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Abstract

The confinement time for an ohmically heated, low-f, tokamak is well
described by the scaling law T « n. This implies that g should
increase linearly with additional auxiliary heating power. 1In fact the
increase is much slower, and confinement deteriorates with increasing
auxiliary heating. We examine the possibility that this deterioration is
due to the localised onset of mhd ballooning instabilities, with
confinement elsewhere continuing to follow the law established for ohmic
discharges. We find that the overall effect of the ballooning instability
is indeed gradual and the resultant confinement time corresponds to a
scaling law in good agreement with that reported for auxiliary heated

tokamaks.
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2 Introduction

The confinement time of an ohmically heated, low-B, tokamak is well
c'iescribezdh:| by the scaling law <t =« n, where n is the plasma density.
If this were also true for tokamaks with auxiliary heating we would expect
the plasma B to increase linearly with the additional power P.
However, a number of experiments show a saturation of B with increasing
P, which can be interpreted as a deterioration in confinement at higher
values of PB. There is, of course, a theoretical prediction[z] of a
maximum attainable f, set by ideal mhd ballooning instabilities, but it
is unlikely that experiments have reached this limit - which correspond to

an optimised pressure profile marginally stable at each point[3].

In this note we examine the possibility that the observed
deterioration in confinement arises because the pressure gradient has
reached the ballooning stability limit only in some limited region. In
this region the confinemént is degraded, but elsewhere it still follows

the form established for low-=fR ohmic plasmas.

In section II we describe a model representing this behaviour. 1In it
the thermal conductivity ¥ is proportional to 1/n wherever the
pressure gradient is less than that for onset of local ballooning modes;
where this limit is exceeded the conductivity is effectively infinite so
that the pressure gradient remains at the marginal value. With increasing
power input the stable regions shrink and overall confinement gradually
deteriorates. The magnetic field is consistently determined from Ohm's
law and the effect of "sawtooth" oscillations is simulated by imposing a

flat pressure profile within the g = 1 surface.



In section III we discuss the results calculated for this model and
show that they correspond to scaling laws very similar to those gquoted for

high-f auxiliary heated tokamaks.

ITI. The Transport Model

Where ballooning modes are stable we take the thermal conductivity to

have the form
X = xI = 5.1019/n m2sec—1 (1)

established empirically for ohmic discharges and widely used, eg in INTOR
studies. For simplicity we assume n is independent of radius and
concentrate on the heat transport processes. Then in a cylindrical
approximation the thermal conduction egquation for the temperature T can
be written

dp

14
T & Tl Gy + H(r) =0 (2)

where H(r) 1is the heating power density and p = 2nT is the pressure.

Ballooning instabilities set a limit to the pressure gradient beyond
which Eg (1) is no longer applicable. For a large aspect ratio tokamak
with circular magnetic surfaces this maximum pressure gradient, as given

in Ref 4, is
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where q = rBO/RBe and £f(s) is a function of the magnetic shear

s = (r/q)(dg/dr) shown in Fig 1. [This is a more accurate recalculation
of the figure in Ref 4.] In our model, the pressure gradient is
determined by Eg (2) so long as it lies below the threshold set by Eg (3),
(the mhd stable zone). Elsewhere the pressure gradient takes the
threshold value itself (the mhd unstable zone): this represents a

transport coefficient which increases by a large factor once the threshold

gradient is exceeded.

The shear s appearing in Eg (3) is related to the pressure profile

through Chm's law and the equation for the poloidal field:

H|a

d
T rBB = oE (4)

since (in our model with uniform density) the conductivity o is

proportional to p3’2.
Finally, in order to simulate the rapid energy transport accompanying
sawtooth oscillations we set the pressure gradient to zero everywhere
inside the radius at which g(r) = 1. This vanishing pressure gradient
implies (through Eq (4)) that the current is uniform and so ¢q = 1
throughout this internal region. Elsewhere the current, field and
pressure profiles adjust according to the transport and ballooning

stability equations and Ohm's law.



our model therefore has several zones; (i) an inner sawtooth zone in
which g =1 and dp/dr = 0, (ii) transport zones, in which dp/dr is
determined by Intor-like heat transport, Eg (2), and (iii) ballooning
zones in which dp/dr is determined by the ballooning stability criterion
Eq (3). The boundary conditions are dp/dr = 0 at r =0 and p =0 at
r = a. A further condition on dp/dr is needed at the inner boundary of
a transport zone (whenever this is not at r = 0). Here the heat flow is
continuous but dp/dr may not be, and the required condition is that
dp/dr be consistent with the power deposited inside the zone boundary.
These conditions completely specify the problem for any given heating

profile.

Tt is convenient to introduce dimensionless variables

" 2pa 2
_ L p(r) _ =~ 6 _ 4mcRa‘H(r) _
x =2 plo) ~ p(x) BG(a) = b(x) ., = = h(x)

1

(so that fh(x) %x dx = 1). Then the confinement time is
0

23 2p
r= 2 AE2RP) T Fix) x ax (5)
2 P 0

where P is the total input power. If the ballooning instability were

ignored the "Intor" confinement time would be

Tl = T (6}



where c¢ depends on the heating profile;

c =

1 1
Z {1 - (g h(x) x3 dx)} (7)

In terms of the dimensionless variables the equations of our model

become:

14d d 1

;_(x£)+_h(x)=0 (8)
for the pressure gradient in the stable zones;

-2ax? dp _
b2 ax

f(s) (2)

for the pressure gradient in the ballooning unstable zones;

~ RB_ (a)
dp _ X (&)
3% = 0 when < aB, (10)
for the pressure gradient in the sawtooth oscillation zone; and
L 2 = p3/2 3/2
% A% {xb) P (fop xdx) (11)

for the poloidal magnetic field. These equations involve only the

parameters
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aBO
and q_a = TRB—B-(E.) - (14)

For any given heating profile one can compute A, and hence T/TI
as a function of the two parameters A (which measures the power input)
and qa (the safety factor). Egqually one may compute f as a function

of A and qQ, through the relation
B=2cT 8B

T c
I

where Bc = a/Rqs.

ITI. Results and Discussion

In this section we consider the variation of T/TI and B/ﬁc with
the power input A and safety factor qa, computed for two heating
profiles. The first is a uniform heat deposition, h(x) = constant, and
the second a centrally peaked profile h(x) = exp(-2.77x2). In each case

the stability boundary for ballooning modes is taken from Fig 1. For each

value of A and gq_, the solution is computed by a two-stage iteration
a

procedure. From a pressure profile E&(x) a magnetic field bm(x) is



computed using Bq (11). Then, with this b _(x) held fixed, a new p(x)
and an interim eigenvalue A 1is computed from Egs (8), (9) and (10) by an
iterative-shooting method. When this inner loop has adequately converged
this new gkx) (E Eﬁ+1(x)) replaces Eﬁ(x) in the outer iteration until

both S (x) and b (x) are sufficiently well converged.
m m g

The computed values of T/TI and B/Bc are shown in Figs 2-5 and
are similar for the two heating profiles. The onset of ballooning
instability produces a reduction in confinement time but B continues to

rise - as shown in Figs 4 and 5.

The underlying reduction in confinement time, due to ballooning
instability, is most clearly shown by the curves for large qa. These
correspond to the behaviour in the absence of sawtooth activity. At
smaller qa there is an additional degradation in confinement at high
power levels due to sawtooth activity; the power level at which this
sets in decreases as qa is reduced. For the case qa = 2.5 the
additional degradation is more marked because sawtooth activity sets in

even before ballooning influences confinement.

It is interesting to infer a confinement time scaling from these
results. Fig 6 shows a logarithmic plot of the calculated confinement
times. It can be seen that, over a considerable range, the confinement

time can be represented as



IR | (15)

with vy = 0.72. Introducing 11 from Egs (1) and (6), ie

T, = 3¢ 10720 n(m~3) a2(m) , (16)

implies that for confinement of high-f tokamaks

-y Y2y ~y 2-3y _*
T « n1 Y 1YpYa Y r 2y (17)

or, with y = 0.72,

. . -0. -0.1 .
S n0 28 I1 44 P 0.72 a 0.16 R1 44 . (18)

This is in remarkably good agreement with the empirical scaling laws
reported[1] for tokamaks with high-power auxiliary heating. It should be
noted that although this scaling law differs considerably from the
intrinsic Intor scaling, it has been derived from Intor without any
adjusted parameters. [As indicated earlier, these results are based on a
model with uniform density. In a similar model with density at the wall

~ 10% of its central value the index <y ranged from 0.72 to 0.80.]

Figs 4 and 5 show that saturation of f with increasing input power

commences at A = 1. In terms of experimental parameters

i [



=20 -3 3
A 3.2 10 n({m=°) P(MW) a®(m) (19)

12(MA) R2(m)

so that in ISX-B, for example, (a = 0.27m, R = 0.93m, n = 7.101%3)

saturation effects would be expected to start when
P(MW) > 20 I2(Ma)
which encompasses the usual operating range of this experiment.

Of course, if the scaling law (19) applied for indefinitely large
input power, B would never saturate completely! However, as we have
noted, a further degradation of confinement occurs at a much higher value
of 1A, dependent on qa. This effect of qa on confinement cannot be
well represented by a simple power law; rather it should be regarded as a

limitation on the basic confinement scaling (18).

In discussing the ultimate B 1limits it is more convenient to
consider f itself rather than B/Bc, and this is shown in Fig 7, which
indicates the fully saturated B values reached as P + =. (These are
independent of the heating profile.) Fig 8 shows that these fully
saturated values agree well with the expression given in reference [5] for

the maximum stable 8,

= == (20)

which was obtained as the best fit to extensive numerical stability



studies. It should be recalled that in the numerical calculations leading
to equation (20) the g profile was essentially fixed while the pressure
profile was optimised. 1In our model the gq profile consistently adjusts,
following Ohm's law, as the power input is increased and the pressure
rises. It is therefore not a priori obvious that the two results for

Bmax should agree.

IV. Conclusions

We have introduced a simple transport model for high-f auxiliary
heated tokamaks. In this model thermal conductivity has the form
established for low-f ohmic discharges wherever the plasma is
theoretically stable to mhd ballooning modes, but transport is essentially
infinite where the profile is unstable to ballooning modes. It is also
infinite within the gq = 1 surface where sawtooth oscillations occur.
With this model, confinement time and PR can be calculated in terms of
two parameters. The results show that there is a soft f-=limit and a
gradual degradation of confinement with input power. The onset of this
degradation is predicted to occur within the range of present auxiliary
heating experiments. When expressed as a confinement time scaling law,
the results from our model are in very good agreement with the empirical
scaling law reported for high B experiments, and the saturated f values
also agree well with other computations. To this extent, therefore, it
appears possible to account for the confinement in high-f, auxiliary
heated, tokamaks in terms of the empirical law for confinement in low-f
ohmic tokamaks - despite the apparent dissimilarity between the scaling

laws for the two regimes.
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Figure Captions

Fig 1 The function £(s) which governs ideal mhd ballooning instability
Fig 2 Variation of confinement time with input power: h(x) = constant.

Fig 3 Variation of confinement time with input power:
h(x) = exp(-2.77x2).

constant.

Fig 4 Variation of ﬁ/ﬁc with input power: h(x)

Fig 5 Variation of fB/f. with input power: h(x) exp(-2.77x2)-

constant.

Fig 6a Log plot of confinement time against power: h

Fig 6b Log plot of confinement time against power: h exp(-2.77x2).

Fig 7 Variation of B with input power.

Fig 8 Comparison of saturated B values with published computations of

Bmax'
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Fig.1 The function f(s) which governs
ideal mhd ballooning instability.
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Fig.2 Variation of confinement time with input power: h(x) = constant.
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Fig.3 Variation of confinement time with
input power: h(x) = exp(-2.77x?).
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Fig.4 Variation of B/B, with input power: h(x) = constant.
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Fig.5 Variation of /B, with input power: h(x) = exp(-2.77x?).
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Fig.6a Log plot of confinement time against power: h = constant.
Fig.6b Log plot of confinement time against power: h = exp(-2.77x?).
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Fig.7 Variation of § with input power.
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Fig.8 Comparison of saturated § values
with published computations of §_ . .










