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ABSTRACT

The effect of electron trapping on ECRH
driven currents in tokamak magnetic field
configurations has been calculated using the full
Fokker-Planck collision operator to take account
of the electron-electron collisions.
Relativistic effects are also included in the
electron cyclotron resonance condition. The
treatment is linear, two-dimensional in velocity
space and applies to large aspect ratio tokamaks.
For suprathermal, non-relativistic resonant
electrons the inclusion of electron-electron
collisions is found to substantially reduce the
effect of trapping compared with predictions
based on the Lorentz gas model. For thermal
electrons the fractional reduction in current is
similar to that obtained when electron self-
collisions are neglected. When relativistic
effects become important, trapping affects the
current on the Tow field side of the resonance
considerably less than the current driven on the

high field side.
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1.  INTRODUCTION

The use of electron cyclotron waves to drive the plasma current in a
tokamak relies on selectively heating electrons flowing in one
direction along the magnetic field 1ines. In principle this can be
achieved by choosing a wave frequency such that the Doppler shift tunes
the wave frequency to the gyrofrequency of the electrons to be heated.
Current drive results from the reduced frequency of collisions between
the heated electrons and the thermal ions as was first discussed by
Fisch and Boozer! in 1981. In the three years following the
publication of that paper the method has been demonstrated
experimentally in the Culham Levitron? and TOSCA3 devices and almost
every aspect has received some theoretical treatment, albeit to varying
lTevels of sophistication. One such aspect, namely the effect of
electron trapping in the inhomogeneous magnetic field of a tokamak, is
the subject of the present paper.

The most obvious result of trapping is a decrease in the current due to
the reduction in the number of current carrying electrons. Secodndly
the electron cyclotron wave tends to drive the passing resonant
electrons into the trapped region of velocity space. As first
discussed by Ohkawa“, this generates an imbalance in the number of
passing electrons circulating clockwise around the torus compared with
the number flowing anticlockwise and thus generates a current which
tends to cancel the Fisch-Boozer current. Thirdly there is an

effect on the current due to frictional drag on the passing electrons
by the trapped electrons®. Qualitatively therefore, the current is
expected to be strongly influenced by neoclassical effects and to be a
sensitive function of the tokamak aspect ratio, with the sensitivity
diminishing as the parallel velocity of the resonant electrons is
increased from thermal to suprathermal.

These features were first quantified by Chan et al® and by Cordey et
al’ on the basis of linearized Fokker-Planck calculations in the



Lorentz gas approximation. A particularly interesting result of Chan's
calculation is the prediction of current reversal for sufficiently
small aspect ratios for which the Ohkawa component of the current
exceeds the Fisch-Boozer component. Chan also studied the influence of
electron self collisions through the use of a model operator and
predicted an enhancement of the trapping effects compared with the
results of the Lorentz gas model. A more recent calculation® has
investigated the consequences of poloidally localizing the ECRH power
absorption on each flux surface, as would happen experimentally. The
current drive efficiency is found to be least affected for power
absorption on the high field side of a tokamak, because the number of
trapped electrons is smaller on the inside than on the outside of each
flux surface.

The above calculations did not treat electron-electron collisions
fully and omitted relativistic corrections to the resonance condition.
As first shown by Cairns et al? the relativisitic correction has a
significant effect for quasi-perpendicular wave propagation even in low
temperature plasmas. For the case of a uniform magnetic field,
electron self-collisions can reduce the current drive efficiency from
that predicted by the Lorentz gas model by up to a factor of sixlO0.
Therefore we include both elements in the present work which treats the
neoclassical effects using a method developed from that of Rosenbluth,
Hazeltine and Hintonll S5 for ohmic currents in large aspect ratio
tokamaks.' The adaptation to ECRH current drive and, in particular, the
analysis leading to the integro-differential equation which describes
the neoclassical correction to the current have been presented in a
previous paper’/. For completeness the derivation of this equation,
which is the starting point of the present calculations, is summarized
briefly in section 2. The driving term in the integro-differential
equation is generated from the complete electron distribution function
for no trapping. In ref 7 the distribution function could only be
obtained for the Lorentz gas model. In section 3 it is obtained in the
form of a Legendre polynomial expansion with both electron-ion and
electron-electron collisions included in the calculation. The
reduction in current due to trapping is then obtained from a numerical
solution of the equation derived in section 2. The results are
expressed in terms of the total current density per unit absorbed power



density, J/Pd, and are presented as a function of a parameter u, which
is related to the parallel velocity of the resonant electrons and a
parameter S which measures the relativistic correction to the resonace
condition. In the non-relativistic 1imit $=0 and u, is -the resonant
electron parallel velocity normalized to the thermal velocity. The
current drive efficiencies for S=0 are compared in section 3 with the
recent non-relativistic results of Taguchil2 which were reported while
the present work was in progress.

The present theory does not allow for any dependence of the ECRH quasi-
linear diffusion coefficient on the poloidal angle 8. At first sight
this would appear to be a serious omission since ray tracing codes
predict!3-1% and experiments indicate3 15, very localized power
deposition on each flux surface cut by the resonance layer. However we
show in section 4 that such a localization in large aspect ratio
tokamaks will only have a significant effect when the parallel velocity
of the resonant electrons is comparable with, or less than the thermal

velocity.

2. NEOCLASSICAL THEQORY

The present calculations of the trapped electron correction to ECRH
driven current are based on the 'banana' regime analysis for ohmic
currents of Rosenbluth et alll and Hazeltine et al®. That analysis was
modified by Cordey et al’ for the present driving term which, in
Legendre polynomial representation, contains terms of higher order than
Pl(a), where £ is the cosine of the electron pitch angle. The
treatment is steady state, perturbative and applies to large aspect
ratio tokamaks; terms of higher order than s% (e=r/R) are neglected!l.
Thus the electron distribution fuction is written as

P Fuak Py (1)

where Fme is the Maxwellian distribution and fé is the perturbation.
The Tinearized Fokker-Planck equation for ECRH in toroidal geometry

is given by;
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The first term on the left hand side is the quasi-linear diffusion
operator for electron cyclotron waves, Ceiis the electron-ion Coulomb
collision operator, and Cee is the electron- electron collision term.
The electron parallel and perpendicular velocity components are denoted
by v, and ¥, respectively, r is the minor radius and @ is the poloidal
angle. The poloidal and toroidal magnetic fields are taken to have the
form Be=BeO(r‘)[1+ecose]‘l and B(p=BdJO[1+e:cose]“1 respectively.

The quasi-linear diffusion coefficient for X-mode fundamental
absorption is given by:

> = 080 - ¢ (1 - Y )y, ] (3)

The delta function represents the electron cyclotron resonance
condition for mildly relativistic electrons (terms of order v%/c* are
neglected) in which w is the wave frequency, knis the component of the
wave vector parallel to the magnetic field and v is the electron
velocity .

The parameter D0 is given by 1lé:

2 kv, 2

o %Ejmé E- + _EGEE“ - (4)
where E- is the electric field component which rotates in the same
direction as the electron gyromotion and m, is the electron mass. For
X-mode fundamental absorption the second term in eq.4 is of relative
order v/c and is neglected so that Do becomes independent of velocity
space variables. The form of DO given by eq.4 is strictly only
appropriate to homogeneous systems. In tokamaks both the variation of
E- around a flux surface and the effect of the rotational transform

serve to make the diffusion coefficient depend on poloidal anglel7,18,



However in Section 4 we show that for large aspect ratio tokamaks and
suprathermal resonant electrons such a dependence of DO on @ has only a
minor effect on current drive efficiency and can be omitted for the
-purposes of the present calculations.

Although in this paper we treat only the X-mode fundamental we expect
the results to apply qualitatively to both O0-mode and X-mode and also
to the second and higher harmonics since the current drive efficiencies
for no trapping are not particularly sensitive to mode type or harmonic
number 7 19,

The perturbation of the electron distribution function, to order s% can
be writtend 7.

- 0 §
fa = Teg® Fre 1 [M(v:0) + F1iv,0)] P (e) =

where feo is the perturbed distribution function for no trapped
electrons. The term in brackets is the neoclassical correction of
which the hg coefficien}s contribute mostly in the trapped region of
velocity space and the fn are generated by collisions between the
trapped and passing electrons. In a previous paper’ it was found that
the sum of the coefficients h? and ft, which is required for
calculating the current, satisfies the following integro-differential

equation;

bi'+ P(x)b! + Q(x)b,- iﬁg- [xI3(x) - 1.2xIs(x)
A

- x*(1 - 1.2x2) (Iy(x) - Io(w))]= R(x) (6)
in which
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X _y2
In(x)\= bele Y yNdy (8)
P=-x -2x+2x%E'/A (9)
Q = x_z- 2(Z+E-2x3E' )} /A (10)

The variable x is the electron velocity normalized to the thermal
velocity (x=v/ve), which is defined in terms of the electron

L
temperature Te by ¥o= (2Te/me)2 The function A is related to the

error function E by A = E-xE', Z is the effective plasma ionic charge
and the triangular brackets denote an average over poloidal angle. The
term R(x) is given by

R(x) = %iy [a1(x) -z a (x) H (e)][xE' + (2x2-1)E + 2Zx2] (11)

Nodd

where the functions Hn(s) are given in Ref.7 and an(x) are the
coefficients in the-Legendre polynomial expansion of the perturbed
distribution function for no trapping

feo - Fme Ean(x) Pn(g)‘ (12)

The total current density averaged over a flux surface is given by 7

dev n © 2
J -_-_.___E_e_f (al+b1)x3e-x dx + 0(¢) (13)
3n® 0

This far we have summarised previous work in order to give the basis
for the present calculations. The new contribution of these
calculations is to determine all the odd order coefficients an(x)
required to generate the driving term R(x) and then to solve eq (6) for
the neoclassical correction. The calculation of these a, coefficients
is carried out in the next section.



3. THE ELECTRON DISTRIBUTION feo

For the case of a uniform magnetic field the linearized Fokker-Planck
equation is given by eq(és with fé = feo and afé/ae = 0. We substitute
the Legendre representation of feo given by eq (12) into eq (2). The
collision terms Cee and Cei may be derived from the Rosenbluth
potentials20, and given the form of their kernel, the expansion in
Legendre polynomials is most easily accomplished using the addition
theorem for spherical harmonics. The final result is a set of
uncoupled equations for the velocity-dependent coefficients an(x) of

the form:
aa'(x) + P(x}aa(x) + On(x)an(x) + Sn(x) = Tn(x) (14)

The differential terms are obtained entirely from Cee(feo’ Fme) and the
integral term Sn(x) from Cee(Fme’feo); all three collision terms
contribute to Qn(x). The driving term Tn(x) results from the quasi-

linear diffusion operator. Specifically these terms are as follows:

= 1 Z  RE"y . SXIE!, (15)
Qn(X) —n(n+1)(m-1 -—K-——A-) + =
_ _ 4x2 n(n-1) ,7 1
Sp(x) = - arll + ] = Ly ()
4x3 (n+l)(n+2) M *
* 2n+1[ Zn+3 %2 L ] T Ln,l-n(X)
4x3 n(n-1)  x"  *
- 2w IZnIT  tn,3-n )
4X2(n+1){n+2) 1 L (X) (16)
* 20t I)(20%3) T Tn,n+d
L (x) =2 jx a_(t)e t2 et (17)
n,2 _;/2 L
© _+2
Ln,otX) = E% [x apltle ittt (18)
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ve vOA
- 2xx P (X0)] 2 J{H(x-a ) - H(x-a,)} (19)
0 n'x Xo - +
where S = Qve/(Zk"cz), Xo = Uy ¥ %28, u, = (w-@)/k"ve, a, = (1

/T-8uS)/2S|, H is the Heaviside function, v, = e“neinx/4nsgvgmé, ng.is
the electron density and anx is the Coulomb logarithm. The parameter S
relates to the strength of the relativistic correction to the ECRH
resonance condition. In the non-relativistic limit, S=0, the

resonance condition is represented by the straight Tine in velocity
space v, = UgV,. The effect of the relativistic mass increase is to
convert this line into a semi-circle center at the point [VL/Ve=O’
v"/ve=(25)'l] and having a radius (1-4u05)6/25 inv /vjand v /v,
velocity spacel®. Examples of resonance 1ines for various values of S
and u, are given in fig 1 and ref 10. The Timits «_and @, are the
minimum and maximum values respectively of the electron speed,

for which electrons can be in resonance.

normalized to Vit
For given values of S and u,, eq(14) was solved numerically for values
of n up to some cut-off value Max using the two-point boundary value
code described by Cordey et al2!. For example a value nmax=17 gave an
error of less than 1% in the current for u,=2. The solutions were then
used along with the Hn(e) to form R(x) by means of eq(1l). The two-
point boundary value code was used once more to solve eq(6) and obtain
b,(x). The electron current was obtained from a,(x) and b, (x) using
eq(13). The calculation was repeated for several values of nmaxto
check for convergence. The results are expressed as the usual current
drive efficiency, namely the current density J divided by the deposited

power density Pd' The latter is given by
F
_ v2 w R v2 o ey s
Py = [ ﬁ_avl{Do"l‘S[ K, - k—"(l- ey 1%l EVJ. }d3v (20)

which reduces to



4D n.m_ o4 2
Pd = _O:I_ef x3(x2_x02_1 + ZXOS)E—X dx (21)
T Vv [+ A
e
The integral can be evaluated analytically givingl?
2D n.m 2
Py = ﬁ—i [-S%K, + (1-2uS+2S2)K, - (L+ug-2u,S)k,] (22
e
o}
where K = faz y”e'y dy and can be obtained from the recurrence
relation
2n 2n
K, = nK__; + a_ exp(-a?) - o exp(-a2) (23)

The current drive efficiencies'J/Pd are expressed in dimensionless
. - . . - 2
units by normalizing the current density to n.evy and Pd to nJMaVavo

in the standard way?22.

The results for the non-relativistic 1imit (S=0) are shown in fig 2
where the current drive efficiency J /Pd is plotted against ug for

Z=1 and for values of the inverse aspect ratio =0, and €=0.1. These
results can be compared with those of Taguchil2? who also based his
calculations on the formalism of Hazeltine and Hinton but obtained the
current by a technique which is substantially different from and '
somewhat more elegant than that used in the present paper. Taguchi's
method is similar to that given earlier by Antonsen and Chiu?3 and uses
the self adjoint property of the collision operator to show that the
Spitzer Harm solution is the Green's function for the current produced
by any type of driving mechanism. The excellent agreement between the
present results in the non-relativistic 1imit and those of Taguchi (see
Fig.l of ref.12) bears witness to the high precision of both methods.

Also shown in Fig.2 are similar curves for the Lorentz gas model
which, for large values of u, and =0, predicts efficiencies higher by
a factor (Z+5)/Z than those obtained with electron-electron collisions
included in the calculation!,’,® For ease of comparison, therefore,



the Lorentz gas efficiencies have been divided by (Z+5)/Z in fig 2.

[t can be seen from fig 2 that for suprathermal resonant electrons
(Targe values of wu,) the inclusion of electron-electron collisions in
the calculation has a large effect on the fractional reduction in
current due to  trapping. For example the Lorentz model predicts a
factor of two reduction for u,=4 whereas the full calculation predicts
only a 17% reduction. In the case of resonant velocities close to
thermal the two calculations predict approximately the same reduction
in current which is substantially greater than that of either model for
suprathermal electrons.

The result of including the relativisitic correction to the resonance
condition can be seen in fig 3 for the cases of u,=3 and u,=-3. We
define k"to be positive when directed along B and negative when against
B so that Uy = 3 corresponds to waves travelling along B and being
absorbed on the Tow field side of the resonance. The value u,=-3
refers to the same waves being absorbed on the high field side. In fig
3 the current drive efficiency is plotted against S for Z=1 and for =0
and €=0.1. Again the Lozentz gas model results are divided by the
factor (Z+5)/Z. On the Tow field side the effect of the trapping
reduces as S increases which is not too surprising since the
relativistic correction causes the resonance line in velocity space to
curve away from the trapped particle region as shown in fig 1. The
Lorentz gas model overestimates the trapped electron correction and
this overestimate becomes greater as S increases. Note that on the Tow
field side a cut-off exists such that the resonance condition cannot be
satisfied for S>(4u )-l. This cut-off occurs at the point where the
mass increase separates the gyrofrequency from the wave frequency to
such an extent that only those electrons with v,=v are resonant.
Further increase in S would require the parallel velocity of the
resonant electrons to exceed their speed.

On the high field side (u,=-3) the effect of trapping is increased as S
increases. Qualitatively this is because the mass increase tends to
curve the resonance line towards the trapped particle region (see

fig 1) for negative values of u, . For large values of S the fractional
reduction in current predicted by the Lorentz gas model agrees more
closely with that given by the full calculation.

< I =



4. THE EFFECT OF LOCALISED POWER ABSORPTION

The preceding analysis assumes that the quasi-linear diffusion
coefficient Doin eq(2), does not vary with poloidal angle o. In
practice, however, microwave power is injected into tokamaks from
directional antennae so that the wave intensity is far from uniform
around a flux surface. The question also arises as to whether the
present results could be used in conjunction with ray tracing codes to
obtain current density profiles. In this case the power absorption
from each ray is strongly localised in e at the point where the ray
intersects the flux surface8. The effect of such a localized power
absorption has been studied in the Lorentz gas approximation in ref 8
for the case of a non-relativistic resonance condition. Following the
analysis in ref 8 but using the mildly relativistic resonance
condition, that is by using the diffusion operator

) aFme o)
1 3 W v 24
22 mpvesf@ -2 Y )y ] — 1s5(0-6.)
v, avl{ gl [k_n 1‘<_||( 2<:2J '] ov, } B

we obtain the following expression for the current density

== emeneD0 ag LW 1/Bmax da
J(e,0,) = - ———(1+ecos6 ) {[ w2(w-wy-1+2Swle™ dw/ e
nﬁTevOZ a2 Ao <(1-AB)°/B>
2 i -w
= B_l a+ ZSWWHE(W-Wn)e dw (25)

a @2 <(1*AOB)%/B>

In eq (25) 0, is the poloidal angle at which wave absorption occurs,

w=v2/vZ, a=v2/(v2B), Ap=(v2-v(2)/(v?B,), Vor % —-%ﬁl—%62)=uove+5v2/ve,

It
- 2 2 =M -
W=V, /ve and Ba B(o ea).

Formally the integration over w is between the limits «? and ai.
However the condition A, <1/Bmax, which Timits the integration to the
passing particles, implies further restrictions on w. This condition

can be written

o 1T o=



(1-wy/w) < Ba/Bm (26)

Noting that w,=(u,+Sw)2 we find that eq(26) Teads to the inequalities

1 B 2u.S B B 4u .S
a 0 a a 0 L (27)
Wos {I- o= = — - [(1- &2 (1- 5= - — )
257 Bm Ve [ Bm Bm Ve ]}
1 B 2u.S B B 4u.S
w2 {1- a __o ., [ L T - g ) %} (28)
g5z g -t g Mg =)

Real values of w given by the equalities in eqs(27) and (28) correspond
to the points at which the resonance Tine cuts the trapped particle
boundary. Imaginary values correspond to the case where the resonance
semi-circle misses the trapped region altogether. In the zero trapping
limit, =0, equation (25) reduces to the expression given by Start et
all0 for the case of a Lorentz gas in a uniform magnetic field, namely

em neD
Jle=l) = =2
n’i’Te vOZ czg

Equation (25) has been evaluated numerically as a function of ¢ for
absorption angles ea=0°,90° and 135°. Results for values of the
parameters (uO,S) = (3,0), (3,0.06) and (-3,0.2) are shown in fig 4
where the current density is normalised to the current in a uniform

a? 1 1 - i
" 3lzwO'i[w-wo-l+25\«rG'i-S(w-wo)wo ] e Vau (29)

field, J(e=0), as given by eq (29). For absorption on the Tow field
side, (u,,S)=(3,0.06), and in the non relativistic Timit, (u,,S) =
(3,0), where the resonant electrons have large parallel velocities, the
dependence of the current on 6, is small, at least for values of ¢ Tess
than 0.2. However in the case of absorption on the high field side the
variation with ea becomes significant as S increases and the resonance
1ine curves towards lower parallel velocities. For (uO,S)=(-3,O.02),
and £=0.1 the current varies by approximately + 30% about the value for
ea=90°. In this particular case the sensitivity to the absorption
angle is expected to be reduced somewhat by the inclusion of the
electron-electron collisions since, as shown in fig 3, their presence
produces less reduction in current due to trapping than is predicted by
the Lorentz gas model. However for values $>0.2 the effect of

- 12 -



electron-electron collisions on the fractional reduction in current is
minimal and so the dependence on the poloidal angle of absorption will

be significant.

5.  SUMMARY

" The trapped electron correction to the current driven by X-mode
electron cyclotron waves has been calculated for large aspect ratio
tokamaks using the full Fokker-Planck operator to describe the electron
collisions. The calculations also include the mildly relativistic ECRH
resonance condition. For suprathermal electrons the fractional
reduction in current due to trapping is substantially less than that
predicted by the Lorentz gas model. On the other hand both models give
approximately the same percentage reduction for resonant electrons with
parallel velocities close to thermal. The relativistic effects in the
resonance condition tend to reduce the trapped particle correction to
the current in the case of waves absorbed on the low field side. This
is due to the fact that the resonance line curves away from the trapped
particle region of velocity space as the electron mass increases.
Conversely, on the high field side the trapping effect is increased
since the resonance becomes curved towards the trapped electron region.
The validity of the calculations when the power is absorbed locally on
each flux surface has been tested. For suprathermal electrons, and for
the large aspect ratios appropriate to the full Fokker-Planck
calculation, the current is found to be almost independent of where the
power is absorbed. For a given aspect ratio, however, the current
becomes increasingly sensitive to such localisation as the resonant
electron velocity is reduced. Future development of electron trapping
calculations towards smaller aspect ratio tokamaks will require a full
bounce average treatment of the quasi-linear diffusion operator. In
addition, as the microwave power injected into present day experiments
is increased, nonlinear effects will have to be taken into account.

For example using Fielding'sl7 formula for D (eq 4 of ref.17) and the
expression given by Fidone et al2% for the ratio of E= for the X-mode
fundamental to the total rf electric field we estimate that nonlinear
effects would become apparent (ZD/vovez~O.2) in a tokamak 1ike DITE
(ne=3x1013 cm™3, To = 1keV, R = 1.17 m, r=0.1m, sinxr=%) for an input
rf power of 1.6 MW at 60 GHz. This estimate of the threshold at which

< 13 =



nonlinear effects become important will be increased somewhat by finite
beam width effects which spread the resonance in velocity space and
which become noticeable when the particles pass out of the beam before
they experience the magnetic field variation due to the rotational
transformi8,

- 14 -
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Fig.2 Current drive efficiency J_/Pd versus u? in the non-relativistic limit for values of the inverse aspect
ratio € = 0 and e = 0.1. The full curves are the results with e-¢€ collisions taken into account. The dotted
curves are the results for the Lorentz gas case divided by the factor (Z+5)/Z. The scale on the right-hand
side enables the ratio of current to power in amps/watt to be obtained. The ratio I/P is the current flowing
in the annular volume between adjacent flux surfaces of radii r and r+dr divided by the power absorbed
in this volume for those electrons lying on the resonance semi-circle in velocity space defined by uy and S.
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Fig.3 Current drive efficiency versus the relativistic resonance condition parameter S for
uo = 3 (absorption on the low-field side of the resonance) and ugy =-3 (absorption on the
high-field side). Values are given for e = 0 and e = 0.1. The solid curves refer to the full
Fokker-Planck treatment and the dotted lines refer to the renormalised Lorentz gas model
results.
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Fig.4 Current density with trapping normalised to the current density for no trapping
plotting against € for several values of the poloidal angle of absorption. All the curves
are for lug | = 3. The left hand set refers to the non-relativistic limit (S = 0). The centre
set refers to absorption on the low-field side by weakly relativistic electrons (S = 0.06).
The right hand set is for absorption on the high-field side for § = 0.2.
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