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Abstract

We reconsider the coupling between the fast wave and the slow ion
cyclotron wave in a plasma in which the equilibrium magnetic field is
longitudinally inhomogeneous, using a model studied by White, Yoshikawa

1

and Oberman . Such a coupling can only occur when a second ion species is
present and for finite kl. This configuration is of relevance to mirrors
and also tokamaks. An approximate dispersion relation is obtained from
the usual cold plasma model by replacing all slowly varying quantities by
their wvalue at the coupling point. The resulting equation preserves the
cutoff properties of the original equation. The approximate dispersion
relation 1is then used to analyse the mode conversion of the fast wave to
the slow wave at the minority resonance. For Nl = CAkL/w << 1 the
transmission coefficient is close to unity but for Nl < 1 the trans-
mission becomes very weak and for incidence from the stronger field region
the absorption beccomes strong. When the wave is incident from the weaker
field region the maximum absorption as a function of the minority fraction

and N is 25%. Our results are obtained using second order coupling

theories, the advantages of which clearly emerge from this example.
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I. INTRODUCTION

It is now accepted that the compressional Alfvéen wave (or fast wave,
for short) is the most favourable mode for heating large fusion devices in
the ion cyclotron range of frequencies. Most of the work to date has
concentrated on the tokamak configuration where the parallel wave number
k" is specified by the antenna and kl varies due to the radial inhomoge-

neity of the equilibrium magnetiec field.

1
However, White, Yoshikawa and Oberman recently considered a related

problem in which the magnetic field inhomogeneity was assumed to occur
along the field. This is a natural configuration for a mirror machine but
is also relevant to a tokamak due to the rotational transform. 1In either
case, k cannot be strictly constant due to the requirement that

v - By = 0. Since we shall only apply a full wave-treatment locally, what

is reguired is that the variation of n be much slower than the vari-

1

ation in n, .

1
White, Yoshikawa and Oberman obtained the interesting result that,

as for the tokamak case, the fast wave could produce resonant absorption
in the presence of a second ion species. They noted that the fast wave
was unaffected by the resonance when nl = 0 whereas coupling occurred
between the fast Alfven and slow ion-cyclotron waves for a finite nl in
the presence of a second ion species. In the discussion of coupling as a
function of N = cAkl/m  these authors unnecessarily restricted

1

themselves to the range Nl << 1 , whereas we find that the most

interesting range occurs for N, < 1 , such that N, << 1, (N" = cAk"/m,

~

a range made feasible by the presence of the second ion species resulting

in a coupling near the cut-off.



In this paper, we aim to do two things. First, we shall re-examine
1
the problem posed by White et al. and shall determine the dependence of

the coupling on nl.
3 4

Second, we shall use second order theories ' of mode coupling,
pointing out the advantages of these methods in such problems.

The plan of the paper is as follows. In the next section we shall
start from White et al'sl full dispersion relation and then show how this
may be approximated in the resonance region in a more direct way whilst
still preserving the essential character of the original dispersion
relation. With the aid of this approximate dispersion relation we obtain
transmission, reflection and mode conversion coefficients for arbitrary
values of n . The exact cutoff condition shows that the fast wave
disappears for N = 1, so that as N, + 1 from below, the transmission

L L

of the fast wave goes smoothly to zero.

ITI. THE DISPERSION RELATION IN THE RESONANCE REGION

1
The motivation behind the White, Yoshikawa, Oberman analysis was the

desire to heat the ions by means of the parallel ion cyclotron resonance.
Since this resonance is not accessible at the centre of a dense hot plasma
the fast, compressional wave is required to transport the energy to the
resonance, where, in the presence of a second ion species, the fast wave
couples to the slow ion cyclotron wave. The fraction of incident energy
which is converted to the slow wave is thus deposited in the plasma. The
problem, therefore, is to calculate the transmission of the fast wave as
it passes through the resonance region of the second (minority) ion

species.



In order to describe this problem we start from the usual cold plasma

2
dispersion relation

~n2y2 _ o2 _ .2 -
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L

where E" has been neglected in comparison with Eli n" and nl are

the parallel and perpendicular refractive indices and 7
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where the Jj refers to all species and mcj contains the sign of the

charge.

For a two component plasma, equation (1) can be written in the form

1
given by White et al.

) (x + 1 + vl) . (x - 1 - vl)
{Nn M T T x)} {Nn il T ey x)}
(3)
v, 2v,
+ le {N"2 - a + =B
(1 - x2) (4 - x2)

where A is the Alfvén speed associated with the ion species 1 which is

therefore the majority species. We shall use the same notation as White

et all so that v is the fraction of species 1 and v, the fraction of

species 2, and ml/m2 has been put equal to 2 with a deuterium {hydrogen)
1

plasma in mind. Note, however, that White et al. left out the factor

a = no/nl from their dispersion relation where n, is the equilibrium



electron density. This is not important when Vv, << v; since a is then
very close to unity but it is clearly of importance in the general case

when V, ~ v;. The variable x is w/Q; , where Q) is the cyclotron

frequency of species 1, and is the spatial variable in the analysis.

1
Following White et al. we now wish to consider the situation where

NL is fixed and Nﬂ varies spatially due to a longitudinal variation of
1

the magnetic field. For Nl = 0 White et al. noted that equation (2)
yields a double or coincident root which, for vy <K v,r oOccurs when x
is just less than 2. Clearly the transmission of the fast wave through a
region containing this point is total since for NL = 0 the fast and slow
ion cyclotron wave are completely independent with opposite circular
polarisations. As observed by White et al.l coupling occurs for finite

N . What was not made clear by these authors was how the transmission

property of the fast wave depended on NL for arbitrary values of this

quantity. The above authors expressed the slowly varying quantities in

1/2
equation (3) at the point =x = xc = (1 + 3v1) where the fast and slow

waves are coincident for NL 0. If this is done then in the limit of

vy << v} i.e. vp << 1, v; <1 and a > 1, we obtain the following

approximate dispersion relation

1 Y 1
(w2-3) (w2 +1+ E_) +N N2 g+ =0 . (4)



III DISCUSSION OF THE DISPERSION RELATION

Before proceeding with the analysis of the transmission/mode-
conversion associated with the coupling between the fast and slow branches
of the dispersion relation (4), we wish to ascertain that this simplified
relation retains all the principal features of the original relation (3).
Also, we wish to see how the solutions of Egq (4), ie N" = N"(g;, depend

on the perpendicular wave number Nl'
Having suppressed the resonance at x = 1 and retained the
"minority" resonance at x = 2, ie I = 0, we now verify that the new

cutoff E [obtained by setting N = 0 in Eq (4)], namely
0 [

- 3
Bg Sxp - 2=75 v, (¥,2-2/3)/(1 - N 2), (5)

behaves, as a function of le, in the same manner as the exact cutoff

~

Xgr 1insofar as its relative position with respect to the resonance is
concerned. This aspect of the approximation (4) is important for
recovering the correct transmission properties, known to depend on the

cutoff-resonance topology. From Eq (3) we find

ol '
Xg = (2 - vy [2(1 - N2 - v,/ - N2+ v ], (6)

and it is easily wverified that



- 2
2 V2.r NJ_ << 1
xg =% = [ 2, M2=2/3 (7)

> @, N12+1

Hence for small values of le, le << 1, the cutoff lies close to,

but below, the resonance at £ = 0, and as le is increased, X
approaches the resonance, crossing it as le = 2/3. With a further

increase in N 2, 50 shifts further to the right, eventually completely

L

leaving any bounded region as NL + 1. For values Nl > 1, there is no
propagating fast wave.

In formulating the approximation (4), non-resonant terms, slowly
varying functions of E, were referred to the point X < 2 . Certain
terms were thus replaced by constants, but as we have just demonstrated,
this does not alter the basic topology of the cutoff-resonance config-
uration, and the dispersion relation (3) is therefore well-approximated in
the vicinity of the cutoff-resonance pair. To the extent that the trans-
mission properties mostly depend on what happens around this region, one
need not be concerned with the behaviour of the branches far away from
resconance where the x-dependent terms in (3) vanish, while some corres-
ponding terms in (4) do not.

When NL = 0, the two modes are uncoupled, the configuration being
shown in Fig 1. The interrupted line indicates the way the two branches

will couple when we allow a very small, non-zero le. When le > 0,

the branches of Eg (4), ie of the quartic



v v N
Y 2 2,2y .2 21 _ 1 I (w2_-1) =
N"+(+Nl+§)N"—g(3 2)+3(Nl 1) =0 (8)
are
N 2 v v
2. _1_ L "2 1.4 Y22 yt/2
Ni=-3- -2-515[(3+€-) +Nl] ; (9)

The principal features of these solutions are its asymptotes

2
N 1/2
2 - .21 _ L . =1 e 4
B mmgm—pdd g dwg [5 ¢ Y 3 (10)

the cutoff 50 given by Eq (5), and the value of N"2 at the resonance,

£ + 0. The limits from the right and the left are, respectively,

N 2
Lim N2 =-= ; lin N2 =%-% (11)
£ > 04 g > 04
2 2 1 NJ_Z
lim Nﬂ'l' = + o 3 lim N"_ = —5 - —2- . (12)
g+ 0_ £+ 0.

Hence when le < 2/3, the configuration of Fig 2 results. When

le = 2/3 , the cutoff and the point where N"i coincides with N"2

merge at § = 0, and cross the opposite half-axes when 2/3 < le < 1.

Fig 3 shows the configuration for this range. Although the two plots N"2

versus £ appear quite similar in the two cases, the plots ReN" versus

§ reveal a fundamental difference. In the first case, of Fig 2, one can



expect a strong coupling between a fast branch incident from the right
(weaker field region) and the resonant branch. In Fig 3 the cutoff has
progressed to the other side of the resonance, and an evanescent layer is
formed between the resonance and the cutoff. We therefore expect less
transmission for a wave coming from the right, more reflection and, of
course, less energy going to the resonant branch. On the other hand, for
a wave incident from the left (stronger field region), a larger separation
between the resonance and cutoff can only improve coupling to the resonant
branch. As Nl + 1, the asymptote Nm+ merges with the axis N = 0,

I
and for NL > 1, N"i becomes negative. The respective configurations
shown in Fig 4 clearly indicate that for NL ? 1 there is no propagating
fast wave. We henceforth limit our attention to the region Nf £ 1.
v THEORIES OF TWO WAVE COUPLING
We will determine the transmission/mode-conversion properties of the

3
fast wave using two different methods, henceforth referred to as FKB and

b 5
I

CLD . Both methods have in common the idea that the relevant infor-
mation about a coupling event between two modes is contained in a second-
order dispersion relation, embedded in a more general, higher order
equation, describing all branches that could be excited. In particular,
for mode conversions between different branches, occurring at a finite
value of the wave number, it is assumed that mode conversion can be
treated independently of reflection, which may subsequently occur as a
result of a neighbouring cutoff point. The principle of causality is

implicit in this idea of separating the mode conversion and reflection



regions, ie reflection of a mode converted wave cannot occur until it has
first been generated by the incident wave.

The distinction between the methods is in the manner one goes about
extracting the embedded two wave coupling event, and in the choice of a
differential-equation representation, serving to determine the
transmission/mode~conversion coefficients. Once the transmission
coefficients for the couplings of interest are determined, one then traces
the incident energy through all accessible coupling regions to obtain the
fractions of the incident energy going into the various other branches.

In Fig 2, for example, if the transmitted energy is T2 (the incident
being normalised to unity), then the fraction of energy going to the
cutoff is 1 - T2. BAll of this energy must be reflected, so that 1 - T2
is incident into the next coupling region. The fraction T2(1 - T2) is
transmitted to the resonant branch, which is therefore the fraction of
mode-converted energy, and (1 - T2)2 is reflected. For incidence from
the left, indicated in Fig 3, there is no reflection, so that T2 is
transmitted, and 1 - T2 is mode converted. The problem thus reduces to
the determination of the transmission coefficient T2. Even without
having so far established T, we can say that in incidence from the left,
absorption of incident energy can be as high as 100%, while in incidence
from the right (weaker field region), the absorption cannot exceed 25%, as
is clear from maximizing the mode-conversion efficiency T2(1 - T2). The
forms for the mode conversion and reflection coefficients, in terms of the
transmission coefficient, are different from those given by White,
Yoshikawa and Obermanl. The origin of the discrepancy is explained in the

4
appendix of reference 4. We will begin the analysis with the CLD theory.



A) The CLD Method

The method is based on identifying the modes in the absence of coup-

ling. This determines the "uncoupled" propagators

d¢i
v . = + 1ai(x)¢i ;7 1=1,2 (13)
gi
where V i are the group-velocities, and ai(x) characterises the spatial

inhomogeneity in the problem. With coupling, the free propagators form a

coupled system

d¢l
d¢2 ] — ]
ng oo + 1a2(x)¢2 = 1K¢l . (15)

In a local approximation, one takes d/dx + ik, giving the dispersion

relation

The differential eguations (14), (15) can be used to determine the trans-
mission/mode-conversion properties, as functions of V 1 and A. 1In
g

practice, however, given an embedded second-order dispersion relation of

the general form

-10-



k2 + a(x)k + b(x) =0 |, F17]

one is faced with the problem of factoring (17) into the correct forms
(16), thus identifying A and the Vgi for setting up the differential
equations. When, however, one of the branches is asymptotically resonant,
ie non-propagating (Vg = 0), then the task of factorising is automatic,
since (16) becomes (if V = 0, for example)

gl

= 22
al(ngk +a,) =A%, (18)

and all we have to do with (17) is to identify the resonant and the
propagating branches.
As is evident from Figs 2 and 3, the propagating branches are given

by N + There is a resonant (slow) component diverging at { = 0, and

2
Il +

a fast branch, whose asymptote is iNm+. The factorisation (18) for the

given problem must therefore be of the form

al(x){NII +N ) =2A2 , (19)

H+)

where al(x) and A2 are to be determined. Let us therefore write Eq.

(4) in the form

2 1
-g[N 4+ (3 + NLZJN 2 4 3 (NLZ -1)] = vz(N 2+ = - » (20)

.
I I 1 2 3)

isolating the spatial variable on the left-hand side, as in (19). Next,

we factor the polynomial in the square brackets, yielding

_]l_



1
w?-w 2 = w2y 5= 3) el

where N .2 are given by Eg (10). Since Nm 2 4s always negative, the

@+t —

nonresonant propagating branch is described by the factor N

2 .y 2

Il +

Singling out one particular branch, say that which asymptotically is Nm+,

we can then write Eg. (21) as

E[ § ] (w,2 + NL2/2 - 1/3)
(N - =y (22)
Il @+ 2 (Nllz _ Nm—z)(N]i & Nm+)

Finally, the right-hand side is taken at N" = Nm+, giving
Vo(A - 2/3)
~§[N—N)=2—5C . (23)
[ @+ 4AN¢+ CLD

With regard to the transmission coefficient for the coupling (23), it

b
has been shown , in a different context, that the more general coupling

(ak - ak, + bE)(fk - fk0 + g§) = no ’ (24)

has the transmission coefficient

2
™,

72 = exp(- ) ‘ (25)

‘ag - bfl

For the given case of Egq (23) T2 is just

-12-



2
P = - 27nC . 2
exp( T CLDJ (26)
For small le << 1, we easily find
93
= 4 (27)

cep ~ 128 YoN, ¢

i . .. N =+

whereas in the limit of 1 1, we have Nm+ + 0, so that CCLD >

and T + 0. Hence as Ni goes from 0 to 1, T goes from 1 to 0. We

note that when le = 2/3, which is the value at which the cutoff crosses

the resonance, the transmission is not 100%, as would be the case for the
6

Budden equation , although the topology of the branches in Fig 3 resembles

the Budden cutoff-resonance configuration.

B) The FKB Method

This method is completely different in spirit from the preceding one,
since it concentrates on the properties of the dispersion relation in the
vicinity of the branch and saddle points of the generally complex mapping
of the spatial variable x = Rez onto the complex wave number plane k,

as prescribed by the local disperstion relation
D(k,z) =0 . (28)
Very briefly, in addition to the branches k = k(z) for (28),

significant contours in the k-plane are those on which the auxiliary

function 9dD/dk vanishes. The mapping

-13-



D E— =0 <= k=kc(z) (29)

defines, in fact, contours on which the group velocity must wvanish, since

dw 3D/dk

dk  dD/dw

(30)

The branch points zb and the saddle points ks of the mapping (28)
are the solutions of the two equations (28) and (29), and are therefore
the points at which branches will couple. Since the only common points of
the branches with the contours kc(z) are the branch points, we can take
the kc(z) as the branch cuts, and expand the dispersion relations around
k = kc(z) to second order in k to obtain the embedded dispersion
relation describing the particular pair-wise coupling event. The meaning
of such an expansion becomes quite obvious once we realize that the
contour kc(z) is, in fact, the median of the two coupled modes, as
illustrated in Fig 5. The case (a) corresponds to modes with anti-
parallel group-velocities, case (b) to modes with parallel group-
velocities. In the latter case the branch points are typically complex
conjugates, the real part coiﬁciding with the crossing, or median, point
marked x

m

The embedded dispersion relation thus is
1
(k) + 3 (k - k)2 D, (k) =0 (31)

keeping in mind that kc is a function of =z. In order to determine the

transmission/mode-conversion coefficients, a second-order differential

_14_



equation is attributed to (31). If one requires that the differential
equation possess turning points that coincide with the branch points of

the original dispersion relation, the representation must have the form

2
8 S atmx =0 , (32)
d22

where the coupling potential Q is

Q = =2 —(—T . (33)
Dkk kc

This potential vanishes, by definition, when =z = Z, since
kc(zb) = ks' and the branch and saddle points satisfy the dispersion

relation. Furthermore, the wave-amplitude &
® =Y exp[-ifkcdz] (34)
satisfies the equation
D(-id/dz, z) = 0 . (35)

Hence (32) is a good representation. The transmission coefficient for any

particular Q will also depend on the boundary condition for the

7
transmitted wave .

Let us now proceed with the analysis. Denoting, for the sake of

simplicity, N" = k, we first form

_15_



2
- 24—+ N2+ —
D, = 2k (2k? + i E]
(36)
2 v
= 2 -+ N2+ =) .
D, = 12k +2[3 i )
The equation Dk = 0 has the two roots
1 N2
kK . =0 o & s e e 2 37
c1 r Xea 32 T® ¢ (371

which, when substituted into the dispersion relation, yield the branch

points. The root k 1 gives the cutoff (5), and kc2 leads to
c

2
a V2[I . V2N (38)
= - 2 ’
bt 2 4 2 4
+ N + N
¢ L * il

where « = 4/3. The associated saddle points are

1 N2

-

N2 . (39)

- Lz
2 1

0]
W
N

We immediately see that the branch and saddle points respectively
merge, and the coupling disappears, just when NL + 0. Hence Ni is the
coupling constant, as was also evident from the form of Eq (4). The value
Ref';bi is marked as §m in Figs 2 and 3. It is thus quite apparent that

in the case of Fig 2 the point Em constitutes a coupling point between a

fast wave coming from the right and the resonant branch [a coupling which

-.—16-..



we recognise as being of the type (b) in Fig 5]. In the case of Fig 3, no
such coupling takes place at Em' since an evanescent layer is formed
between the resonance and the cutoff. Thus when NL2 < 2/3, the relevant
k i k

e % Fa2!

evanescent region, which is k =k

while for 2/3 < NJ_2 < 1, we have to expand around the

]

e 0. Let us consider these two cases

separately.

(i) le < 2/3

Writing Eq (8) as

k* + ak?2 +b = 0 , (40)

we find the potential (33) in the form

_4b - a?

Q= " 8a (41)

which after some algebra becomes

Nlu +a? (g -¢ )2 Niu v,2
Q= - [ =+ ] (42)
2ag? 4 4(a? + Nl“)z
where
Voo
gm = - —_— (43)
«? + N 2

_]7_



The potential (42) describes an underdense barrier (complex-conjugate
turning points), a configuration that can be represented by the Weber

equation
2 2
BEX in t (%— +p2)y=0 , (44)

with a shifted independent variable E =g - gm, and a parameter hm2
obtained by evaluating the expression in front of the square brackets in
(42) at the barrier midpoint gm. This procedure leads to an equivalent
barrier insofar as its transmission properties are concerned. The

7
transmission coefficient is then

T2 = exp (-Znhmﬁz) . (45)
In our case,
L
g Vo,
h g2 =c = . (46)
m FKB 2 2172 (3 ¢ 2 2 1/2
da(a? + N yi/ (E N2 - w2 a)i’

N, 2 << 1, recalling that a« = 4/3, this becomes

For small Nl' L

/5
N2 ¢ 1) === vnh , (47)

exactly the same result obtained in the same limit by the preceding CLD

’

method. At the upper bound of wvalidity of this embedding around k 5
c

_]8.—



i.e. at NJ_2 = 2/3, we have

vV
2 1/2
2= =——-§— = .
Com (Nl 2/3) 7 (2] 0.068v, (48)
to be compared with
3v 172
2 _ - 2 (Y20 _ 2 -
Corp (N2 = 2/3) = = (= 5) 0.092v, . (49)

We now pass to the range of Ni for which the cutoff lies to the

right of the resonance.

(ii) 2/3 < le < 1

The embedding around k = kC2 = 0 now applies. Upon substitution of

k = 0 into the expressions (36) and (40), we get

- N 2 - N 2
vy(1/3 N 2/2) + g(1 N 2)/3
- . (50)

vy, + (2/3 + N 2)E

__b
Q=-3

6
This is a potential of the Budden type , featuring a cutoff and a pole.

To obtain Budden's equation in standard from, we introduce the variable v

v = p(v2 + gq&) , (51)
where
2
1-N<“1,2
e _ 2 2
P_[ 3 ) r q_3+Nl L) (52)

3q

_19_



Equation (32) thus becomes

2 v = vy
- P —v=0 , (53)
dv2
where
2
v
2 L 1
_ L (.2 L _1
W == (p%a + = z) s (54)
a“p
6

The associated transmission coefficient is

T2 = exp (-mvg) . (55)

It is easy to verify that v, > 0 for the given range of N . Let
0 g 1

us compare the result (55) with the transmission coefficient (26),

obtained by the CLD method. As before, the transmission vanishes as

NL > 1 (ie, p > 0). In the vicinity of Nl = 1, 1ie for NL < 1, we
write
le =1-¢ , (56)
i ; ; _
whereupon the corresponding coupling parameters CCLD and CFKB 2v0
become
3v
2 1 3
Cop = —— (5 - 35 )1 + 35 ¢)
10
CLD 2/5e 25
(57)
3v
2 1 3 3
2v =—(E—‘ﬁs)(1+1—0EJ ’
2V/5¢

-20-



a very good agreement indeed. The largest discrepancy will be at the

lower bound of validity of the given embedding, at le = 2/3. We get

2v (NLE 2/3) = 0.085v,

0
(58)

I
]

2/3) = 0.087v, |,

2
Corn ()

which compares well with the upper bound (48) of the previous embedding.
In conclusion, therefore, the CLD and FKB methods give compatible

approximations in the entire range Ni2 < 1 of fast to slow wave

coupling.

V. A PHYSICAL APPROACH TO THE RESONANT MODE APPROXIMATION

It is apparent from the previous discussion that the CLD method is
the more powerful of the two methods when a resonant mode occurs. Since
the nature of the asymptotic analysis used in section IVA is not obvious
we shall attempt to clarify the method by considering it from another
point of view. The above results were all obtained in a hybrid space,
part Fourier and part configuration. We shall analyze the transmission/
mode conversion behaviour in (w , k) space adopting the point of view of

L

the general theory and in particular the technique used in analysing the

mode conversion at the second harmonic of the electron cyclotron

L
frequency .

=-21-



We return to the general form of the cold plasma dispersion relation
given by equation (1). With the aid of equation (2) this can be written

in the form

— +i%f% L 2] 1 n_zm__z___1___N2]
w n, m w I w n, m w Il
= -1 17l (= -1 = + 1 171 (2 4+
& - & =1 &+ &+
(59)
n, m
=N, 2 ! = ! + N, 2]
L (,02 nl ml w2

(2 - 1) (£ - 1)

2y 9,
As already discussed, when N = 0 the slow wave, which has

1

resonances at gy = Ql and w = 92, and is described by the first bracket
on the left hand side of equation (59), is decoupled from the fast Alfven
wave, described by the second bracket and when NL ¥ 0 the waves are

coupled.
In order to identify with the general CLD theory we would like to

write equation (59) in the standard form
(w - wl)(m - w2) =1 . (60)
where the two brackets represent the fast and slow waves in the absence

of coupling. In the limit when one of the waves is a resonant mode the

transmission properties are particularly simple.

-22-



In the following analysis we shall again assume n2/nl << 1 but the
procedure is general and could also be applied to the case n2/nl ~ 1. We
wish to describe the coupling between the fast and slow waves in the
vicinity of the resonance y = Qy+ In fact, the slow wave in the vicinity

of this resonance is closely approximated by the dispersion relation

0= Q (61)

since as w 92, w becomes independent of the wave number. Let us now
re-write equation (59) in the form given by equation (60). We begin by
separating out the minority species resonant denominator, w = R, which is
the appropriate approximate form of the slow wave in the vicinity of the

resonance. The non-resonant left hand side includes the effect of the

fast wave
T . R Y S I, (O § . S D
Q) Q1 Qo (qz - 1)
(62)
(5= + 1)
ny mp Q2 ny mp
g : M+ G+ -— -5 ]
1 mp 2 2 W 1 m
(£ - 1) S

Away from the coupling region, the fast wave is described by the left
hand side of eguation (62) which describes the wave on either side of the
coupling region. It is this wave which propagates to the resonance region

and is therefore relevant to ion cyclotron heating.
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Now consider for a moment the solutions of equation (62) in the

absence of species 2. Solving for w we obtain the equation

k k 2k 2
w* - (c g I + 20 %k 2 +c 2k 2+t L ) w?
B 52 2 2
1 2
(63)
+c kb +ctkk2=0 .
A | A L |
We now express this equation in the form
(w? - 0;2)(w? - w,2) =0 (64)
where w? = w12 corresponds to the fast wave and w? = w22 to the slow

wave which only propagates for w < Ql' Thus, for w ~ 92 (where

Q. > Q only w? = w12 represents a propagating solution.

2 l)

In order to carry out the coupled mode analysis we must obtain k"

for the propagating fast wave for a particular value of w (the fixed

radio frequency) and for an arbitrary value of kl. This is easily done

by substituting a definite value of w® into equation (63) and solving for
k"2 as a function of kl' Since we are interested in the case u = 92

we solve equation (79) for k"2 at this frequency giving

NZ=-2o 2+ (65)
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where we have taken 92/91 = 2, A 1is defined in eguation (10) and the
positive square root has been chosen corresponding to a propagating wave.
It will be noticed that N"2 given in egquation (65) is the same as Nm+2

defined in equation (10). Here this quantity clearly refers to the value

of N”2 for the fast wave at the coupling point. This will become

clearer in a moment.

We now return to a consideration of equation (62). Multiplying

n22

through this equation by (mz/ﬁlz - 1)w* and neglecting terms ~ HT2 , we

obtain

(66)

2
ny my & 1
T - L 2 _ora - 2
“n, m 2 w [NL (Qz + 1){(EL + 1) N2k -
(5‘ - 1) Ql
2

We have already noted that for the frequency range of interest (w? - m22)
represents an evanescent wave. We may therefore divide throughout the
equation by this factor. Since w2/922 = 1 represents the resonant slow

wave we now multiply through by this factor giving
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(w2 - w0 2)(w? - ,2)

(67)
2
(& - 1)
N, m Q
2 "2 1
= by, 2 2 w 1 2
- 2 w2 - (s ) —— - N 2}] .
ny m 1 Q w [
LML 2 - m22) 2 (ﬁI 4 1)
The resonance, or coupling condition is now given by
ml=Q2 % (68)

For this condition, the value of N" for the fast wave is given by
equation (65), which as already stated is clearly identified as N" at
the coupling point. The required coupling equation in standard form is
now obtained by dividing through the equation by (w + Ql)(w + 92) using

the resonance condition and putting w = 92 everywhere on the right hand

side. Thus

92
2
("—2"1)
n, m, Ql Wy 2 1 .
(w-wl)(w-ﬂz) ﬂﬁmﬂzz [J. —2{92 -N" }]
2 ~ 4 (== + 1) (69)
Q)

where, of course, the guantity N"2 in equation (69) is given by equation

(65). In order to complete the coupled mode analysis we now put

92/91 = 2 on the right hand side of (69). We must also obtain w22.

Since wlz and m22 were defined as solutions of equation (63) we have
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2 2 _ L4 2. 2 % 3 w L 2
w; e+ wy Cp 92+2cAkII +cAk + c sz" . {70)
1 1
Since w, = 92, we obtain the result
2 - 2 2=2-4v"%-282-N2-4N242 |, 71
(0,2 - wy2)/0,2 = 2 I I L I L
Equation (69) can now be written as
g B . [- -+ 2A]
(w = w) NHw - 92) = e Qs (72)
1 [2-4N"—2N"2—N2-4N2N2]

where we have substituted equation (65) into the numerator on the right

hand side of equation (69) but not yet in the denominator since this term
L

will be found to cancel. Using the general CLD theory the transmission

coefficient is given by

- _ —2mm
T exp [ 692 ale (73)

ox EE;

where 1n 1is given by the right hand side of equation (72). The group
velocity of the fast wave, bml/ak", is easily obtained from equation

(63) and is given by
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2 2 42
dw (29,2 + N 2 + 5]
— = 3c,N, . (74)
= C g o 2 - N2 o ogn 2y 2
I w=Q, [2 - 4, N N2 - an 2w, 2]

Assuming that Qz(x) = 92(0)(1 + %), we obtain

= = — (75)

where L 1is the scale length of the magnetic field. We can now obtain
the final form for the transmission coefficient T = exp [-Znn ) by

c
substituting equations (74), (75) and the expression for 1 into equation
(73), giving
n Q,L
2 = 2
o2 (A= 2/3) 727 (38}

c n; AN A 2c
If .Y

n

where N" is given by eguation (65). This is exactly the same as the
result given earlier in equation (23) from the CLD method. The factor
QZL/2CA arises from the different normalisation used in deriving (76)
compared with (23). The above analysis ﬁakes clear the nature of the
resonant mode method. Whenever a resonant wave is involved in the
coupling, one must identify the other wave which can propagate to the
resonance region. At the resonance, the resonant wave can always be
treated as non-propagating. The coupling parameter is evaluated in terms
of the parameters at the "coupling point" determined by the coupling

b

condition W) = Wy- The general theory of CLD then enables the trans-

mission/mode conversion information to be extracted by inspection.
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VI CONCLUSIONS

In this paper we have re-examined the problem, originally posed by
White et all, of the coupling between the fast wave and the slow ion
cyclotron wave in a longitudinally inhomogeneous magnetic field. This
coupling can only occur in the presence of a second ion species and for
oblique propagation. The energy transferred from the fast wave to the
slow ion cyclotron wave in the resonance region is larger for larger
values of NL' where NL has been treated as a parameter in the
analysis. For a wave incident from the stronger field region the energy
is totally absorbed at the resonance as Nl + 1. For a wave incident from
the weaker field region the maximum absorption is 25%.

The dependence of the transmission properties of the fast wave on NL
emerges naturally from our treatment but is obscured in the analysis of
White et al. due to their introduction of a multiplicity of unnecessary
parameters. Under the conditions of minority hydrogen in a deuterium
plasma the only remaining free parameter is Nl. The corresponding
parameter used by White et al. is A . For the deuterium (hydrogen)
application our use of the parameter NL enables us to show that A < 1/3
and that the transmission coefficient is zero for A = 1/3, corresponding
to NL = 1 . This is in conflict with figqure 5 of White.et al. which shows
approximately 40% transmission for A = 0.33 , a value at which trans-
mission should in fact vanish. This discrepancy is due to an inconsistent
use of parameters by White, Yoshikawa and Oberman. We can illustrate this
directly from figure 5 of the above paper which shows the behaviour of the
transmission, absorption and reflection coefficients as a function of the

parameter )\ for fixed values of two other parameters, f2 and a . The
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values of f2 and a were taken as 1/3 and 5 respectively. However, the
authors were not permitted to choose £2 and a independently of A
since, in the wvicinity of the coupling point, all three parameters depend
only on Nl! We may therefore make a consistency check for one partic-
ular value of Nl . Choosing NL =1 gives A = 1/3 , and £2 = -1/9
whereas White, Yoshikawa and Oberman have £2 = 1/3! Substituting the
correct value of A and £2 into equation (31) of White et al. now gives

T = 0 in agreement with our result.

With regard to the question of reliability of the second-order
L 7

r

methods we have used, we emphasise that, as demonstrated elsewhere ’
these methods retain all information of the full higher-order formula-
tions. 1In particular, for the model dispersion relation analysed by
White, Yoshikawa and Oberman, we can obtain by the second-order method a
transmission coefficient which agrees exactly with theirs, obtained using
Laplace-transform techniques applied to the fourth-order model equations
(see BAppendix). From the point of wview of the second-order theory, as
outlined at the outset of section IV, all we need to determine is the
transmission coefficient of the incident wave, from which mode-conversion
and reflection is automatically obtained.

The analysis of mode conversion in a longitudinally inhomogeneous
magnetic field is of relevance to magnetic mirrors. It is also of
relevance to tokamaks. In both cases, since NL has been treated as
constant we require GN”/N" > 5NL/N1' This condition should be satisfied
for waves propagating close to the axis of a mirror device. 1In the case

of a tokamak the above condition evidently applies in the wvicinity of a
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mode rational surface where 5 8 = 0. The condition on N" and NL is

NH/NL < e/q where & is the aspect ratic and g the safety factor. For
strong absorption, when Nl < 1 equation (65) shows that such a condition

is indeed satisfied, ie NH/NL << 1.
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APPENDIX

We will analyse the White, Yoshikawa and Oberman dispersion relation

[their Eq. (11)]
(k2 + 1 + a/E)(- k% + £2) + A2 =0 , (A1)

where £ is the (normalised) spatial variable, using the method outlined in

section IV.A. Write Eg. (A1) as

Ef(k2 + 1)(- k2 + £2) + A2] = a(£2 - k2) . (A2)

The left-hand side is the product of the non-propagating resonant ion-

cyclotron mode represented by the factor £, while the square bracket
(k2 + 1)(- k2 + £2) + A2 (A3)
includes the fast mode. The expression (A3) factorises as

(k% - k{)(x% - x3) , (A4)

1/2
(£2 = 1) = 1 [(£2 + 1) + 4)2] ; k% >0, k§ < 0 . (A5)

2 -
k 2

1
102 2

Since k% is positive we may write (A2) as

Lk = k1) (k + k) (k2 - k2)] = a(£2 - k2, (R6)
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where k - k) and k + k] represent the two propagating branches of the fast
wave, while k2 - k; never vanishes for real k . We now single out the
branch k - k; and write (26) in the form

2 _ 2
Ek, = Iy ) = —LE" = k7 , (A7)

2 . 2
(k + kT)(k k2)

and evaluate the right-hand side at the coupling point k = kyj. We get

a(£2 - kﬁ) .
E(k - k1) = T TY =1, (A8)
2k, (k2 - x2)

whereupon identifying (A8) with (24), and subsequently using (25),
immediately gives
|2

,T = exp(- 2= no) F (A9)

This is the same result as given by Eq. (31) of Ref. 1, obtained by the

Laplace transform technique applied to the fourth-order differential wave-

equation [k » id/0f in (A1)].
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Fig.1 A plot of the square of the parallel refractive index for the fast and slow electromagnetic waves as
a function of the distance from the minority resonance in a two ion species plasma for parallel propagation.
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Fig.2 Plots of the square of the parallel refractive index Fig.3 The same as for Fig.2 except 2/3 < NJZ_ < L.
and its real part as a function of the distance from the
minority resonance for Nf_ <2/3.
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Fig.4 Plots of the square of the parallel refractive
index as a function of distance from the minority
resonance for Nj = I and N{ > 1.
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Fig.5 (a) Plot of Rek as a function of the distance
from the minority resonance for two coupled modes
with anti-parallel group velocities; (b) for parallel
group velocities.












