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Abstract
Using a model tokamak equilibrium we investigate the influence of a
magnetic separatrix on the stability of the plasma against ideal MHD

ballooning modes. We also give a physical interpretation of the results.
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Tn Introduction

Auxiliary heated tokamaks generally exhibit a degradation of enerqgy
confinement time as the input power is raised. It has been conjectured[1]‘
that this is due to local onset of ballooning instability where the
pressure gradient exceeds the theoretical limit (calculated for circular
magnetic surfaces). Recently[2'3'4] several tokamaks (Asdex, Doublet III
and PDX) have operated in a new regime (the H-mode) in which degradation
of confinement is less apparent. A significant féature of these machines
is that the boundary of the plasma is defined by a magnetic separatrix,
rather than by a material limiter. This is achieved by operating the
tokamak with an axisymmetric (poloidal) divertor. The plasma may then

exhibit either the L-mode, in which the usual degradation of confinement

is observed, or the H-mode.

We are therefore led to investigate the ballooning stability limit
for plasmas with a separatrix. To do this we consider a model tokamak
equilibrium which allows us to investigate ballooning stability at various
distances from the separatrix, and to examine the effect on marginal
stability of changing the location (in poloidal angle) of the X-point.

(We shall restrict our attention to the case of a single-null divertorf)

In section II we describe the model equilibrium and derive the
corresponding ballooning equation. Results from a numerical solution of
this eguation are presented in section III, and we give some physical

interpretation of these results in section IV.



II. Equilibrium and Ballooning Equation near a Separatrix

(5]

The theory of ballooning modes allows us to calculate the
stability of the plasma at a given flux surface in terms of equilibrium
guantities given solely on that flux surface. It is therefore sufficient

to consider a tokamak equilibrium near a single flux surface, and thereby

avoid the complexity of having to construct a global equilibrium.

Consider the Grad-Shafranov equation for the poloidal flux function
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where X is the normal distance to the major axis, p(¢) is the plasma
pressure, and I(¢) is the toroidal field function (§¢ = I(¢)V¢) , and
primes denote derivatives with respect to ¢ . We introduce the
coordinate system shown in Fig 1 in which p is the normal distance (in
the poloidal plane) from the flux surface C , & is the arc length
measured along the surface, and ¢ is the toroidal angle. Following

(6]

"Mercier we expand ¢ , and the other equilibrium quantities, in powers

of p around the flux surface (which we choose to be ¢ = 0):
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where BP = ,EPI is the magnitude of the poloidal field (EP = V¢ x v¢) i

From Fig 1 we also have
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where wu(fl) 1is the angle between the local tangent to the curve and the

X-axis. We can calculate u(l) from

R
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where R(A1) 1is the local radius of curvature of the surface in the
poloidal plane. Substituting into Eg (1) and equating powers of p we

obtain the following equilibrium relations
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The equilibrium is specified by prescribing the shape of the surface

(which determines R(&) and u(l)] and the poloidal field Béo)

(L) on
the surface. These gquantities can be chosen arbitrarily, and in doing so
it must be assumed that a corresponding global equilibrium exists. (This

is not guaranteed, however, since a continuation of the solution into the

magnetic axis could yield a singularity.)

For simplicity we choose surfaces whose shape and poloidal field

distribution correspond to those generated by the field of a pair of

(7]

parallel wires carrying equal currents (this field structure posesses a
separatrix, with an X-point midway between the wires). Note that we are

using this straight system only to determine the functions R(AL) , u(l)

(0)

and BP (L) , and that our equilibrium is calculated in toroidal

geometry. We shall consider only those surfaces lying inside the
separatrix. These surfaces are labelled by a parameter k such that as

(0)

k =+ 0 the surface becomes circular (and B becomes independent of ).

In this limit our equilibrium model and ballooning equation reduce to

(8]

those of the "s-a" model As k + 1 the shape of the surface

approaches that of a separatrix.

In polar coordinates (r,8) the shape of the surface is specified

implicitly by
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and the poloidal field is given by
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Egqs (6) and (7) are normalised so that at the point on the surface

(0)
P

directly opposite the X-point, both r and B are independent of k ,

0
and are given by r = r; and Bé ) = B respectively. Successive values
of k then generate equilibria having roughly the same toroidal current.

Fig 2 shows plots of the surfaces for various k-values, and also defines

the angle ¥y (the poloidal location of the X-point) used in Eqs (6) and

(7).

We can calculate the function R(8) from
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To investigate the ballooning stability of our equilibrium we must
solve the ballooning eguation which, for marginal stability, can be
written
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where F and S are quantities which appear in the eikonal form for the

. ins [5] ; ; >
plasma displacement §E = Fe . Using the relation Be*VS = 0 we can

construct S as an expansion in powers of p to give
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Note that the ballooning mode formalism introduces an undetermined
parameter' RD . In solving Eg (8), 10 must be given the value which

gives rise to the most unstable mode.

We now use the equilibrium relations (4) and (5), together with Egs
(8) and (9), to derive the required ballooning equation. After making an
expansion in powers of the inverse aspect ratio g ~ rO/X0 , and keeping

only the leading order terms, we obtain
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As a consequence of the ballooning transformation, the arc length variable
4 in Eq (10) lies on [—m ' m]. Note that as k » 0 our definition of
a@ becomes identical to the definition a = -2X0(dp/dr)q2/B2 introduced

in [8].

Egq (10) determines the critical pressure gradient as a function of o
and k . The quantity ¢ 4is proportional to the toroidal current
density. Since the outer regions of the plasma are relcstively cool, and
therefore resistive, the current density near the separatrix will be

small. We therefore set ¢ =0 , and determine a(k) . To some extent



a(k) replaces a(s) in earlier work (where s is a parameter
describing global shear), but note that although k controls the shear it
does so by changing the shape of the flux surfaces, rather than by

changing the plasma current. We can define a global shear s to be
X5roBg dg

qa d¢

where q(¢) is the safety factor. Again, for circular flux surfaces this
coincides with the definition s = (r/q)dgq/dr of [8]. To leading order

in the inverse aspect ratio we have
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III. Results

The two-point boundary-value problem represented by Eq (10) was
solved using a finite difference scheme based on the Lentini-Pereyra
deferred correction algorithm[gl. We demonstrate the effect of the
separatrix on ballooning stability by plotting graphs of a against k
for various values of the angle y . As k + 1 the shape of the magnetic
surface, and the distribution of poloidal field on the surface, approach
those of a separatrix; In Figs 3 to 5 we show the results for y = 3n/4 ,

n/2 and 0 . In each case there are two regions of stability separated by

an unstable region. These stable regions correspond to the first and



second stability regions of the s-a model. Fig 3, for y = 3n/4 ,

corresponds to the single null divertor configuration in PDX. In this

case the marginal a shows a moderate dependence on the shaping parameter
k . The results shown in Fig 4 for y = m/2 , corresponding to the
divertor configuration in ASDEX, show a similar behaviour for the marginal
@ . This contrasts with the case of y = 0 , shown in Fig 5, which
corresponds to an X-point on the outside of the torus as in the new large

tokamak JT-60. In this case the critical a falls markedly as k + 1 .

As these results suggest, the location of the X-point plays an
important role in determining the stability to ballooning modes. This is

confirmed in Fig 6 which shows the first stability boundary for various

*
values of y .

i .
Studieg of ballooning stability near a separatrix have also been carried

out by R W Moore, L C Bernard and M S Chu (private communication). They
define an a-like quantity by

-E’V' ( v ]l/2
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where V(¢) is the volume enclosed by the flux surface. Since V'(¢)
increases as k » 1 they obtain larger values of a near the separatrix.

When our answers are expressed in terms of this definition of « we find

results which are in broad agreement.



IV  Physical Interpretation and Conclusions

There Are two aspects of a magnetic separatrix which we might expect
to influence the ballooning stability limit. The first is the global
shear of the magnetic field which becomes large as we approach the
separatrix. This can be seen from Fig 7 which shows the global shear s
corresponding to the first stability boundary of Fig 3. In general we
expect this strong shear to exert a stabilising influence. The second
effect of the separatrix arises because the poloidal field becomes very
small in the neighbourhood of the X-point. Consequently, the "connection
length"™ along a field line between the inside and outside of the torus is
increased and the field line "lingers" for much of its length in the
vicinity of the X-point. The lengthening of the field line will generally
be expected to weaken the stability while the lingering effect will be
expected to improve stability if it occurs in the good curvature region
(the inside of the torus) or to impair stability if the lingering is in

the bad curvature region (the outside of the torus).

It is clear from our results that the strong shear as k + 1 , shown
in Fig 7, is not the dominant factor in determining stability to
ballooping modes. Instead the fact that the critical a depends strongly
on the poloidal location of the X-point, as shown in Fig 6, suggests that
it is the field line lingering which is the dominant influence. This
interpretation is supported by an examination of the marginally stable
eigenfunctions. Fig 8 shows the eigenfunction for y = 3n/4 , k = 0.99 .

The X-point is at 6 = %E *tn2n , n=0,1,2,..., in this figure, and

10.



we see that the eigenfunction is localised on the outside of the torus and
falls to zero at the X-point, so minimising the stabilising effect of
field line lingering in the region of good curvature. By contrast the
eigenfunction for y =0 , k = 0.99 , shown in Fig 9, is spread out in
poloidal angle. It makes many poloidal circuits and on each circuit
exploits the field line lingering in the region of bad curvature.

Since it is field line lingering near the X-point, rather than global
shear, which controls ballooning stability near a separatrix, the greatest
stability against ideal ballooning modes will be obtained with the X-point

on the inside of the tokamak.
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Fig.1 Co-ordinate system used for the construction of the equilibrium.
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Fig.2 Plots of the magnetic surfaces corresponding to various values of k.
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Fig.3 Dependence on k of the marginally stable @, for y = 37/4.

0.8+

0.6

0.0 : !

0.50 0.60 0.70 1.80 0.90 1.00

Fig.4 Dependence on k of the marginally stable o, for y = n/2.
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Fig.5 Dependence on k of the marginally stable e, fory = 0.
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Fig.6 Comparison of the first stability
boundaries for various values of 7.
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Fig.7 Global shear s as a function of k for the
first stability boundary of Fig. 3.
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