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Abstract

Generalizing our earlier work on a fluid approach due to Kadomtsev
and Pogutse we derive a nonlinear egquation for the electron thermal
diffusivity in a tokamak due to small-scale, high radial wave number
magnetic field fluctuations. We show that this equation has a non-
trivial solution leading to enhanced energy transport in a region of
finite volume which includes the resonant points. .The volume fraction of
this region has been calculated explicitly in terms of the assumed
magnetic fluctuation spectrum. The enhancement of éransport is the
result of a new non-linear phase-shift mechanism which depends on the
interaction of parallel and perpendicular thermal conduction. We compare
and contrast the present results with our earlier work, and also with

alternative approaches to anomalous transport.
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1. Introduction

In this paper we consider an approach to the theoretical explana-
tion of the anomalous thermal conduction in tokamaks due originally to
Kadomtsev and Pogutse [1]. These authors considered the energy equation
of the electron fluid in a simplified form considering only parallel and
perpendicular (neoclassical) thermal conduction. Treating the magnetic
fluctuation spectrum as given, they derived a formula for the effective
.electron perpendicular thermal diffusivity valid in an infinite cylinder,
subject to certain assumptions regarding the fluctuation spectrum. In
recent work [2] we briefly reconsidered this approach and generalised it
to include certain non-linear effects neglected by Kadomtsev and Pogutse,
and appropriate to a periodic cylinder. 1In the present paper we derive
new and hitherto unpublished results from our renormalised Kadomtsev-
Pogutse approach, which are not only of intrinsic interest, but may also
provide some insight into the interplay between parallel and

perpendicular energy transport in tokamak plasmas.

We have previously presented a two-fluid turbulence model of tokamak
transport with particular emphasis on effective electron perpendicular
thermal conduction arising from linear phase-shift mechanisms caused by a
coupling of thermal inertia and parallel thermal conduction [3, 4]. The
model considered in the present paper provides an explicit example of a
phase mechanism which is different from the previous one in two ways.
Firstly, the phase-shift depending as it does explicitly on the
fluctuation 1level, is non-linear. Secondly it is a result of
interaction between perpendicular and parallel thermal transport and
hence can occur in principle even at low frequency and high wave numbers.
We recognise, of course, that these two mechanisms are paradigmatic
extremes, and that the Ffull physics can and should in principle be a
combination of both effects. It will also be apparent from our results
that these mechanisms apply differently to different parts of the power

spectrum.

We clarify the relationship between the present work, our earlier
papers [3,4] and Kadomtsev and Pogutse's original discussion [1]. In all

three cases the effective transport arises from phase-shifts created by



an interaction between parallel transport and other terms in the energy
equation. Thus our earlier work compared the mode frequency w with

k2. In the original Kadomtsev-Pogutse approach the phase-shift is due
re g

to and not w, where is the neoclassical value. In the

X2
X1 1 Xle
present work, by generalising the Kadomtsev-Pogutse approach we derive a

phase-shift from xl*kz where is the anomalous thermal

’ X *
e 1 le
diffusivity to be calculated. Strictly speaking a full theory would
require us to consider the effects of w and xl;kf at the same time.
However, our earlier argument depended on the fact that the frequencies
and mode numbers we considered were such as to lead to w >> yl;ki. Thus
for those frequencies the non-linear phase-shift effects, contained in

*kz, could be considered negligible. However, since is much

*
X1e™) Xle
greater than xle' the quasi-linear Kadomtsev-Pogutse theory, containing
only xlekf' is not self-consistent, and it is this defect we seek to

remedy in the present paper.

We also compare the results of the present model with those obtained
by us using apparently different 'mixture' arguments [5] and show the
close relation. Further, we find that our renormalised fluid model
predicts results somewhat different from those obtained by other

approaches based on field-line wandering concepts [6, 7].

2. Kadomtsev=-Pogutse Model

In order to describe the Kadomtsev-Pogutse approach we consider a
model problem. Thus the geometry of the tokamak is idealised and
represented in a periodic cylinder of radius a and periodicity length
27R. The =z-direction is taken to represent the toroidal while the 6-
variation represents the poloidal. The mean toroidal and poloidal fields
Boz(r) and Boe(r) respectively, are assumed to be known from experiment
as functions of r only. Together they determine cylindrical mean

i Boz(r)
magnetic surfaces such that the safety factor g(1) = - —— is a
o6(r)
"typical" tokamak g profile. The complete magnetic field B is assumed to
be represented in the form,

EE (r) +6§ (r[ 9; z, t) ’ (1)

B
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BO(r) = (o, Boe(r), Boz(r)] » The fluctuation field 8B is assumed to be

given by a statistical ensemble and has the following properties.
(1) V.68 =0 .

(2) 6B is periodic in 6 and Z with periods 27 and 27R respectively.

B

—_—

is much less then unity. 1In fact

({3) The fluctuation level
o

BB<

— ~ 10~

3

experiment indicates that

(4) If F is any function of the fluctuation field 6B, the ensemble

average <F> satisfies the following identities,

<8B> = 0 . (2)
t 27R 27
Lim 1 i 1 1
<F(&B)> = "t [ at o= [ az= [ a8 F(sB) (3)
M M o e} o

where tM is a macroscopic time-scale such that th >> 1 . wis a typical

frequency of the field fluctuations.

(5) The electron temperature distribution Te(r, B, z, t) is assumed to

be governed by the following approximate form of the electron energy

balance equation

0= v-(nocr) X lr) ¥, T.) + v-(no(r) X (T ¥, Te) +s_ (1) . (4

In Eq. (4), n (r), x, (r), x, (r), 8 (r) are assumed to be given deter-
o le le oe -_—
minate functions of r . A solution of Eg. (4) with suitable boundary

conditions at r = 0 and r = a can therefore be expected to determine the
random function Te in terms of the random functions 0B. The ultimate

purpose of such a calculation is to determine T (r) = <T > and compare
oe e



with the mean profile measured from experiment. This comparison is
conventionally done by calculating the effective thermal diffusivity from
Eq. (4) and comparing it with the measured thermal diffusivity. To
obtain the effective thermal diffusivity from Eqg. (4)‘we average this
equation and retain terms up to second order in EE. We then find that
the effective thermal diffusivity XL; is related to Toe(r) by the
equation

daT
oe

*
xle dr

d -
Er(r n_(x) ) + soe(r) =0 . (5)

l
r
Furthermore xl; is given by

1

2 -
5Br 6Br d Toe
xl; = X_Le(r) o x]le(r) { [?] -+ f‘ A" (STe ( dr ) } (6)

where A = EO-V . If we identify Toe(r) with the experimental profile,

1
the theory will be validated if xl; = xl:easured

incidentally that the effective thermal diffusivity xl; is enhanced over

. Eg. (6) shows

the neoclassical value Xle(r) by the "turbulent" contribution which can

turb 6Br 2
xle = x"e(r) (E;—) Te(r) ; | (7)

where the form factor is

be written as

T
oe
oy () (e
Bo I Toe dr
T (r) =1+ 5 . (8)
e 6B
r
(=)
Q

It is apparent that in order to calculate Pe(r) it is necessary to

calculate the temperature fluctuation 6Te = Te - Toe{r). While this



could be done in principle by solving Eq. (4) exactly, or possibly

numerically, given 8B, the results cannot be expressed in closed form.

The Kadomtsev-Pogutse approximation consists of linearising Eq.

8B 8T
(4) in terms of E—E and E-E - It is still not possible to solve the
oe
resulting egquation in c¢losed form for all modes. In order to make

progress, Kadomtsev and Pogutse make the following ansatz. They take

6B, ifkr + mo + %5]
= = y y f dkl bmn (r, kJ_' t) e . (9)
(o] m n

This ansatz needs an explanation. The sum over m is a strict consequence
of the periodicity in the poloidal direction. The sum over n is again
the correct form for a periodic cylinder. Since however Kadomtsev and
Pogutse actually treat an infinite cylinder they replace the sum over n
by an integral over n. As will become apparent this distinction is not

trivial. The functions Enn are assumed to be slowly varying in r, t and

kl. The t-dependence, as we have noted before, is assumed to be
sufficiently slow so that Egq. (4) does not contain any time-derivatives.
6B
In addition since E_E is itself a random function, the bmn are also
o

random functions. The integral over kl is supposed to represent the
rapid radial variation. The time dependence of bmn is only there in

effect to ensure that the ensemble average is related to the space-time

average in a particular experiment.

With these assumptions, a simple calculation shows that

dk . k2 <,b ‘2>
mn

X
_Mle 1l 1
BEE ) P
"Rk E —= ] x2

Xle

m Boe(r) n Boz(r)
where k" = ; B + E —E—-- i (11)
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Before discussiné the implications of this formiila we note that Eg. (10)
expresses ¥, in terms of the given profile quantities such as xle(r),
Boe(r) etc., and the directly measurable wave-number spectrum of the
field fluctuations. Thus the spectral functions < bmn(r, ki' t)|2>

r I

; v 1
are related to the correlation function — <6Br(r, 8, =z

B 2
[o]

+ 6, z'+ z, t)) through the well-known result,

, t) 8B (x, 6

L <6Br(r, o', ', t) éBr(r, '+ 8, z'+ z, t)> =

g 2
o]

Z E <'bmn|2> € ) (12)
m n

In contrast to the bmn which are random functions, the spectral
functions are Fourier coefficients of the correlation function, which is

in principle determinable from experiment.

Kadomtsev and Pogutse consider the infinite cylinder version of Eq.
xle

le

_x 2 _
e =2/ Me ¥le IZ Jan fax, 6(kll)<’bmn' T (13)

(10) and show that in the limit >0, xl; reduces to

In this form y * is indeed a smooth function of r. For typical values of

le
8B_ 2
r . ; ; ;
Xie' Xpe’ Q{BO ) it can be seen that the first term in Eg. (13) is

much larger than the neoclassical xle' If, however, in Eg. (10) we carry

X

out the limit e + 0 we obtain the result

e

*=ﬂe-§$f6k b |2 s + (14)
Xle 2 : L mn m, -ng Xle
m n
where ém ng =1 if m + ng = 0 and zero otherwise. 1In contrast to
P



Egq. (13), Eg. (14) shows that in a periodic cylinder there is no
effective enhancement of xie over neoclassical except at the discrete set
of rational points. For small but non-zero values of Xle/xﬂe there is
enhancement in a set of small measure containing all the resonant

points.

A more serious criticism of the Kadomtsev-Pogutse procedure is based
on its lack of self-consistencf. This can be understood physically as
follows. In the Kadomtsev-Pogutse treatment we calculate éTe from
5Br using Eg. (4) leaving out all terms non-linear in 5Br/BD (presumably
because this is "small"). VYet we retain the term involving xle' Since
Xye >> Lo and the expected outcome of the calculation is Lia << xl; ~

8B 2
e (E—E]‘:>, the neglect of non-linear terms is clearly unijustified.
Since, ;; we have mentioned before, a complete analytic solution of Eq.
(4) is out of the question, it is necessary to include at least the
principal effects of terms quadratic in 6Br/BO. We show how to do this

in the next section.

3. Renormalisation and its Physical Consequences

We now discuss a crucial modification to the KXadomtsev-Pogutse
approach and motivate it by physical arguments. In the previous section
the relationship between temperature and field fluctuations was not only
linear, but also assumed that the temperature fluctuations were subject
to the "bare" values of xle and x"e. However, the purpose of the theory
is ultimately to show that the mean temperature profile Toe(r) is
determined not by the "bare" xie' but by the effective value, xl;. It is
therefore reasonable to assume that the turbulence similarly modifies the
behaviour of the temperature fluctuations 6Te. This simple idea of

replacing y by Xi; in calculating the correlations between 6Te and 6Br

le
is the same one that underlies mean-field theory, CPA, and the self-

consistent field models [5].

The consequence of the renormalisation is the following modified

form of Eq.- (10). Thus

-7 =



. (15)

In contrast to Eg. (10), BEg. (15) is actually a non-linear equation to be
solved for Xl; as a function of r. Bearing in mind that we expect

xl; >> %lat it is instructive to discuss the solution of Eg. (15) in the

limit XJ_e/ XJ.

Xj_e/xlle’ we obtain from Eg. (15) the equation

* << 1. t [ i = * i
3 Introducing y(r) X_Le/xlle and neglecting

] ak | kﬁ <|bmnl2> 4 f &8, 2
s e 2y = — -
ST et ¢ SRR SMLLS S {0 B 10
m n ks + v k m n o
I 1)
We now discuss possible solution of Eg. (16). Consider a point r

where g 1is irrational (since g 1is an increasing function of r in

tokamaks, almost all points are of this type). It is clear that k" * 0

for any choice of m and n. It is also clear from Eg. (16) that at such
points y(r) = 0 is a possible solution. Now consider points r where at
least for one choice of (m, n), k, = 0 . We term all modes for which

k" = (0 at these points, resonant and all other modes non-resonant. From

Eq. (16) it is plain that y(r) is bounded by

VS ax, <[p |2 .
n

Indeed if this quantity is actually equal to = (—-—E) , then y(r)

equals the above bound. In this particular case the non-resonant

8B_ 2
contributions to (B—") are negligible. From this discussion it is
o

apparent that one possible solution of Eg. (16) has the property,

¥(x) s%z z [ ax, <|bmn|2> 80, -nq * (17)

-8 -



It is interesting that the right-hand side of Eg. (17) is exactly the
result of the unrenormalised Kadomtsev-Pogutse approach [namely, the
first term in Eqg. {14)). As such this solution does not imply any
enhancement due to turbulence [2]. This solution does not exhibit the
expected resonance broadening due to renormalisation. Furthermore y(r)

is not a continuous function of r.

We now point out that Eg. (16) in fact possesses a second more
interesting solution and that it is the only other non-negative,
continuous solution. We shall see that it is a more appropriate
candidate than the first solution for describing anomalous transport. In
order to see the existence of this solution consider Eg. (16). It is
clear, first-of-all, that any non-negative solution of Eg. (16) must

satisfy the inequality

1 5Br 2
Yir) <3 [g—‘)
o]

This inequality shows that I‘e(r) defined in Eg. (8) is always less than

(18)

n
-

max .

or equal to unity. Next we consider a non-resonant point r and the

function F(y) defined by

; ax, k2 <[b_|2%
Fiyl Sy2g ) 3 J » > (19)

ks + k

o L
in the interwval [0, Tma 1. It is easy to verify the following

x
properties of F; F"(y) is always positive, F’(Ymax ) > 0,
F = h r tie inf that th ati F =

(0) ymax.From these properties we infer a e equation F(y)
has either a unique solution y = 0 or one other solution y < Y max

according as F'(0) is greater or less than zero. All these properties

are exemplified in figures 1(a) and 1(b).



b
1 1
# +
RO ~ T FOY) = Ypax
& > o s o >
¢ Y[I'l{:llb( Ymax
Y > Y
FIGURE 1(a) FIGURE 1(b)
case F'(0) > 0 Case F'(0) < 0

The point P denotes the second root. This discussion shows that all
points lie in one of two possible classes. By "normal"” points we denote

points with radii r such that

k2
F’(G)E1-%Xffdkl<|bmn'2>—';>o. (20)

m n k"
All other ©points which include resonant points, will be called
"anomalous". At these points F’'(0) is either negative and finite or
tends to - ® . From what we have said before, at normal points the only
solution of Egq. (16) is y = 0 and therefore the transport is not enhanced
by turbulence. At anomalous points, however, there are two possibilities.
Either the solution is the trivial one contained in inequality Eg. (17),
or the non=-trivial second solution corresponding to P above. This non-
trivial solution is always bounded above by ; and can be obtained if
desired rather accurately using Newton's method taking Ynax. as the first
approximation. It is also easy to see from the structure of F'(0) that
provided there is at least one non-trivial resonant mode in the system,
the measure of the anomalous set is not zero. Indeed, the total volume

of the anomalous set is given by

- 10 -



a
= g2 1 l 2, L _
Panom = 4R [rar wa {3 § § f ak, <[b|% il } (21)
(o} m n k"
where H(x) = 1 if x > 0 and zero otherwise. Thus, in contrast to the

trivial solution, the second solution can indeed imply anomalous

transport.

Roughly speaking, in the anomalous set the enhanced diffusivity

8B
Xl; = <<;€55)i>>, while in the normal set Xi; ~ xle{neoclassical).

We note the following interesting physical interpretationzof points

belonging to the anomalous set. Observe that <|bmn'2> L is the
k2

I
product kiggmn (kl), where E (kl) is the "MHD" radial displacemgnt
of the mode. Thus Eg. (21) states that the anomalous set is made up of
points at which the incoherent sum of this product over all the modes is

greater than unity.

In order to exhibit these results in a more concrete form, we
consider an explicit model. Iet m and n be such that m + nq(rO) =0 ;

k"(r) can be written as

1
= — +
k" R (m + nq) (22)
and
AN
[ dk | ; = o ; (23)
2 —
+ ke +
Ky Fok] IRERAY]
where

2 _ 2
el (r) = [ dk  <bZ >

and

- 11 =



Setting

I
L(e-x,),

b
I
] L

A

Equation (16) for y becomes (assuming only the given mode m,n is

present)
1 %2 Ein 1
= 2
o - = - .
Y3 ) g ? - > B (24)
w2 # Y52 &2

As before there are two solutions to Eg. (24). The first solution y = 0

implies no enhancement and is of no interest. The second solution is

written as

1 m 1
= = £2 . x2 ——% —_
Y =2 & T % (qa _ (25
k2
1
Eg. (25) is wvalid only in the interval
€ o 12
_ _mn 2 gR |g
|z rol < p= (&7 =15 - (26)

(26) shows that there is an enhancement due even to a single radially
8B 2
localised mode proportional te (E_E)
o)
"broadened" about the resonant point ro of the mode by a width

Eq.
and also that the effect is

proportional to the amplitude of the mode and to the ratio of the

Ay 172
perpendicular and the poloidal wavelength (ie. (kf) ﬁE g,

g ). If we

now consider the effect of all the modes at any given point r, we can

= 19 e



devise the following upper bound to xIe which is considerably better than

the simplest estimate implied by Eq. (18). Thus we write

Xy k2 2 k2
e = LIl -2 balr- L1 1. (27)
mn k2 k2 Emn
1 1

It is easy to show that this second solution of Eg. (16) is

continuous in r and generally well-behaved provided the spectral

; 2 ; 1 g i

functions <|bm.nl > are such that the series 5 y F / dk | <’bmnl> —2
m ]

converges for almost all r. This is the case in problems of physical

interest where bmn are effectively zeroc for sufficiently large m and n.

Of course, at resonant points, the series may not be defined but this

Lim
merely means y+0 F'(y) = - ®. Thus, equation (16) and its solution is
not affected. A simple argument also shows that the pathological
solution satisfying (17) is irrelevant. To see this, consider the
x*
equation (15) in which Xie is not neglected. Setting y(r) = 18 ana
le
Xie ;
a(r) = —— , we find that y satisfies,
le

dk, k2 <|b
m n k“ + vy ki

A simple graphical analysis shows that Eg. (28) [in contrast to (16)] has
a unigue, non-negative, continuous solution y(r). This solution tends to
the non trivial solution of (16) approximated by Eg.(27) in the limit

a + 0. Corresponding to (24) we obtain from (28),

%% 22 4
Y + 3 =3 Ein + o, (29)
x2 + le

where

- 13 -



The quadratic (29) has two real roots, only one of which is positive.

This root is given by,

2
= 2 _ 1 2.2 a1 -
2A%y(x) = [(x2 - 7 €2 A2 - aA?) + 4A2ax ] - [x2- 5 2 A%~ aa?] (30)
i ; 2 .1 2 42 1 2 x2 ;
It is easy1to verify that for x < 3 €mn Ao, y(x) = 3 & T Xz , while
for x2 > = g2 Kz, y(x) = a . It therefore follows that the estimate

2 mn
(27) is a reasonable one for the turbulent enhancement even if Xle is not

1

taken to be negligible. If <a§n> >> aAh?, the widths are hardly

affected by xle'

4. Discussion

A number of interesting points arise from the above results which
we discuss now. This approach is strictly valid if the electron
temperature is governed by equation (4). This itself is an approximation
to the 'full' electron energy equation used in our earlier investigations
[3, 4]. ©Eguation (4) can be 'derived' from the complete energy equation
by making a number of assumptions. The most important of these is the
Kadomtsev-Pogutse ansatz that the frequencies of the field fluctuations
are such that electron thermal inertia, convection, compressional
heating and electron-ion equilibration are unimportant; thus only
parallel and perpendicular conduction are regarded as important.
Furthermore, the transport co-efficients are assumed to be known
functions of r, and possibly of the mean profile gquantities such as
Toe(r), no(r) etc. Since experiment indicates that the fregquency
spectrum of the high m,n modes to range from 10 to 500 kHz, the neglect
of convection and inertia in comparison with Xleki or even xIeki is
guestionable. In this respect our present calculation is to be taken

merely as complementary to our earlier work in which the phase shifts

leading to a particular value for Pe(r) were due to linear effects. 1In

- 14 -



the present model, Pe(r) clearly depends on the fluctuation level and is
an instance of a non-linear phase shift. A complete analytic theory of
the full energy equation including convection taking nonlinearities into
account by generalizing the present renormalization scheme is possible
but is not attempted here in view of the great complexity of the
calculations. In any case, since the power spectrum is not well-known,

the direct applicability of such a theory to experiment is problematic.

In a short 1letter [5], we recently suggested that a ‘'mixture'’
argument could be wused to think about anomalous electron thermal
conduction in tokamaks. In this argument one regards the plasma (as far
as radial heat transfer 1is concerned) as a mixture of two types of
regions. In the 'ergodic' volume V;, the thermal conductivity is taken

to be Ky = K"e while in the 'normal' or 'non-ergodic' region of volume

Vi the conductivity K, We showed that the 'effective!'

= K s
le N.C
conductivity of a homogeneous mixture was obtainable from the equation,

1 Vi Va
S N + ) (31)
2Kjeff Flege T L Kt Ko

The arguments leading to (31) are close to the renormalization ideas
leading to xze with the important difference that we now use an energy
eguation (Eq.(4)] to actually determine V) and V, as well as Ky in terms

of the field fluctuation spectrum. Thus we obtain,

V2 a k2
_ 2 f 1 2y 1
——— =% . [raru V7V [ ak <‘b > -1} (32)
V1 + V2 a?o 2 m n 1 mn’ kﬁ ,
8B_2 &8 2
K2 = Xyq (Eg') Mo Xpe (Bo ) ) - (33)
K, = n0 Xie = Kle (neo=-classical) . (34)

It is evident that since K, >> K; (even if it is not as large as we



assumed in [5]), unless V, = Vi, Kleff = nO xle = (neo classical).

Typically, kl ~ 1/pi (pi is the ion Iarmor radius) while k" (except very
close to the resconant points) = 1/gR. It follows from (32) that
{I<b§n> dk_l_}l/2 ~ 10~"% could not possibly account for the observed
anomalous transport. This is a rather crude estimate which needs to be

substantiated by more detailed evaluations of equations (27) and (32).

An interesting feature of our analysis is the natural partitioning

of the plasma into a 'normal' set where the transport is nearly neo-
5B

classical and an 'anomalous' set where Xe CE-E) The theories

Xle ©
of transport based on field 1line ergodicity [6, 7 also lead to
'stochastic' and normal regions. However, their criteria for the
complete ergodization of the plasma volume is based on Chirikov's island
overlap criterion [8] applied to the high (m,n) modes. It would seem

that +this criterion implies a resonance broadening proportional to

1/2
Ib (i.e. island-width) whereas our renormalised theory leads to

the more severe requirement (26).

On the basis of certain assumptions, we derive a sufficient

condition for complete ergodisation within our model. Experiment

suggests [9] that for high m,n incoherent modes (—EE) < 10'8, the
mode numbers ranging from 10 to 100. While there is no detailed
information, we assume kl = . Noting that kr = gﬁ (1 + ﬁg), we
a“ 1
observe that kﬁ ¢ — — where L_ = e , which holds within one
2 g2 5 '
L2 R q

wavelength of the mode from the resonant point. Substituting in Eq.

(20}, where we replace kﬁ by its largest value, we derive a sufficient

condition for ergodisation everywhere. Thus we derive

/53 1‘_.2

q2R2 =5 1 . (35)
a

N |

R
Applying this to MACROTOR, we have Ls of order a , a 2, g=3

- 16 -



5B
and m = 100 , and find that - (——E) ~5 x 106 , far larger
max B
than observed. We must emphasise two points. Eg. (35) represents a
sufficient condition and may not be necessary. It remains to be shown by
numerical calculation whether complete ergodisation can be achieved at

much lower levels than that predicted by Eq. (35). Secondly, we note
5B

the fact that xf_, is less than % Yle (—EE) anyway. In
MACROTOR this upperbound gives 104 cm? sec! using the observed
turbulence level. This is in fact insufficient to account for the
observed confinement time of- 1 msec by a factor of almost 100. In
contrast to our fluid theory of the linear phase shift, the present

nonlinear phase shift is certainly contributed by the high (m,n) modes.

5. Conclusions
In this work we consider a simple analytic model of anomalous
electron thermal diffusivity in a periodic cylinder model of a tokamak
due to high (m,n), low frequency magnetic fluctuations. This diffusivity
has a simple upper bound and is of the same order as the one calculated
from our earlier work. It arises from an interaction of parallel and
perpendicular electron heat transport in the presence of fluctuating

magnetic fields.

Without introducing topological ideas relating to field 1lines
explicitly, it is nevertheless possible to show that the plasma volume
can be divided into ‘'normal' regions away from resonant radii where
nearly neoclassical transport prevails and 'anomalous' regions
surrounding resonances where there is a considerable enhancement of
transport. We have derived explicit formulae which give the volume
fraction of the anomalous set in terms of the field fluctuations. This
is, as far as we know, a wholly new result. We have related our results
to our own earlier work and briefly with those based on field-line

wandering concepts and test particles.
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