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ABSTRACT

A general representation of finite volume preserving maps induced by
solenoidal vector fields in periodic cylinders is derived. An important
special case is the area preserving Hamiltonian maps which include the
standard mapping. Applications to computational problems in plasma

physics are briefly indicated.

(Submitted for publication in Physics of Fluids)

October 1984






Solenoidal vector fields (also called incompressible or divergence-
free fields) are of great importance in all branches of physics. It is
well-known that such fields define volume preserving transformations in
the correspending phase space. A typical example of great interest in

1,

plasma physics is provided by the magnetic field 3(;) defined inside
a torus in three space dimensions. The infinitesimal equation of the

transformation is

where A 1s a parameter analogous to time. Suppose (1) is solved subject

o - > > .
to the 'initial' condition, r = T, for A = 0; we can then write ; as

a function of ¥, and A . It is evident that VB = 0 implies that the

>
Jacobian J = lgf | =1 for all A
(e2 )

In many applications (some are indicated later in this Letter) it is
useful to have a completely general representation for the finite mapping
connecting ; with ;0 r rather than having to solve (1) explicitly.

Such a representation is useful if and only if it satisfies two basic
requirements: (a) consistency: this means that the finite mapping must
reduce to the infinitesimal equation (1) in the appropriate limit; (b) the
representation must define a volume preserving mapping for any value of A

considered.

In this Letter we restrict attention to three dimensional solenoidal
vector fields. The special case of area-preserving maps is considered

later. It is well-known that non-singular three-dimensional, solenoidal



vector fields define transformations of a toroidal region into itself.
Rather than discuss this general case, we consider a special case of
particular interest in plasma physics. The general problem is a trivial
extension. Thus we consider a periodic, circular cylinder of radius a
and periodicity length 2nR. We take r,0,¢ co-ordinates referring to
the cylinder axis as the 2Z-axis. The angle ¢ is simply related to the
Z-co-ordinate through Z = Rp. Let us consider the solenoidal vector
field g(r,9,¢) defined within the cylinder. We require § to be
periodic in 8 and ¢ sufficiently smooth. We introduce without loss of
generality the vector potential K (i.e. E =V x K) with Ar =0,
while Ae(r,8,¢), Az(r,6,¢,) are independent smooth functions which are

also periodic in © and ¢. We introduce the 'action' variable I = r2/2

and the functions

. - _x
P(I,6,9¢) "Az(rferq)) r T(I,0,¢) = RAG(I'G’M .

It is elementary to verify that I,68,¢ form an orthogonal, curvilinear

co-ordinate system.

The infinitesimal transformation equations (1) take the form

= = 3
dr _ _ 9P _ QT
dan a6 o
a6 _ dP
dp _ T
a dI
<



If these equations are solved for 1I,06,¢ as functions of 10’90’¢0 and

A, the Jaccbian of 1I,6,¢ with respect to 10,90,¢0 must be unity.

Let us consider finite mappings in the I,8,¢ space. The form of (2)

suggests the mapping equations

8 =0+ 2% (1,8,¢)
31’

" dT ,

¢ =o +— (I ,08,¢) ? ’ (3)
o1’

1" =1 - 0o(1',68,0)

where P, T are (for the present) arbitrary smooth functions of their
arguments, periodic in 6 and ¢. o(I’',0,4) is a function yet to be

determined. The determination of ¢ is accomplished by imposing the

Jacobian condition.

An elementary calculation then leads to the equation

2 2 o
90 _ _07P +aT +a(P,T)

oI’ 91’08  BI'd¢ 0(6,0)

' (4)

oP aT
where P’ = — ; T = —

ar’ ar’
Thus, given P, T, ¢ is determined by a quadrature in T up to an

arbitrary function of © and ¢. An instructive special case occurs when

T’ and P’ are functionally related. The Jacobian d(P’,T')/d(6,¢)



then vanishes, and if we take G = oP/d0 + dT/d¢, the system (3) takes

exactly the same form as (2).

The above derivation imposed no restrictions on P and T other
than smoothness and periodicity. Note that (3) and (4) define the most
general volume preserving map. Since the mapping is implicit, then
1’,8',6" can be expressed as functions of 1I,6,¢ only after the system
(3) has been solved. The only exception occurs when dp/3I" , dT/DI’ are
independent of I’ when the mapping clearly becomes explicit. It should

also be noted that when one considers a sequence of volume preserving maps

{M_} , eqguations (3) are replaced by
i1,
oP )
en+1 = en T oar (In+1'en'¢n'n)
n+1
oT
Pnig = ¥ T a1 (In+1'en'¢n'n) > (3)
n+1
In+1 = In - c‘(In+1'en'¢n'n) )
dc  _ _ %P d2T 3(p’,T’) ~
where a1 =31 26 + 3T 20 # 3(6 ,0) and n=12,...
n+1 n+1 n n+1 'n n n

-

The generating functions P and T are not only functions of the phase

co-ordinates but also of n. This is the so-called "non-autonomous' case.

>
It corresponds to the situation where B(r,8,¢) may also depend on time.

An important reduction occurs when T is independent of Gn and ¢n

(but may depend on In+1 and n itself). The system (5) degenerates to



a quasi-two-dimensional form

en+1 ~ ¥n " dI (In+1'en'¢n'n)
n+1

(bn+1 = ¢n + F(In+1rn) » . (6)
oP
Rowq =8y, ™ 80 (In+1'en'¢n'n)

n 4

Another degenerate case is when P and T are functions only of
In+1 ’ en and n . It is obvious from Eg. (5) that we can take g in

’

this case to be ap/aen  in which case the mapping relating I

n+1 n+1

to In ’ en is obviously two-dimensional and area preserving. The

mapping connecting ¢n+1 to ¢n is explicit.
It is easy to verify that the mappings defined by (6) not only satisfy
volume preservation but also the more restrictive condition

B(In+1'en+1) _ 7

a(In,Gn)
Thus they preserve area in the (I,8) space.

We note, that in general, a solenoidal field in three dimensions
requires two independent functions for its specification. This is
reflected in the fact that the mapping equations (3) depend on two
independent functions P and T, ¢ being given by Eg. (4). In n
dimensions volume preserving maps are specified by n - 1 generating

functions. This is in contrast to Hamiltonian or Canonical mappings in



2n dimensions, which require only one function for their complete
specification. Hamiltonian mappings, while wvolume preserving, are more
specialised since they preserve other integral invariants in addition. It
follows that the mapping represented by Eg. (3) and the infinitesimal
transformation, Eg. (2), cannot in general be described by a single
Hamiltonian function. Nevertheless when E does not explicitly depend
upon time, an ingenious transformation due to Cary and Littlejohn3 based

on the work of Darboux can be used to reduce Eg. (3) to Eg. (6).

We take the point of view that in physical applications it is the
infinitesimal transformations which are primary. Thus physics leads to
equations such as system (2) with specific forms for P and T. Any
finite transformation which one might consider is derived from this system
in some way. Unfortunately, it is the rule rather than the exception that
the system (2) cannot be explicitly integrated. Thus, in general, it is
impossible to express the functions P(I’',0,¢) and T(I',8,¢) in Eq. (3)
explicitly in terms of P and T. Furthermore, given system (3), there
is no known criterion which enables us to decide whether it can be derived
from an infinitesimal transformation like (2). Since in physical
applications one is interested in the properties of the infinitesimal
transformation (for example, whether they define surfaces or stochastic
regions), it is very important to ensure that the finite approximations
used have the same gqualitative properties. A simple example of the above

statements is provided by the simple pendulum. The well-known 'standard'
2
If
map generated by P = = + K cos 6 ,

I'"=I+Ksin 8 ; 8" =9+ 1" . (8)



For K ~ 1 this shows stochastic behaviour4. It is easy to verify that
this ﬁap is a finite difference form of the differential equation for the
simple pendulum with a suitable choice of time-step. Since the simple
pendulum is an integrable system, the stochasticity of the finite
difference equations (for sufficiently large At ) does not reflect the
properties of the infinitesimal transformation, but is in fact a numerical
effect. This example illustrates the importance of making sure that the
parameters chosen for the finite mappings are not arbitrary quantities,
but are in fact determined by the physics of the infinitesimal

transformations.

The one exception in which a clear relation can be demonstrated
between infinitesimal and finite transformations occurs in constructing
finite difference approximations to Eg. (2). Thus we integrate (2) from

A to A+ A\, where AMA is small. We then have

MO 5B oF
I(A + AN) = I(N) + [ [= 22 - 9L} o
N 26 0
A+AM 65
A
A+AN o7
(A + AA) = o(A) + [ 31 9 J
A

As is well-known, depending on how one approximates the integrals on the
right, different finite difference schemes are generated. However, most
of these finite difference schemes will have the volume conserving

property only to a certain order in AA. Since the whole purpose of such



schemes is to obtain asymptotic properties, it is important that errors
should not accumulate on volume conservation after many iterations of the
mapping. This principle of qualitative consistency, in addition to the
usual numerical consistencys, can be implemented very simply by writing

Eq. (9) in the form

= 3
8" = B(A + AN) = B(N) + g2 (I',8,9) AN
a1’
A dT ,
¢ = (A + AN) = ¢(K) + — (I lel¢) AN 3 r (10)
o1’
I = I(A + AN) = I(A) - o(1',6,4) AA

3= 2. e f=p
with % _ B°F 2y AN 8 T '
dr’ dI'd6 dI'd¢ 3(6,9)
where P’ = oF and T = o1 "
L’ ar’

This is a backward difference scheme in I, but forward differenced in 6
and ¢. An important proviso is that ¢ contains, in addition to the
usual terms, an O0(A\A) term. In numerical calculations the system (10)
must be solved iteratively, but apart from round-off errors, the volume
conservation property is guaranteed to all orders in AA. This ensures

that there are no numerical sources or sinks.

The accuracy of the scheme Eg. (10) can be very considerably
improved, if desired, by a Picard iteration of the integrals in Egq. (9).

We indicate two possible applications. In stellarators the magnetic



fields are largely éenerated by external currents, but are in general
three dimensional and do not possess special symmetries in toroidal
geometry. The above technique can be used to obtain the magnetic surfaces
(if they exist) and determine any stochastic regions. The mappings in
this case are autonomous since the fields are independent of time.

Similar calculations also apply to time-independent perturbations in
tokamaks. A case of greater interest in tokamaks occurs when time-
dependent fluctuations are superimposed on the mean tokamak field. Here
one is interested in the motion of test-particles which move along field
lines with random velocities. Egs. (2) are then interpreted as the
equation of motion of test-particles, where A\ = t. In this case the
equations only describe the motions between collisions. The full analysis
of the motion and the resulting test-particle diffusion requires the
solution of (2) as well as a random map which simulates the change of
velocity at collision and the displacement of a particle from cne field

line to another. Calculations of this kind will be reported elsewheree.
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