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ABSTRACT
The equations governing linear stability of resistive ballooning
modes are obtained from the full set of two-fluid equations, with

diamagnetic, viscous and thermal conduction effects retained.

A cold icn model in which the full electron physics is retained is
then developed further and the averaged equations valid in the resistive

regime of ballooning space are derived.
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I. INTRODUCTION

Short wavelength modes driven by the pressure gradient are predicted
by ideal mhd theory to be unstable in an axisymmetric toroidal plasma when
the pressure gradient exceeds a critical wvalue (DOBROTT, 1977; COPPI,
1977; CONNOR et al., 1978; CONNOR et al., 1979 and CHANCE et al., 1979).
Such modes have very fast growth rates and might be expected to establish

a definite limit to the B which can be confined in a tokamak

equilibrium.

With the addition of a small but finite resistance toc the mhd
equations, resistive dissipation becomes important in a narrow layer and
theory predicts that a similar, but weaker, short wavelength ballooning
instability should occur whatever the local pressure gradient (CHANCE et
al., 1979; GLASSER et al., 1979; LEE et al., 1979; and BATEMAN et al.,
1978). It has been suggested (CARRERAS et al., 1983)-that such resistive
ballooning modes might provide an explanation of the anomalously large

electron thermal transport in some Tokamaks.

The weakness of resistive instability theory lies in the Ffact that,
unlike ideal instabilities, they are extremely sensitive to any other
small transport effects which might compete with resistivity in the
equations. In practice many effects are of comparable or greater
magnitude, but the importance of resistivity is that it modifies the Ohm's
law in such a way as to permit changes of magnetic topology and therefore
to permit a new class of instabilities. Other terms in Ohm's law, such as
the Hall terms, may be of larger magnitude, but do not break the 'frozen-

in' property inherent in the ideal Ohm's law.

Thus the importance of the single-fluid resistive mhd medel is that
it demonstrates the existence of a new class of modes; its detailed
predictions of stability boundaries for particular equilibria may however
be in serious error. Examples of situations in which the single fluid
resistive theory may give incorrect results are becoming more numerous.
Short wavelength tearing modes (i.e. micro-tearing modes) are predicted to

be stable in a single fluid theory whereas inclusion of a time dependent



thermal force in Chm's law (HASSAM, 1980; D'IPPOLITO, 1980; ROSENBERG et
al., 1980; and GLADD et al., 1980) permits unstable modes driven by the
electron temperature gradient. Gross tearing modes are predicted to be
unstable (provided A' > 0) (FURTH et al., 1963 and COPPI et al., 1966)
yet recent theory shows that inclusion of parallel electron thermal
conduction effects may completely stabilise these modes (DRAKE et al.,
1983). Localised resistive interchange modes in a cylinder are predicted
by single fluid resistive theory to be stable below a critical value of
the pressure gradient (FINN and MANNHEIMER, 1982), yet kinetic theories
incorporating parallel electron thermal conduction and diamagnetic terms
predict instability (CORDEY et al., 1980). Finally it appears that the
same thermal conduction mechanism which stabilises gross tearing modes in
slab geometry may have a similar stabilising effect on resistive

ballooning modes (SUNDARAM et al., 1984}).

Thus if accurate stability analysis for resistive instabilities is
required, either linearly or non-linearly, it must be based on a more
realistic plasma model. Single fluid resistive theory is not a

sufficiently realistic model.

The linear theory of both the ideal and the resistive ballooning
instabilities involves an eikonal ansatz and a transformation of the
linearised equations from the real space, poloidal angle to an extended
angular variable y on an infinite domain (CONNOR et al. 1978). The
problem (ideal or resistive) can then be reduced to the solution of a set
of ordinary differential equations, which in the case of marginally stable
ideal ballooning modes reduce to the familiar second order ballocning
equation (DOBROTT et al., 1977 and CONNOR et al., 1978). The qual-
itatively new picture which appears in the resistive ballooning equations
is the appearance of small terms (proporticnal to the resistivity), which
nevertheless become significant (because of secular dependence of their
coefficients) at large values of the independent variable y , and
therefore control the asymptotic behaviour of the solutions. The
resistive ballooning equations therefore, unlike their ideal mhd
analogues, contain two lengths, a short length typical of the poloidal
variation of equilibrium quantities, and a long, resistive length. This

property is related to the two length scales of resistive modes such as
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the tearing mode or g-mode in slab (FURTH et al., 1963) or cylindrical
geometry (COPPI et al., 1966), but the resistive scale of ballconing
theory is longer than the equilibrium scale because of the Fourier-

transform nature of the balloconing transformation, mentioned above.

For a Tokamak plasma of moderate temperature and high density the
most realistic plasma model is the two-fluid model, where the electron and
ion fluids obey separate evolution equations given, for example, by
BRAGINSKII (1965). 1In this paper we establish the basic eigenvalue
equations of linear theory for resistive ballooning modes using this
complete two-fluid set of equations. A particularly simple subset - the
cold ion equations - are then explored in more detail by exploiting the
two-scale nature of the problem to develop 'averaged' equations wvalid at
large values of the independent variable y . At large y , where
resistive effects are significant, the equations contain rapidly
oscillating coefficients (on the scale of the connection length) but the
eigenfunctions are smooth in lowest order. A systematic expansion in y‘l
generates equations for the lowest order eigenfunctions in which the
coefficients are field line averages over the poloidal equilibrium cycle.
These equations are related to the resistive layer equations of standard
tearing instability theory. They provide a more tractable form for
numerical solution since they do not contain widely disparate scales of
variation. Their solutions must satisfy the usual vanishing boundary
condition as y + «® , while at small values of y they must connect onto
solutions of the 'inner' ideal eguations as resistive terms become
negligible. In principle these inner equations should also be solved
numerically, for a specific equilibrium, with even or odd boundary
conditions at y + 0 according as modes of twisting or tearing parity are
to be studied. Continuing such an inner solution to large values of vy
one would then identify the relative amplitudes of the wvarious independent
solutions and use these amplitudes as boundary conditions for the outer
resistive region equations. Then as a given plasma parameter (e.g. the
pressure gradient) is varied, both these amplitudes (and hence the
boundary conditions) and the coefficients of the resistive equations will
change and the eigenvalue will respond to both. 1In practice appropriate

boundary conditions are often simulated by choosing amplitudes for the
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independent solutions which are typical, fixing them, and studying the
dependence of the eigenvalue on various plasma parameters with these fixed

boundary conditions.

II GEOMETRY AND COORDINATE SYSTEM

The geometry is that of an axisymmetric toroidal plasma of arbitrary
aspect ratio and cross sectional shape. The coordinates used are the
¢, ¥, T set in which ¢ is the poloidal flux within a magnetic surface,
¥ 1is a poloidal angle-like wvariable and ( is the toroidal angle. 1In

terms of these coordinates the gradient operator is

(2.1)
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symmetry axis, BX is the poloidal magnetic field and J is the

where 3¢' Ex, and e  are unit vectors, R 1is the distance to the
Jacobean

J = (Vv x vy)-l . (2.2)
The equilibrium magnetic field is then given by

B = -7 x V¢ + I(HVL . (2.3)

IIT THE TWO FLUID EQUATIONS

The equations governing the evolution of high n resistive
ballooning modes are taken toc be the two-fluid equations derived by

BRAGINSKII (1965).

D.N.
pra AL A (3.1)
D.V. 1
mN ——L = _yp. - Ve, +ne. (E+—vyv.xB] * R (3.2)
J j Dt = i | [N c ~] ~) ~]



3 ]3]

= N, + p. VeV, = =Veg. + Q, = 7.:VV. (3.3)

2 j bt Py 33 QJ =] ~J

D,
and B% = %E + VjOV » Together with the electromagnetic equations,
4an
curl B = = 4 (3.4)
1 3B

url E = - — — .
curl E = T (3.5)

and the guasi neutrality condition Ni = Ne + these eguations give a

complete description for a plasma in the collisiocnal regime.

The transport coefficients have their classical values (BRAGINSKITI,

1965), and the following approximations have been made:

(i) In the electron momentum equation, or Ohms law, electron inertia and
the electron stress tensor are neglected. Neglect of electron inertia
relative to resistivity corresponds to the inequality w << ve , an
approximation which has already been made in the derivation of the

transport coefficients.

(ii) In the two thermal equations Ohmic heating and electron ion
equilibration have been neglected. The former approximation corresponds
to the inequality wig >> 1 with g the energy confinement time, and
the latter to the inequality w >> Vi ® It is then consistent to

consider situations in which Ti # 'I.'e a

The equations contain the electro-thermal terms, but the small time
dependent thermal force terms (HASSAM, 1980), which are responsible in a
fluid model for the micro-tearing instability (HASSAM, 1980 and ROSENBERG

et al., 1980) have not been added to the Braginskii equations.
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In practice it is convenient to replace the electron continuity
equation, making use of the quasi-neutral condition, by V-i =0 and to
work with the fluid equation of motion rather than the ion momentum
equation. A major simplification alsoc follows from carrying out the
linear analysis in the stationary ion frame of reference. 1In this frame

the equilibrium electric field is non-zero, and is given by

E, x B B x VP,
it R SN - IR (3.6)
B2 NeB2

The equations that we will finally obtain have a somewhat unfamiliar
appearance in this frame, so we transform back to the frame of reference

in which E, = 0 , before presenting the final eigenmode equations.

Now, introducing the ballooning transformation and the eikonal ansatz

for short wavelength perturbations, so that

SE = ]

= = -

MM/ Ay [ TRHMY/Xg HASEA ) () TRy (3.9

with Xg = fdx and the eikonal given by

¥ ¢
s = [t~/ vay + [ k(¢ra¢] (3.8)

with v = IJ/R?2 , we linearise the two fluid equations to obtain

NV-E = iwn = veVN (3.9)
V.,J:.. = 0 (3-10)

. 1. 1
iwpy = Vp + V'Ei" mele | % B = z J X Db (3.11)

e + nVPi/(Nze) +v xB + [Vpe - i X E/c -dJdx E/c)/Ne

(3.12)
- 0.71 B[(b-V)T_ + (E-V)te]/az

I
!
|



3 3 . _
B N(X-V)Ti -3 1thi + Pi(V-g) + V'gi = 0 (3.13)

3, 3. 3 3
-3 1mNte + Pe(V-x) + V-ge ol l-VTe/e + D) Ng VTe > J Vte/e
P, P, J, b BVt
== i = L B 2 [z oo, + ] = o (3.14)
N<e N<e
an .
E_;=_Ex(]£xa) (3.15)

In equations (3.9)-(3.15) the lower case symbols n, pj, i, v, E, gi,
tj' e, a, gj, denote the perturbed density, pressure (with p = pi + pe ),
current, fluid velocity, magnetic field, ion stress tensor, temperature,
electric field, vector potential, and heat flux. p = Nmi is the

equilibrium mass density, and
n = nl(z - B8/B?) + n BB/B? (3.16)

is the unperturbed resistivity tensor. Terms arising from a perturbation
of n (the rippling mode driving terms) have been neglected in equation
(3-?2) compared to ﬂ'i since they are of order A-! smaller for the
short wavelength modgé considered here. 1In equation (3.15) the wavenumber

k = 4VS .

These equations are now simplified as follows. The perpendicular

components of the equation of motion (3.11) and Ohms law (3.12) are used

to obtain expressions for ll and ZL . These are
; 2 - 3022 rer g 3.17
i, = (£ x B)/B2 - iu > [EJ. - NL/Ne] (3.17)
T - c(e’ x E)/B2 + cf x E/(NeBz)
) " (3.18)
- wpe” . (1 + in N2e2/pw) - =2 g
~1 i NeB2 ~]

(NeB) 2

= W



where

s' = e - % J x b/Ne + nVPi/(Nze) + Vpe/Ne (3.19)

1
£ = chg-Vp-v-ni (3.20)

and terms of order v, /w , and w/w . have been neglected (w ., = ion-
le cl cl Ccl

cyclotron frequency, vie = lon-electron collision fregquency). The 7

L
term in (3.18) has been retained although it is O(vie/w) since it
appears in the single fluid equations.

In lowest order vl is given by
VS x B
- 1 e + .
Yo ife i (o Pi/Ne) (3.21)

with ¢ the perturbed electrostatic potential.

Expressions (3.17) and (3.18) are now used to calculate V-jl and
V-zl with care being taken to retain contributions from small terms in

=k sv = 0 in lowest order. Explicit

and ince k e
ne 2 ® o i ]

A
evaluation gives

ep P. P m*p
Vej, = Nef-iwb; (7= +3) + 2i 5wy + i(4m - bB) =2
i i i B2
(3.22)
c g v.Ei
— e —
A el
ep p ep P b,
V“L = iwb (—T- + ';—) + :I.(T— + i_)—-][m + U.)B] + iw —
i i i i
(3.23)
Be ti 5 B x V-ni
2,2 ; — 2 = =
+ nlklc y + iwgy [T Ny N] + Vv [ en? ]



dinT,

= 2 2 = _-1 i
where bi lei/(miwci) . nj AN and the frequencies w*i R w*P R
w and mB are defined as follows:
CTi
wy; = (k x BewN) = (3.24a)
NeB
c(kl x BeVP)
ey = (3.24Db)
" NeB2
1 oty
w = [k x BV(anp + 5 B2)] — (3.24c)
P eBY
cTi
wg = (k x B-vB) — (3.24d)
B ~ =~
eB3
with e the proton charge.
From these definitions it follows that
Bi
mp = wB + 5 w*p (3.25)
with Bj = BnPj/B2 » and also that
V VN ed p,
. . i
N = —ilwyy (E_ # 5_) (3.26a)
i i
V VB ep p,
~1 ) . -
5 = -iwg (7 + 5 (3.26b)
i i
ed P,
L

1 1
where p=— Vl (4nP e > B2] is the field line curvature.
2
B
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Equations (3.22) and (3.23) are now used in conjunction with the ion

continuity equation (3.9) and equation (3.10), together with the results

ck2a ck2a
. I~ L
V.Ja" = (e _-4-m = Env [—41|:B ) (3.27)
M
and Vey, = BV (57) (3.28)
to give
ijz.a" : e¢ + pl pl
E (4nNeB) lwbi(ET ET) - ET (w e )
1 h 5 1
(3.29)
w*p ] E X V.g'i_
+ 1B B —" — == ¥ )
B2 B2
v ed p. b m kzczp
I I L L
BeV (B ) i (E_ + si](wbi - W, - wg * m*i) - lwg -
i i B2
(3.30)
n ti n E 2 V'gi
+ie G- iwy (Er -n; ﬁ) -9 (/) + imbi‘%— .
i NeB? i

Noting that BV = % %; , equations (3.29) and (3.30) are seen to be a
pair of first order differential equations in the longitudinal balloconing
variable vy , involving the perturbed quantities a" " v” PR I s G te P
and ti . Two more first order differential equations are provided by the
parallel components of the equation of motion (3.11) and the Chms law

(3.12). These are

BeVp = iwpBv - i (3.31)

- 10 =



a

. I
BeV[Neo - 1,710t nTe] = iNe - Blw + W,
(3.32)

in"kicz

- 0.71m*ene+ —an
Te

where m*e = - T w*i- Finally, the pair of thermal equations (3.13) and

i

(3.14) provide two (second-order) differential equations for ti and te-

Before presenting these we return to equations (3.29)-(3.32) to
examine the contribution from the ion stress tensor in these equations.
First, we must eliminate the magnetic compression bﬂ in favour of the
perturbed pressure p . Returning to equation (3.11) and taking the

scalar product with ik , one obtains

b B

- k2 (p + —ﬂ—) + ike(Ve

= = 0 (3.33)

)

Thus ion-viscous and gyro-viscous effects appear in equations (3.29)-

B x Ven
Iy 1 A ﬂ.
(3:31) 1n the teme ke(Voy) o Be(Vom) ¢ g W] o ana
B x Ve,
V’[N 2:1] » After some laborious analysis these may be evaluated to
NeB
obtain:
1 Bx V.Ei bi n et Pi
5a Vel . ) = = lieg+ile + g)l-ee (14 2ny) + 0+ 30.]}
(3.34)
B'v biv" e¢ J.W
* 28 (bl ") = 52 BeVB + 0.3vibf Tt 5: (Zw - mBJ
B X v.-ml B x V")‘I: )
= = 1 = iW
Ve — = — Y= - .
( NeB?2 ) ve 7 42 ) P, o1
(3.35)
b et P,
-iguy F o)



e I;
(pi + Ne¢)
+ by g-v(pi + Neg) + 55 B+ (Bb_)
+ 3WB B-V [%) + 2BeVW . (3.36)
ik« (Vem, ) b.,P, p, e
= = (57 + E—) + W (3.37)
k2 i i
L
where
0.96P, ed P.
1 1 i 1
W o= = v = [E BeVv, - 3 iw % + i (E: + 5:)(mp- 3 Y )] - (3.38)

In equations (3.34)=(3.37) the gyro-viscous terms are those which are
independent of vi , the perpendicular viscosity appears in terms

proportional to vi and the parallel viscosity in terms involving vIl ¥

Proceeding to the thermal equations, we evaluate V-qe and V-qi to

obtain
Ve * %é%1 JH(E'Vte = lwegMg i%fg) = " Ke E'V[E;Zte — Ay M, ;;l
i % g-v(%) *3 iPe[:‘—j (05 0= 05) + wagng (g + Eg?p)]
" Kieki s ° (3.39)

Classical perpendicular electron thermal conduction has been retained
in (3.39) despite the neglect of other comparably small terms (DRAKE,J.F.
private communication). This has been done so that the effect of the

observed anomalously large K & can be studied with the equations developed

L
in this paper.
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: I
V'L Ky Bo¥ PR L =
(3.40)
ti n 4d1p
- — - . i A&TP 2
> ir [Tl (m*l wp wB] Wey My (N 132)] + Klik_Lti
P P v P
here K 3.2 K, = 4.7 =2 K,. = 3.9
b I “mov ! le : 2 ’ i T om, v !
e e W L
e ce
Roty 4 /27 mpet 4 /1 Npe
Kll = 2 7 Ve = "3" ) and Vi = '5
m, w?, /m_ (kT )3/2 /m_ (kT )3/2
1 C1 e e 1

Using these expressions the thermal equations may be written in the form

. 2
“le RV, 2 0.71 iy R oo %
B2 s, L] 82y () De g e
B2T cBT 4TB N T
(=3 e e
3 te 5 Te n
=-51T—e [m+m*i(1 +ni) +—3-T—i (mp+wB]]+iﬁ[m+m*i(1 +ni)]
3 yeb .5 4mp
lw*e(T 2 e) Te * 2 TWeeMg 8 (3.41)
Kii BrYS &Ry ] s
—= BV [ + iw,. M, ] - = x2 =
Be¥ BT N T
N BzTi i'i e 1 5



In equations (3.29)-(3.32), (3.41) and (3.42) we have the complete
description of the eighth order eigenvalue problem. Inserting the
expressions (3.34)-=(3.37) and using (3.33), we finally transform back to
the frame in which the equilibrium electric field is zero. The set of six

equations then becomes:

iNea

BeVp = iphv [0 - wy- 3w+ 1.2iv;b, | - Tﬁ Blap, = b, B+V(p; + Ne¢)
(p_ + Neg) B-VB
- “EEB“‘““‘ E-V[Bbi) + 3W =— - 2B-VW (3.43)
Bev[Ne¢ - 1.71Nt_ - nT_] = Blw - w, (1 + 1.71n) + —2—] (3.44)
k2ca ed P
152 . i . F
E'V(Z-}&EE] = lbi(F + P_)[w - wi-i(1 # Tli)] - 21U~'p B
i i 1
bi ed P n bi
+ i 3 3 +t3 )[w*l(1 + 27 ) - w - BwB] - i[w - m*i(T + ni]] N2
1 1
BeV b,v" ed
- (b.vH) + X~ BeVB - 0.3v,b2 —
i g2 i Ti
b, e p, w
+1—2-—’= (;i—+1_,—i-)[wp- wg ] +iBT*pW (3.45)
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Il .
'V(E_) = l(w*l wB_wp (-T—]_ + i) + .l.(m - w*pi) rﬁl 1 P—_‘L 5 (w = m*pi]
t, B, ed
. i W
lw*l(EI ny %) + i 5; [w*l~ mp— Ei (m + m*p w*pl]] - O-Bvib2 T
ed
; i 1 3 1n
+ lbi[(i'_i * ;:)(w "2 Y 2 “’B) 2N (0 - w*pl]]
b.v n k2c2p
1 il 1 1 1l 1 '
-3 BV ( 5 ] -3 biv"E v (E) - T (3.46)
= B Yo Mo %2y 0.71 kica, K kit
B°V[2(T_)'l B cT]+Ne ~V(411:B] N T
B e e e
t
A= 3 oo _3 e 5 4mp
211'63[“’+ T (o, +eg)]+ 1§ -t (1 2"e)Te+2l“*eneBz
(3.47)
BV t w,.mn, ea K . t,
~ i ol i It 1i i
BV [-—2 El+i——gl -~ ¥g
B i i 1
t
3 i 5 4 3
=4 Ei [w =3 (v, + wg)] +iw % + 5 lw, ng —if # sl1 == ) %f
(3.48)

Iv THE COLD ION MODEL

The single-fluid mhd equations only give a satisfactory description

of resistive instabilities for rather low temperature plasmas. On the
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other hand the complexity of the full set of two=fluid equations means

that even linear stability analysis is a formidable calculation.

An intermediate model is provided by the cold ion equations. These
are cbtained from the full two fluid set, by neglecting the ion colli-
sional viscosities and taking the limit Ti/Te + 0 in the remaining
terms. This has the advantage of removing the finite ion larmor radius
terms proportional to bi while retaining all the electron physics
without introducing any geometric approximations (such as large aspect
ratio expansions). The equations also reduce from an eighth order
differential set to a sixth order one. In addition they still contain the
single fluid equations so that the standard results of resistive

ballooning theory can be recovered.

The cold ion model equations in general geometry are given below (in

the EO = 0 frame):

E-Vp Nea"
- = dwpv, - iw*P(c—) (4.1)
v ed ig ed
I
E'V(E—) = iy % * & = [mbs- m*e-ZTw ] + = (m % w*p T_)
e e
1M k2¢2?
g e o (4.2)
52
BV e te & e:al,l kic2
S -1 2-3] = i le-0 (1+1.71m) +in - ] (4.3)
e e e
Ckiau e P
E'V(zlmNeB) = dob 7 - 2i 3 (mpr) (4.4)
e
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£ k2 K
Sie pev[L Be(=S) - 1 38 Wig ]+ 871 5 f‘nc) le ,p ‘e
N ~ g ~ T ¢cT B e Ne -~ 4B N LT
B e @ @
t £, " ab
= -Siwg -5 +igw- lm*e(1 =gm) 3
e & e
5 P te
+_4-=iB [5 WegNg -T_w*e(T +‘r]e)] (4.5)
e

with bs = bi Te/Ti now permitted to be of order unity.

The resistive diffusion term has been retained in equation (4-.2) so
that the single fluid equations can be recovered. However, since the
electron-ion equilibration has been neglected in equation (4.5), the mode
frequency w must satisfy w >> vie for consistency. Consequently the
diffusion term in (4.2) is necessarily small compared to wbs terms. Its

retention is a device to enable us to make contact with single fluid

Wy [=] n te
theory. This limit is obtained by taking — << 1, E-'ﬁ ~ (‘:— q = $~ =
2 +* * e
Be
w >> K"(—Ez) when the temperature equation yields the solution
EE _ 2n _ Ore (2 -n) ed (4.6)
T 3N w ‘3 e T '

Using this expression to eliminate n/N in favour of p/P in equation
(4.2), equations (4.1)-(4.5) now reduce to the single fluid equations,

which can be written in the form

B+Vp Nea"
- = impv" - iuup( = ) (4.7)
2.2
v w N k<c .
I . (P *p ey 3 A7P 4, Ll X ep
E'V(E—) = dw(p + w T )(5 + 52] - 52 P = 21Twp T, h4480



BV iea k2c2

~ ' cedy _ I . i
B (Te) " eE, (w + 10y —57) t443)
ck2a
L ; e . P
E.v(4nNeB) = iuwb, Ef - 23 (wpt) . (4.10)

The cold ion equations, like the single fluid equations, are wvalid in
any axisymmetric torus with arbitrary B and at any value of 22/8 . For
small values of kz/s the solutions of the cold ion equations display two

scale behaviour; that is solutions decay on a long resistive scale

2 =-1/3
« (é , as well as varying on the scale of the connection length.

We take advantage of this two scale behaviour to generate a set of
averaged equations which are valid in the resistive region, i.e. large
values of the independent variable y . Stability properties can then be
determined by numerical solution of these simpler averaged equations

subject to suitable boundary conditions at small values of y

v AVERAGING THE COLD ION EQUATIONS

In this section we ocutline the procedure for exploiting the two

length scales to obtain a set of averaged equations from the cold ion

model (equations (4.1)-(4.5)).

v
The secularly increasing quantity 2 = [j gﬁ dy - k(¢)] is

introduced as a second, long scale independent variable, so that the
14

derivative B+V = 7 ay becomes

1, , ?
BV >3 (g; * i) (5.1)

where the prime denotes a derivative with respect to the poloidal flux

¢ « In terms of Z , the perpendicular wavenumber kl is given by

. :
k2 = 12iv5[ = 12[AB222 + 1/)\] (5.2)
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where A\ = RZB_;/B2 . The quantity wp "also displays secular behaviour,

and is given by

- &L P 293 (1.
pr T2 e [Kl + KO J 3y (32)] (5.3)
ubare ' By = =KE, amd K == 2 %a (amp + % B2)
B

Averaged equations can now be generated by expanding the solutions in
powers of 1/Z , and treating bS and nkfc2/4nw as being of order
, . 1 1
unity. Thus with p = p; + z P1 + oeeee . 0= 9y + = b + eenn etc,

equation (4.1) for example vields

oPg
— = 0 5.4
3y (5-4)
d
L EEi + v’-—EE) = iwpB2?u, - iw, Nea (5.5)
J \z by az PE Ty = 1, :
where we have introduced the notation u = v"/B , and a = a"B/c .

Now annihilating the term inveolving pl(y,Z) by integrating éde aver

one equilibrium period, one cobtains from (5.5)

r ] 2 — 6
<viy — = pr <JB 1]0) 1w <Ja0> Ne ( . )

where <X> = éxdy .

Turning to Ohms law, equation (4.3), we obtain in the lowest order

o}
ay LNedg = 1-71tg - ng] = o (5.7)

Taken in conjunction with equation (5.4) and the similar result for tn

which emerges from the thermal equation, equation (5.7) has the solution:
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Bdq ot on,

The first order Ohms law

1

d 7t v’ d
= [veo, - 1.71¢) - n)] + = 55 [Meoy - 17185 - ny]

= 3 - i 2.2 .
= 1Nea0[m m*e(1 + 1-71ne] + 1n"kic /4] (5.9)
now provides an equation for the first order quantity (Ne¢l- 1.7t - nl),

and, on annihilating this term by integration over one pericd in vy , the

averaged Ohms law is obtained:

4 :
<vs — [Ne¢0 - 1.7ty - no] = 1Ne[w - m*e[T + 1.71ne)]<Ja0>
272 ANCZ
- A _— .
nui <Ja0 B>Ne an (5.10)

In lowest order the continuity equation (4.2) takes the form

o) 9 1
S u, = cil$.K,z2 = (- (5.11)
oy 0 070" ay (BZ)

determining u, up to an arbitrary function of Z , as

cil¢0KUZ _
By = = A u(Zz) (5.12)
g2
aul buo

r

In next order an equation involving [5;— + v 55") is obtained, and on

annihilating u, by integrating over one period in y , and substituting
(5.12) for u, the following first order equation for u(Z) is

obtained.
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- R a¢ 2
. 1 AE ) B +
<v’> i + cilX <3—> B (z¢ ) + c1£K0<—— o> = iwpp<d ——-——EEE>
0 9 0

dz az B2 oy BZP

m ¢
. 1 4N 14p i .k
- cifgg[<ary> + <[ i g 5 EE]’ +wz? —— W]+ iw <D

+nc£~2 2222p0<J7\> = 0 . (5.13)
b¢l
To completely develop this equation we must first construct <— 5§—>
B2
in terms of zero order quantities by - P, etc. The first order Ohms
ol
1
law (5.9) contains 6;— ; but only in combination with t) and n;, in
the form %; (Ne¢l - 1.71t, - nl) - However, the first order momentum
equation (5.5) contains 3y PL ¢ and the first order thermal equation
1
[see equation (5.19) later) will yield an expression for 5;— . Taken
together these three equations enable us to form the averaged quantity
1 a¢l 1 Btl 1 on
= > [and also <— =—> and <— ;7> which are required below].
B2 oy B2 oy B2 oy

Secondly equation (5.6) provides an explicit expression for E(Z) (in

terms of Py » g and a,) which is substituted into (5.13) to produce a

second order differential equation involving, for example, dzpo/dZ2 F

The treatment of the vorticity equation (4.4) is similar to that of
the momentum equation discussed above. 1In lowest order this equation has
the form
(EE 22z220a,) = ciikyz & (17) 5.14
i ag = cilk, 57 (5.14)

3
dy oy

with solution

C2 CiaQKOZ _
o A2z%hag + A(2) (5.15)
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Annihilating the quantity a, in the first order equation by appropriate

averaging in y generates the following averaged equation:

d £, . d It
<v'> = A + > cilK, — (2 + cilK, ¢— —> = cil <JK, >
az = E 0 az (%P0 0" 5 dy P TR
B B
- iwp2?Z2c? <IA> ¢, = 0 (5.16)
apl
Now <— 5;—> can be obtained as discussed above and the averaged Chms
B2

law (5.10) provides an explicit expression for A(Z) (after using (5.15))

in terms of ¢0 ¥ t0 and n, so that (5.16) becomes a second order

2
differential equation containing, for example, - bg -

dz2

The third, and final averaged equation comes from the thermal
equation. In lowest order, we assume parallel thermal conduction over the
connection length to be the dominant process, so that

ot
a_.[1 g

L =l = g (5.17)
oy 82 oy

with solution t0 = tO(Z). In first order the thermal egquation yields

Si1a [l ! .Y ~o + iw, 1 'eaUN] + 0.71 Ce1n [—chlzzz}‘a ]
J Z az * " J
N oy 182 ay - e’e oo e oy 4
T - -
5 e 03 M
= —ic — MKHy8 — =— [— 5.18
2 e 0% 3 a3y (Bz) ; )
where the parallel thermal conductivity KH = 3.2NTe/meve « Eguation

(5.18) may be integrated once to give
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‘ N
X {l -  ie ea b 0ot E c29222)a
T K. A2 -
0 -
2 cit, = — = &z . (5.19)
2 =3

E(Z) is an afbitrary function of Z which may be evaluated immediately

in terms of ao' and to_ by annihilating the tl term in equation (5.19)

to give
K dat T
- I 0 e c222z2 2
c(Z)<JB?> = — 'y — 4+ i L7q & cfAfZ7
(2) 5 lv's o=+ 0, n_eNcaag>} + 0.71 s T <Bfag>
5 Te
- E iCRtOKOZ g— <JI> ’ (5.20)

Equations (5.19) and (5.20) now give the explicit expression for the first

order quantity 6tl/ay alluded_to in the discussion below Eq (5.13).

The required average of the thermal equation is obtained in second
order. This equation contains t, and a; in addition to t and zero
order quantities. The t2 and a; terms may be simultaneously

annihilated to obtain the following averaged equation.
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! I
fl 4 v B (Ei) Eﬁ 4 <v ao> i Ne + 0.71 EE 4 [c Laren ha0>]
N dz J!32 ay z w*eﬂe o

e dz 4T

2 g2
K, 0 d%
+ = ¢—>

N g82  ggz2

+ iwie(1 - % ne)Ne¢U<J> - ip0<J[m * % 5m*ene]>

2 ife — Eo<dK > + = it0<J[m + g m*e(T + ne)]

2 e 2 2
T at JB2AK
5, . 8 1 1 5,9 1
+ 2 i1 — clK <— —> - 2222 ¢—= = .
= i E cl 0 > L 0< = > 0 (5.21)

B2

Expressions for tl (from (5.19) and (5.20)) and a (from (5.15)
and (5.10)) are now substituted into (5.21) to give the final averaged
thermal equation invelving only the quantities ¢t , ng and ¢0 .
Together with equation (5.13) (in which ¢l and u have been eliminated)
and (5.15) (in which P, and A have been eliminated) this completes the

sixth order differential set of averaged equations.

After considerable algebra these equations may be obtained in the

following form:

a ,x2 a9 HX d  ~ H(H + 1) a .1
E(jaﬁ)w—law-ww(’?-—rl - m o (5)))
~ iw*
- x2001[9 - a0 (1+n)e+at)]=o0. (5.22)
e o [0 o 4 M
4 rdp _ 1 doy _H 4 (Xpy _ 24 X d0 . 2 5 12x 1
= b5 T, % 9, & (rl) 5 r, ax " Q?t[e) + 3 @, Q M ]
. 2
1 x2 1 @@y My
- @pley + @+ (1 - )+ om {ap(1 - ) ¢ (1 o) )]
@, 02 G iQ
[—— %2 + 1gu, (1 + 0 )(xE + ——)1[p + at + ———< F] = o
- X + 1 —_ =
ARV ) LR R CEw)
(5.23)
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7 {dzt e a (EE EE) "e B a (EE)}
3 e 1+ My ax ‘I & 1 + N, Q1 dx Fl
T] ~
. a (X 5 X d
+1"‘”*(1+”eJKH[“1a(r?)"51in P—la_;}q]
e
a, M M
5 . 5 2 71 2 1
hig & [1“’*(1*%)“'9%'ajm—xz'gazau (v - 5) %]
ajay My
- pv [g iw,n K (F + H2 - H2/Pl] - Q6 - ; e W 2]

iQ
. 3 1 o
+ ive (1 - 5 ne) G, [p+ oyt + N o] = o (5.24)

In these equations the guantities D , E , F, H, K, M and Ml are
field line averaged quantit?es equivalent to those defined by GLASSER et
al. (1975). The quantity Gl is the same as the gquantity G in that
reference but with the adiabatic index <y replaced by unity. The

definitions are:

<TK><v >

Amp’ <JT/A\> 0

dre <3/ {<o®> - <v'Ry/BZ + ———— + 4np’<3/B2>}
<v>2 <JB2>

2 <JK,/AB2>2
r
0
Fom ASEP 1 KO/K {<TKy2/AB"> - —————  + <a/B2>}
<v’>2 </
<JK./AB2>  <JK_ >
anp’ <I/A> o/A 0

[ - =]
<v’> <T/ > <JB2>

2
<TK, >
0
Moo= I fens b carg2/B2 - — )
<J>2 ‘ <JB2>

<IK >

{<axe2/B2> - —2

RTINS
; <JB2>

<J>2
3
K = <I3BZ><v'>2/{Mca/n>(4mp’) <3>2}

<JB?>
4TPM<T>

D = H2 +F - E
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The independent variable X is defined by X = Z/Zr where
zg = 41|:<V'><J/K>/{(4ﬂ;pM)1/2<J><J132>'n"1202} .

The eigenvalue Q = -iw/mr with

= n,c222<3B2><v">2/{16n2pMca/A><T>2}

and the remaining quantities are defined by

w, w*e/w
m v

e e

Vv = — —
m, w

ir

Q = Q-+ iw (1 + n (1 + al))

5 alaz
= g —— %2
1+ X°/9, " b = 1+1 PRI X
e

while a, , @, , @3 and @, are constants with «, = 0.71 (arising from
the thermal force terms), @y = nl/n" = 1.95 , a, = 3.2 (arising from
parallel electron thermal conduction) and @, = 4.7 (arising from
classical perpendicular electron thermal conduction). Finally the new

dependent variable $ is defined by

im*(1 + ne)
51

A=
I

[Ne¢o - By = alto] %

The averaged cold-ion equations (5.22)-(5.24) no longer reduce simply to
the averaged single fluid resistive equations when w /w > 0 and

v >> 1 . This is because electron thermal conduction has already been
assumed to be dominant on the scale of the connection length, and taking

v » ® no longer recovers the adiabatic limit (even when perpendicular
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thermal conduction is dropped). In the limit

equations (5.22)-(5.24) reduce to the form:

uu/w >0,

v >> 1

a .x2 d¢y  BHX ~ H + 1) a 1
(e T @ G- e -n S ()
- x2025 = o (5.25)
4 (dp 1d4; HA ,Xp X a3 5 %1% M 2
wlax-ral gm () - p gy oo v o]
2
] 2 M) @) My
_Q2p{Gl+KE‘+KI-!2(1-—]+§—[a2(1-M—*)+ 1 anM_
&1
2% _
+Q¢(I{E+1+ne) = 0 (5-26)
a, M M x.a, M
5 2 71 x2 1y x2 1%2 M x2
t[z (G1+2;'3'M—Q—)+0€2%(1 -M—] 5"] = P[Gl o, M—Q—]
3
1-3m
~ 2 e
_¢ G
1+ ng 1
(5.27)
where T = 1 + X2/Q ¥

These equations reduce to the standard averaged single fluid

resistive equations when nL/nH + 1, M, >0 and ¢, >0, i.e.

resistivity is isotropic,
appearing in Ml
labelled by

@, ¢ 1s ignored.

= 97 =
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are neglected and perpendicular thermal conduction,



VI SUMMARY

The main object of this paper has been the derivation of the
equations governing resistive ballooning modes from a complete two fluid
model. These equations are obtained in section III and presented as
equations (3.43)-(3.48), with the appropriate expressions involving the

ion stress tensor given in equations (3.34)-(3.38).

Resistive instabilities display two length scales, and this fact may
be exploited to derive simpler averaged equations which apply in the
resistive regime. These equations contain some simple field line average
quantities (averages over the poloidal angle) and are much more suitable
for numerical solution than the dual scale ballooning equations. Their
solutions must satisfy the usual boundary conditicns at large values of
the independent variable, and must also match to solutions of the non-
resistive inner region equations at small values of the independent

variable.

In section V we have outlined the derivation of these averaged
equations for a cold-ion plasma model. In this model collisional ion
viscosities are neglected and Ti << Te is assumed, so that ion
diamagnetic effects may be neglected. The model retains the full electron
physics and charge separation due to the ion polarisation drift. The

relevant equations are (5.22)-(5.24).

Finally it is shown how these equations are related to the averaged

equations of single-fluid resistive theory.
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