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Abstract

The coupled mode equations previously proposed1 to describe linear
mode conversion in an inhomogeneous plasma are derived from Maxwell's
equations and the conductivity tensor. The conservation of energy is
shown to follow from the symmetry properties of the conductivity tensor
and the amplitudes of the coupled modes are related to the electric fields
and currents in the plasma. It is shown explicitly how the theory deals

with the case when one of the modes is non-propagating.
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1. INTRODUCTION

In a previous paper1 we described a method of treating a class of
mode conversion problems using a simple technique involving only alge-
braic manipulations of the local dispersion relation. A number of
examples showed that existing results could be obtained in a very simple
way. While there is ample evidence that the technique works, a number of
questions remain concerning its derivation and the way in which the wave
amplitudes which it introduces are related to the electromagnetic field
in the plasma. The aim of the present paper is to resolve at least some
of these questions by describing how the coupled-mode equations which we
postulated as describing the mode amplitudes are related to the basic
equations of the plasma.

Let us begin with a brief recapitulation of our earlier theory,
highlighting the ambiguities which we attempt to resolve here. The
theory deals with systems in which there are waves whose dispersion
relation is as in Fig. 1. In an inhomogeneous system the two branches of
the dispersion curve give independently propagating waves except where
the plasma parameters are such that the solutions of the dispersion
relation are in the neighbourhood of a point like A where the two
branches come together and the WKB approximation breaks down. WNear such

a point we write the dispersion relation in the form

(w = w))(w = wy) =1 (1)

where wj{(k,x) , wy(k,x) are given by the dotted lines in Fig. 1. We

require w; and wy; to be slowly varying functions of k and x ,



asymptotic to the true dispersion curves as we go away from the crossing
point at A. Assuming that the crossing point at A corresponds to k = ko

and at the given wave frequency mo occurs at a position x = xo, we expand

around this point so that

w) wo + a(k - ko) + bE

+ - +
wy = W f(k ko) gt
with £ = x - xO «+ Our problem is now to use the resulting local
dispersion relation to construct a differential equation describing the
behaviour of the wave amplitudes in the mode conversion region. There is
; 1 i ;
no unique solution to this problem and we suggest describing the ampli-

tudes of the wave modes ¢; and %> by the two coupled mode equations

d¢l b
i (x_ - 2¢) ¢l=1;\¢2
(2)
ddo
—_ - g =
s~ (kg - g E) ea=ire
142
where A = /af . This reproduces the local dispersion relation,
o

and if I¢1I2 and l¢2l2 can be regarded as the energy fluxes in the two
modes, gives energy conservation.

There remains, however, the problem of saying what ) and ¢, are in
terms of the electromagnetic fields in the plasma. Although the question

can be answered in the region where the modes are separate and the WKB



approximation is Valid2 the standard expression for energy flux breaks
down around a point like A in Fig. 1. Since this is precisely the type
of region in which we are interested, it is important to be able to
identify ¢; and ¢, here and not just in the asymptotic region. The
identification of ¢; and ¢5 with real physical quantities and a justifi-
cation of their description in terms of equations of the form (2) is the

subject of the remainder of this paper.

2. DERIVATION OF THE COUPLING EQUATIONS

; : . ; ikesr - iwt
Maxwell's equations give for wave fields varying as e — = e

a uniform plasma

I=

x (k xE) =-ipw -LE (3)

with

J, =o,. E, , (4)

where Uij is the conductivity tensor. Substitution of (4) into (3)
yields a set of homogeneous linear equations, the condition for a non-
trivial solution of which is the dispersion relation. The plasma
properties are contained in the conductivity tensor, whose particular
form need not concern us.

Let us suppose now that the conductivity tensor can be split into

two parts



= U,f“)*‘ O'.fz)l

ij ij ij (5)

with, correspondingly,

— J(1)+ J(2) , (6)

in such a way that if 2(2) is neglected the resﬁlting dispersion relation
is that of one of the branches, say w;, which appears in the factor-
isation (1). This may bg clearer if we take a specific example, say
conversion of the X mode to the Bernstein mode near the second harmonic
of the electron cyclotron frequency which we have discussed previouslyT.
Thus if w = w); 1is the cold plasma relation for the X mode, which is
very close to the exact solution away from the crossing with the

Bernstein mode, then the appropriate di;1) would consist of the cold

g : . . 2 o
plasma contribution to the conductivity tensor, with di; ) containing

the thermal corrections.

We can now write (3) as

2
w (2)
- ‘E + — E = - o
k x (k x E) ip, gE+ 22 ip, w (7)
2
If J( )is neglected we get an equation of the form KijEj =0 , with Kij

the appropriate tensor constructed from (7), and this leads to the

dispersion relation for the mode w = w; (the cold plasma X-mode in our

example) .



Now in an inhomogeneous system suppose that

i [ ky(x) ax
E=E (x) e ’ (8)

where k; 1is the wavenumber obtained from the dispersion relation

w = wy(k, x). (This is the wavenumber component along x, the direction
of inhomogeneity. Wavenumber components in the transverse direction are
simply constant parameters which will not be mentioned specifically.)
Assuming that the properties of the relation w = wlfkl, X) , are such
that the solution for k; is a smoothly varying function of x , then we

can expand the equation

d
by replacing k] by - 1 o and keeping only first order derivatives of

k; and E to get
1 = g

oK. dE . . BK
< Ebkl ax 2 ax By ) on} ~ R (2

The form taken by the left-hand side is easily obtained when KX, K is a
1]

polynomial in k and can also be obtained by successive integration by
parts if K,, contains inverse powers of k or factors of the form (k -

=1

ko) .



In a non-dissipative system Kij is hermitian, and if we take the
%*
scalar product of (9) with Eoi and add the result to its complex

conjugate we get

3 - aKi.
ax (Eoi ok, on)

=0 . (10)
This is just a statement of the conservation of energy flux in the wave

mode with wavenumber k; in a regime when it can be described by the WKB

2
approximation .
2
Now let us turn to the case where the contribution from E( ) is

included and produces the characteristic behaviour illustrated in Fig. 1.

We introduce a vector £(x) which is a solution of

K..e. =0, (11)
13 3]
normalised so that
” aKi.
Ei Ele Ej == 1. (12)

This means that £ is basically an eigen vector corresponding to the local
electric field of one of the uncoupled modes, normalised to represent
energy flux at each point, apart from a factor w 50/4 which we shall

not put in explicitly. 1In an inhomogeneous plasma this gives a purely



local definition of € and it is possible to multiply € by an arbitrary
phase factor at each point. As x varies the phase must be slowly

varying, and we shall use the freedom allowed in its choice to impose the

9K, ., de
- - .
condition that Ei BEEA E;l be real, for reasons which will appear
1

3K, . Oe,

*
later. If ¢, =1 _J is not real, a transformation to
i akl dx

K, .

- *
=g e 18(x) can be made and L chosen to make g’ -—=2 ¢ real. In

®1 T & ax i dk 7§

the problem where the modes couple we take

ifk)(x)ax
E(x) = ¥1(x) &(x) e ' (13)

and expanding the left hand side of (7) as before we obtain,

corresponding to (9),

oK, . 3K, . ifk(x)ax
; ij 4 14 ij - (2)
i ok, ax (Tlej) *+ 3 (bkl ) ylsj} e ipgw I, (14)

This can be done since k; is the slowly varying wavenumber corresponding
to an incomplete dispersion relatiocn.

*
Taking the scalar product of (14) with € and using (12) we have

av, L 0K, de. L o BK,.
“ax Y (%5 B ax T2 %E (akl ) €5
= - ) s* J(z) e—lfkl(X)dx (15)
Ra¥ Eg ¥4 ;



* aKi. de,
£ —d1 1 is real may

iti h
The hermitian property of Kij and the fact that i Bky =%

be used to show that the term multiplying ¥; in (15) is just

which vanishes by virtue of (12).

Thus we have

av, ' (2] ifk)(x)ax
el ,
or, 1f we define
ifkq(x)ax
¢1=\Ele ’
do1 *_(2)
= % ki(x)o) = Bow € Ji . (16)

This is an equation for an amplitude associated with one of the modes,

coupled to a current component 2(2) which is associated with the second

2
mode. We now consider the behaviour of g( ) in order to obtain the

second of the pair of equations of the form (2).

In general we have

7 o2 g,
i ij J



which we shall suppose can be inverted to give

_ (2)
Ei = ﬂij Jj s (17)

Now, suppose that the determinant of 1,. vanishes if k = ks . We let
1] 2

£(x) be a solution of

n,. I. =0 (18)
s
normalised so that
on
% s
i g =
ip w Ii ok Ij 1, {(19)
% ani. darI,
and with slowly varying phase chosen to make ip w I, —21 1 real.
o i 0koy dx
(1) v Ml
(Note that since g, and hence mn,. is anti-hermitian, I, —=1 1.
ij ij i dky 73

is necessarily purely imaginary.)

i[ko(x)ax

(9 o Wz(x) Ie in the inhomogeneous system,

Now, letting J

an expansion of (17) just like that applied to (7) gives

av, R - ifky(x)ax
E;_ = - uow Ii Ei e . (20)
ifk,(x)ax
Introducing ¢y = ¥, e we can write (16) and (20) in the form



de) *

= 1 kij(x)éd) = p w e, I, ¢o

(21)

d¢2 *

E;— -1 ko(x)do

[}
1
=
(o]
£
™
'.h
H

Approximating the wavenumbers near a point where k; = kj by a linear

function of x and choosing the phase of £ and I at this point

appropriately reduces (18) to the form (2) with A

pom E*‘El « Thus we
have obtained coupled mode equations of the form proposed in Ref. 1, but
now the amplitudes are well-defined in terms of the electric field and
current associated with the waves and the coupling constants, with the
symmetry properties necessary for energy conservation, emerge from the
dielectric properties of the plasma.

To complete this description we show finally that our assumptions
are in fact consistent with a local dispersion relation of the form
assumed initially. Let us consider a plasma whose parameters are such
that k; and k; are almost equal. Thus we may anticipate that there is an
exact solution of the local dispersion relation, k , somewhere near kj
and kp . Also the vectors g and I defined as before may be expected

to be accurate representations of the polarization of the field and the

appropriate part of the current. Assuming

(22)
(2) _ ikx



then (7) yields

0K, |

ci(k - ki) "Eil Ej == pw chi

*
or, taking the scalar multiple with € ,

*
ci(k - k) = - Bwey g *J

In a similar way (20) yields

%
co(k - ko) = Bow €1 E°J

so the local dispersion relation is

(k = ky)(k - ky) = A2

as reguired.

So far as energy conservation is concerned we have already shown
that I¢1l2 represents the energy flow in one of the modes when it is
uncoupled from the other and can be described by the WKB approximation.

To show that |¢2|2 represents the energy associated with the other mode

we note that



an, .
2 _ . (2) _7ij _(2)
l¢»2l i p.om Ji ok, Jj

2
Using the fact that nij is the inverse of cij) and the anti-hermitian

properties of these tensors we can see that this is equal to

This is just the standard formula for the energy flux associated with the

2 2
part cij) of the dispersion tensor . 1In a region where k) and k,

are not close together, then if k = ko cii) is the dominant part of
the dispersion tensor, since its inverse is singular if k = ks. Thus
when the modes are well separated |¢2|2 is the energy associated with
the second mode.

Thus, we have succeeded in deriving coupled mode equations with all
the properties postulated in our earlier paper1- The basic idea is to
regard part of the current as a variable distinct from the electric
field. Since the current and the field are connected, in the homogeneous
plasma theory, by a linear relation whose coefficients will generally
depend on k , it is not unreasonable to suppose that in an inhomogeneous

plasma the connection between them is expressed by a linear differential

equation.

- 12 -



3. AN EXAMPLE AND AN EXTENSION OF THE THEORY

The above theory supposes an interaction between two propagating
waves, but in most of the plasma physics applications which we have
considered1' 3, one of the modes is a non-propagating mode, resonant at a
particular location in the plasma. We shall illustrate the modifications
required to the theory by looking at a particular example, since this
will also serve to illustrate some of the ideas in the previous section.
The example we choose is the coupling of the extraordinary mode to a
Bernstein mode at the second harmonic of the electron cyclotron fre-

quency. For propagation exactly perpendidular to the field we have

w2 e—h ® n?1 w2 e-)L o n(I'-I ]
TR P _i P n_n z
w A w=-nf w w=-nf? x
Nn==—co n==co
A A I
2 a Lo B 220 - ’
. % ¢ P n(In In] c2k2 Y% © v 2y * 2L, 2T,
1By —nn. ok ) :
w w-nQ 2 w _ w=-ng v
n==-—o Ll.) == 0O
=0’

with the notation as in Ref. 1.

Splitting off the cold plasma part, which describes the X-mode we

obtain,
w? wiq (2)
1--'—9— ip— Ex=-iwp.og_
w2-g2 w(w?-Q2)
(23)
2 2
w<Q w
k22
-1 B 1 - 2 = B E
w(m-Qz) w? w2-Q2 Y

- 13 -



with

2
w E

- (2) __» _A[1 i X

we g T e -2 2 i 1 B, (24)

In obtaining (24) we have taken only the warm plasma corrections in the

n = 2 terms, to lowest order in A . From (24) it can be seen that 2(2)
has a resonant response atl w= 2Q , that is, at a localised point in the
plasma. This means that our theory described in the last section, which
was geared to a propagating mode, does not apply, since the inversion
leading to (17) and the subsequent development, cannot be carried out.
Let us first look at (23).

Putting the left hand side of (23) equal to zero, we see that the

solution must have

so that £ , as defined before, must be proportional to

2
. __"p@
—-— 1 -
m(mz-Qz-wz]
1
. 0K, . 02
The condition &, —=1 g, = = 1 implies that ¢ 2 = ; SO we may
i ok 3j y oka2

take (assuming k > 0 ),



(We drop the subscript 1 on k, since there is only one propagating mode.
The value of k 1is that appropriate to the cold plasma X-mode.)

Letting the solution be of the form

E =¥ (x) e eifk(x)dx

we obtain, on expanding (23) and following the procedure outlined in

section 2,

a¥; x (2 -1 [k(x)adx
B B ENTT e -
or, introducing ¢; as before
b *_(2)
o - ikép = pow eI . (25)

Now, however, instead of regarding 1(2) as corresponding to a second

propagating mode in the plasma, we must regard it as being a resonant

response, driven by the electric field of the X-mode in the vicinity of
(2)

the cyclotron harmonic. From (24) we can see that J is singular

where w = 2Q , but as is well known in many plasma'physics applications,



this problem can be circumvented by introducing a small amount of damping
or by using causality arguments to specify the way in which singular

functions are continued through the resonance.

(2)

Evaluating J from (24) and substituting in (25) gives
2
d
ﬂ_ikd, SR A
dx - w(w-2Q) 2 “i %13 =4 ¥1

with aij the matrix which appears in (24). Putting w-2Q = 2Q"'x = E%E,
with R the magnetic field gradient scale length, we have
de, w?
— =i PR RA _*¥
ax K0T I oasx 2 €1 3y &5 61 .
the solution of which is ,
w2 *
¢; = A exp (ikx - i - €., a,, €. log x . (26)
802 1 1] 7

Introduction of damping, as discussed above, moves the singularity below
the real axis, so that as x goes from large negative to large positive

x , the wave amplitude decreases by a factor

w 2
*
exp |m —B B B Ry Bal)
892 1 1] 3

Using the value of € obtained above, this can be shown to reduce to the

v i o ; . 1
transmission coefficient quoted in our earlier paper . The above

analysis provides a formal justification for the simple method of dealing

- & =



with a resonance employed by Antonsen and Manheimer4 in discussing
electron cyclotron resonance heating.

Thus, again we can justify our expression for the transmission
coefficient in terms of a description showing explicitly the relation of
the wave amplitudes to the fields in the plasma and the flow of energy
between modes. Energy is now transferred from a propagating mode to a
localised resonance where it is absorbed by damping, rather than being
transferred to a second propagating mode. This result is also obtained
from the theory for two propagating waves in the limit as the group
velocity of one of the waves goes to zero1. Whether the energy is dissi-
pated locally or is carried away by a wave with a small but finite group

velocity makes no difference to the transmission coefficient for the fast

wave.

4. COMMENTS AND CONCLUSIONS

In the preceding sections we have shown how to derive the first
order coupled equations that we had previously proposed1 as the
appropriate description of certain mode conversion processes. These
equations were previously obtained heuristically on the basis of energy
conservation. We have now demonstrated how the mode amplitudes are
related to the fields and currents in the plasma and that the symmetry of
the coupling coefficients, necessary to guarantee energy conservation, is
a natural result of the theory, following from the hermitian nature of
the dielectric tensor in a non-dissipative system. We have also shown
how to treat the case, important in many plasma physics applications, in
which the second mode is a non-propagating resonant mode. The resulting
transmission of the propagating wave is still given by the general

formula of reference 1. As is usual in such problems, the singularity

- 17 =



produced by the resonance is most easily resolved by introducing a little
damping to remove the energy deposited in the resonant region.

The derivation allows us to say something about weakly damped
propagating waves, in which a small anti-hermitian part is added to Kij
(and a hermitian part to nij). In this case the derivation leading to
the coupled equations (18) will simply give rise to a small imaginary
part in k) and k5, giving the damping of the uncoupled waves, but with
the right-hand side as before. Such an approach has been used by

Weynants5 and shown to reproduce the results of much more complicated

-8
calculations6 .

Finally we should perhaps remark that the conversion theory
considered here applies to problems in which the w-k dispersion curves
have two branches of the form shown in Fig. 1. Mode conversions may also
occur involving dispersion curves with a single branch, in which case the
energy conservation properties correspond to those of second order equa-

; 9,10
tions of the type proposed by Fuchs et al. . BAn example of such a

problem is the conversion between fast and slow waves in the lower hybrid

11
frequency range .

- 18 -
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Fig.1 Typical dispersion curves in a mode coupling problem.
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