that if it is to be expressed as a function of the plasma parameters p,
By, mand p, together with geometrical parameters a, Rj and g = aBO/ROBP

(the safety factor), then it must be of the form

az P RU pl/2R0ﬂ
s p(—— , — , q) (8)
1 302 a Boa2

Introducing f = 2p/B02 and defining the magnetic Reynolds number

s = azBD/nplszoq (the ratio of resistive diffusion time TR = a?/n to
Alfvén poloidal transit time p1/2R0q/B0) this can be expressed in the

more illuminating form

_ o oprBa?
T = tRFf ¢+ S a) (9)

If, as in ref /1/, we had considered the full resistive fluid

equations we would have found only that

-5 =



T = TR F(ﬂr S, =) E) - (10)

We see, therefore, that geometrical information inherent in the reduced
equations is reflected as an extra constraint on the confinement law. [It
is interesting to note that the result (9) is incompatible with both
classical (1t ~ TR/B) and Pfirsch-Schldter (7t ~ tR/ﬁqz) transport;

these processes are not described by the reduced equations.]

3 Local Resistive Fluid Turbulence in Tokamaks

We now turn to a more detailed discussion of turbulent transport. 1In
the limit of large S the turbulence involves fluctuations whose scale
length across the magnetic field is small compared to the plasma
dimensions but is comparable to plasma dimensions along the field. [Many
important linear instabilities, such as high mode number (n) resistive
ballooning modes with nz/s finite, have this property /3/ but we shall
not invoke linear growth rates or eigen-functions.] To exploit the
characteristics of the fluctuations we write V¥ = WU + wl' P =py+ Py
¢ =¢,, where Yo and p, are the background values and Tl' Pyr ¢, are
the non-linear fluctuations, and introduce new independent variables r,0
and y = L - g6. Then there are two distinct length scales in the system.
The fluctuating quantities vary rapidly in r and y but slowly in 8,
while the background quantities vary slowly in all directions. To express
this formally we adopt a dimensionless form for the fluctuating gquantities

{which also makes explicit the parameters isoclated by the scale invariance



tranformations A1-A4), and introduce a systematic ordering in which

n -~ 52 and
Py 5
e X X
PO 5P(6r6191't)
q¥,
_=52@'(£,%,e,1] (11)
IZB 6
Q
Roe B0 oy x L )
——=6¢ ’ :9:1
r2302 6 5
where
BOt
T:
Roqplfz

and x = (r - rU) dgq/dr 1is a local coordinate. Then the equations for

the fluctuating quantities become

a¥v _ _ 20, 9% oof
S = 20 + < VLT (12)
& g2 _ _ B gow._ .2 2¥ 2~_§§6_ 2%
az 1T a5 Vol - a%s {5 35 "i¥ - 3y ox i)
B* (3B _ . BBy _ p
+ % {s sin 9[ax ] by) cos B ay} (13)



dp 3¢ _
az + Kg oy 0 (14)
where
4 _3 _ . o (23 _263
dtr ~ ot %°°® {Bx dy oy ax} (15
L ox oy ay 2
with
_xr dqg r %P
s = - Fi K=___
q dr py or

and locally defined values of S and a reduced B8

2 2
r°B, 2Rgq” Py
§ = —m—— . B* = —

ﬂplIZROq T B02

Equations (12)-(16) describe local turbulence of a resistive fluid
plasma in a tokamak configuration. The consequences of invariance under
the scale transformations A1-A4 are already incorporated in (12)-(16)
through the choice of dimensionless wvariables, but we now carry out a
second application of scale invariance, seeking transformations of the
variables and the local parameters (B*, S, K, s and q) which leave (12)-

(16) invariant. These new transformations are



B, X * X, y * v, 9 > 19

By X > UoX, ¥ * U¥, % > }.12276: ¥ > u22?_{7' P > uzi;r 5 =+ I-12_25

By 5 ki llgl?f K > pK, p* » f-’-3-1ﬁ* (17)
[Note that the scale transformations Bl and B, do not respect the
periodicity of the angle coordinates but are nevertheless permitted

because they are applied to the short scale fluctuations.]

The diffusion coefficient transforms as (Ar)2/At, that is as

rB 1 (Ax)2

Rppl/2  g3s2 At

Under the transformations B1-B3 (Ax)2/At transforms as pz u2 and any
1 2

diffusion coefficient which is a function of the local parameters must

therefore be of the form

r?p,
D, = — F_ (a,s) = nF (a,s) (18)
0 1/2 0 0
Roqp )

RO dp0 5
Z -2 — —— g2 = -Kp*

2
B0 dr

where «



The local parameter o supercedes the global g appearing in the

confinement time scaling. [The same parameter g governs stability of

mhd ballooning modes /4/. ]

The function Fe(a,s) is not yet known. However, it too can be
determined from the invariance principle if the turbulence is more closely
defined. If we consider turbulence due to resistive ballooning modes with

small nz/s, the fluctuations (like those of resistive-g modes) satisfy

<< Vv

%I

J_Q? << w, ¥

Consequently, aﬁ/bt may be neglected in Chm's law (Eg. 12) and the
fluctuations vary more rapidly in the (radial) x-direction than in the
(poloidal) y-direction /3/. For such fluctuations we may identify the
dominant non-linear mechanism as convection of pressure by fluid velocity
and neglect other non-linear processes. [These approximations are
customary in calculations of renormalised plasma turbulence /5/.] Then

the equations of local turbulence reduce to

T a22 32 .
B_as I g (19)

o g e
.26 _ _ 2 2%, B, g0 (20)
dt ax2 20 ax2 gs dx
dp _ 2. (D9 3p _ 3% 2 2% _
ot a”s [bx dy dy ax] + Kg dy 0 (21)
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In addition to the transformation B1-B3, these equations are invariant

under two further scale transformations,

B, T+t x+v"V& oys vV, 4> v~ %%
¥ > vl'aﬁ, S - vl'Slzs, K > V1-2K
(22)
B5' X > VX Y > VY. T - v2$, ¥ > vzﬁf P+ VZE

S * VoS, K + v2K

Under these transformations (Ax)2/AT transforms as v~2 v2 from which
1
it follows that Fgla,s) ~ a/s and
2n (-4
Dy = 29, %;9 = (23)

where 9y is a multiplicative constant.

4 Transport along Stochastic Fields in Tokamak

The preceding discussion supposes that the anomalous losses are
entirely described within the resistive fluid model, which implies that
they are convective. A more important situation is that in which the
principal loss of energy is by transport along stochastic field lines.
This process lies outside the resistive fluid model, but when the
stochastic field is itself created by resistive fluid turbulence our

invariance arguments can still be applied.



We consider, therefore, a situation in which the magnetic
perturbations accompanying resistive fluid turbulence destroy the nested
toroidal magnetic surfaces of the quiescent plasma and create a stochastic
field structure. Then the magnetic field lines themselves diffuse with a

coefficient /6/

D = (—) L (24)

where Lc is the correlation length of the fluctuations along the
unperturbed field direction. The calculation, and even the inter-
pretation, of this correlation length is a complex question, discussed at
length in reference /7/. Our results are independent of this complexity
and require only that the correlation length be determined by the

turbulence.

If the plasma is highly collisional, so that the mean free path is
less than L , the effect of transport along the stochastic field does
c

not depend directly on Drn and is represented by

Ve2 GBr 2
D, = ol (-E-] (25)

where Ve is the electron thermal velocity and Ve is the collision
frequency. Since the fluctuations 6B are a product of the turbulence
they must transform appropriately under the transformations B1-B3.

Consequently they must take the form



= Fy(a,s) (26)
1 ’
q2R02 S

so that the anomalous transport coefficient for a collisional plasma in a

stochastic field is

2
Ve 2 ,
Dy = 5— Fy(a,s) (27)
e Rozq2 s

Usually thermonuclear plasmas are collisionless, with the mean free
path greater than LE' In this regime transport along the stochastic
field is given by D, = VeDm and so depends directly on Dm- To describe
D we need to know how the correlation length Lc transforms under the
scale transformations B1-B3. [As it is not a simple characteristic length
its transformation properties cannot be inferred directly.] To determine
the transformation properties of Lc we observe that diffusion of the
magnetic field lines can be regarded as a random walk with a

characteristic step length

This step length Ar is governed by the local turbulence and so

transforms appropriately under B1-B3. Consequently it must be of the

form

1]
IH

F,.(a,s) (28)
glsa A



and we have

- -1/2 , '
L, = ar,[F,(a,s) ] F,(a,s) (29)
and
2 2
- L/2 o St
Dy = qRE [Fi(a,s)] Fp(%S) = pg Faples) (30)

Hence the anomalous transport coefficient for a collisionless plasma in a

stochastic field is

r 2ve
D, = E;EE Fz(a,s) (31)

As in the case of convective loss, the various functions ¥F(a,s) are
determined when one introduces the additional features of the turbulence
which lead to invariance under the transformations B4 and BS5. Then one

finds, using Eg (26),

572
o
Fila,s) = gy(5) (32)
and, using Eq (28),
3/2
Fyola,s) = gz(g] . (33)



Hence the diffusion coefficients and the amplitude of the magnetic field
fluctuations are fully determined apart from multiplicative constants.

[Note also that the fluctuation level is proportional to S'1/2.]

At this point, it is convenient to summarise the results we have
found for the anomalous losses in a tokamak configuration. We have shown
that the invariance under scale transformations of the reduced (Tokamak)
resistive mhd equations determines, at various levels, the anomalous

losses due to turbulence in such a model. At the lowest level the

confinement time is
8q°
T = TRF( e ¢ S q) (34)

showing, that f and aspect ratio enter only through the combination
B/e. At a more fundamental level the convective loss due to resistive
fluid turbulence in the tokamak limit is represented by a diffusion

coefficient
DO = TIFO(QJS) (35)

dependent on the local quantities a and s related to pressure gradient
and shear respectively. Similarly the loss due to transport along

stochastic magnetic fields is represented by

172

D, = n(X B)""" £y(a,8) (36)



for a collisionless plasma and by

) Fila,s) (37)

for a collisional plasma.

We have also shown that if the turbulence is more fully specified (to
resemble a particular resistive ballooning instability) then the functions
F are completely determined by the invariance properties of the equations

and are given by Egs (23), (32) and (33).

In the following sections we shall derive the corresponding results

for a model of the reverse field pinch.

5 The Reverse Field Pinch

The results of the previous section are based on the geometrical
simplification arising in a large aspect ratio tokamak and on a resistive
fluid model of the plasma. The resistive fluid model itself should be
particularly appropriate for a reverse field pinch configuration and in
this case we can avail ourselves of an alternative geometrical

simplification - the cylindrical limit.

In fact, for the full resistive fluid equations

= 16 =



E+V xB=nj (38)

the cylindrical limit does not produce any additional information
corresponding to that from the tokamak limit. Scale transformations

analagous to A1-A4 (Egq (7)) allow us to conclude only that the confinement

time for a cylindrical pinch is of the form

2 B
a 8
T==—F(B, 8 =) (39)
n B
z
2 2%
where B = £, g=—2  and Be and B_ are the poloidal and
B2 npl/2 z

toroidal fields. This is no more specific than the corresponding result

of ref /1/.

However, more information is obtained when we introduce a turbulent
transport model. For this we ignore compression of the magnetic field but

retain field line bending. Then the non-linear fluctuating field can be

represented as

B, = V x nA (40)



where n = B/B with B the background magnetic field. We also replace

the equation of state by convection of pressure

'd—E + . =
L+ v.7p) = 0 (41)

where V 1is the field line velocity (E X B)/BZ, related to the

~

electrostatic potential ¢ and to A by

A
-V -n %E (42)

]
]

For large S we again consider fluctuations which vary rapidly across the

magnetic field and introduce local co-ordinates

x=——38 y =1 (z - 0 (43)

where o = rBz/Be. Then there are two length scales; the fluctuations
vary rapidly in x and y but slowly in 6 and equilibrium quantities
vary slowly in all directions. To represent this we introduce
dimensionless variables and a formal ordering parameter & so that

n~ 52 and



—_—Ep . L
sc=P g, 07
A. ~ X y
;Eg = A (3 v g 8, T) (44)
1/2  wox
T SR
o]
with
} Bet
o172y

Then the equations for the local, turbulent, fluctuating gquantities take a

form equivalent to (12)=(16), namely

~ o~ 2 _
da _ -3¢ , 1 BZ gop (45)
dz 08 s B 2 ;
8
_v~_ _a_v2~ _B£ {iﬁa_ EK_a_FA‘a_v2K}_ +E.Q_6.E (46)
ar Vi® =" %8 VIR - T, 9 lax oy VLM T By ox I BB oy
8
ap B_ 3%
-+ K — =0 (47)
dt Be oy
where
4 _2 _, 2% (283 2383,
atr - ot ° o "0x 3y Qdy Ox-
Bg
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2 2
2 - 26__ a_ +—a_
H U(ax Gay) o2
and we have the 'local' definitions

B 4

G__ﬁd_(i) K= 20
= 2 = i

B dr BG Py dr

Pnt d rB
+ 0
B = — (PO+BZ) 7 = ®

39232 dar np1/2

These equations resemble the corresponding set for the tokamak, with
¥ >a, pB*+>gH, qg-=> B/Be and s + g , except that geodesic curvature is
absent and normal curvature is independent of 6. Like the reduced

tokamak equations they provide a model for turbulent transport in an RFP.

There are again three transformations which leave these equations

invariant, namely

B1' x - > B, »p, &
kX, ¥ > Y, T Mg
6 B

B2 X > pXs ¥ » hye &> py28, Ko w2, BB, 5,73

(48)

e

B3’ > pagr K =+ H3Kl B+ > ua-lﬁ+

Invariance under these transformations requires that an anomalous

diffusion due to convection must be of the form

- 0w



rB

Dg = Gg(b,0) = 1G4(6,0) (49)
0l/2g
with
3 dp0 r d
= 2
§= — —m —_ — (PO + B<) (50)
Be2 ar B2 ar

For heat flow due to transport along stochastic magnetic field lines

we again introduce the magnetic field diffusion coefficient

p,= (%) L (51)

in terms of the correlation length Lc' The behaviour of Lc under scale

transformations B1'- B3’ can be deduced as before and gives in this case

L =-—Gﬁ6,m (52)

Then in the collisionless regime we find that the energy loss along
stochastic magnetic fields in an RFP is represented by
vr

e ¢}
D2 =5 B

w

G,(5,0) (53)

In the collisional regime we have simply

- 21 =



D, = — (=) ‘ (54)

and the energy loss along stochastic magnetic fields in a collisional
plasma is represented by
v 22

= 68,0 (55)

D —
1
B2s

=
Ve
As in the tokamak case the functions G can be determined if the
nature of the turbulence is more closely specified. 1In a reverse field
pinch the appropriate specification is by resistive-g modes. For
turbulence with similar characteristics to these modes we may again invoke

the approximations

?A

<< nV2A << w.A
3t o B

1 A

and retain convection of pressure as the dominant non-linear mechanism.

Then the equations reduce to

~ 2 2
ge _ _1_ B 0_2 d“A (56)
s B2 Ax 2
2]
g___ azg - _ 6_ bzﬂ _ E 6 op (57)
at ax? 20 Bx? o? B oy

= 99 =



 ~_ B2 (388 _ 2627, B 2% _
ok Tl o2 [ax - ax] + K B, oY =0 (58)
6

which, in addition to being invariant under the transformations B1'- B3',
are also invariant under two further transformations

~ ~

B4' 1 > VT X > v1-1/2x, Yy + V1_1/2Yl o > v1'2¢

woR, B vV, kv

Bl
¥

(59)

B5' x » VoXs Y > VoY, ¢ > vy0, A > vyA

~

vzzp, o> v,0, K> vzzK

o2
¥

The transformation B4’ is similar to the tokamak transformation B4, but
B5' differs from its counterpart B5 because geodesic curvature is
negligible in the RFP. As a result of this the functions G(§,0) differ

slightly from their counterparts F(a,s) in the tokamak. They are given

by

8
Gy = 9¢ = (60)
o
for the convective loss; by
5 572
G, = g} (—2) (61)
o

for loss along stochastic fields in a collisional plasma and by

- 23 =



for loss along stochastic fields in a collisionless plasma.

6 Conclusions

We have shown that the invariance of the underlying equations under
scale transformations provides information about plasma transport. In
previous applications of this argument the information obtained was
rather limited. However, by applying the method to specific models in
which the physical mechanism of transport and the configuration of the
magnetic field are already incorporated, more information is obtained from
invariance; in some cases this can be sufficient to completely determine

the local transport coefficient apart from a multiplicative constant.

Using this method we have investigated the electron heat transport
due to resistive-fluid-like turbulence in tokamak and reverse field pinch
configurations. For local turbulence accompanied by collisionless energy
flow along the stochastic field lines, the electron energy loss in a
tokamak is represented by the diffusion coefficient

1/2
M
D = n(l—) BI/ZF(IIrS) (63)

where

- 24 -



o = —ZRg2 dp s = rdg
I
2 dr gdr
B

In a reverse field pinch the corresponding electron energy loss is

represented by

1/2
p=n() 8250 (64)
where
d B
2 oo dr 0 dr B dr ‘B
Be B 2]

[The diffusion coefficients for energy loss by collisional transport along

the stochastic field and by convection are given in sections (3), (4) and

(5).]

The expressions (63) and (64) describe the losses due to any local
fluid turbulence, but correspondingly contain unknown functions F and
G. Even so these are useful results; they specify the dependence of
anomalous losses on the magnetic Reynolds number and, in the tokamak case,
on the aspect ratio and the safety factor g. They could significantly
simplify the problem of rationalising experimental data. However, we have
also shown that if the relevant turbulence is associated with some
specific resistive instabilities, then the functions F and G are

themselves determined by the invariance principle.

- 25 =



For turbulence associated with resistive ballooning modes with

n2/S << 1, the local diffusion coefficient in a tokamak is

172 372
p=an (7) B2 () (65)

m
Similarly for turbulence associated with resistive-g modes in a reverse

field pinch, the diffusion coefficient is

3/2
pl/2 (&) (66)

g

. m\172

D=gn(;)

The different dependence on the shear parameters s and o arises
because geodesic curvature is important in the tokamak but not in the

reverse field pinch.

Although obtained solely from the invariance properties of the
underlying equations, these diffusion coefficients fully determine ‘(apart
from a multiplying factor of order unity) the electron energy flow in
terms of the local pressure and magnetic fields and their gradients. We
emphasise that the assumptions made in reaching these final expressions
are also made in calculations of renormalised turbulence theory, eg ref
/5/+ The fact that we obtain the diffusion coefficients from invariance
alone shows that these coefficients are consequences of the basic

assumptions and do not depend on the details of renormalisation.

The expressions (65) and (66) show that the loss due to resistive

turbulence depends strongly on f. As B approaches unity the electron

- 26 -



heat transport in an RFP approaches the classical ion transport. The
maximum f in a tokamak is limited by the onset of ideal mhd ballooning
modes, but as B approaches this limit the electron transport already

exceeds the classical ion transport by a factor ~ q/sl/2.

In a full transport calculation these coefficients would, of course,
determine the energy confinement time for any specified configuration. In
the absence of such a calculation it is difficult to estimate the
confinement time because D is sensitive to the field and pressure

profiles. However a gualitative estimate, based on T ~ a2/6D, gives

2 172
a m 1
T ~6—n ﬁ) 7 (67)
B
for the reverse field pinch, and
EE m 172 E3/2
T ~'&n (M) e (68)
Bea

for the tokamak.

These estimates of confinement times have interesting implications
for the performance of tokamaks and RFPs - if this proves to be limited by
resistive fluid turbulence. For example, according to (67) all ohmically-

heated reverse field pinch experiments should reach a similar value of B,

given by

- 27 =



irrespective of the machine parameters (so long as radiation is
unimportant) . Correspondingly, the temperature in ohmic heated RFPs

should be proportional to I12/N, where N = na? is the line density.

Another interesting aspect of these estimates concerns the relative
performance of tokamak and RFP. For ohmically heated machines of similar
dimensions a comparison at similar current shows that the tokamak
configuration has a much better confinement time and temperature, but a
lower value of fB. However, when the comparison is made at the same total
magnetic field, Egs (67) and (68) imply that confinement time,
temperature and f are all better in the RFP than the tokamak! If
compared at similar plasma temperature, density and B then the RFP
confinement again appears better. The basic reason for this is that the
turbulent losses in the tokamak depend on the ratio of B to its maximum
ideal mhd value, ie they depend on qu/e, whereas in the RFP the losses
depend on B itself. Consequently, if resistive fluid turbulence is the
limiting factor, confinement is superior in a tokamak only so long as its

B is much smaller than that in the RFP.
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