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Abstract

The effect of pressure anisotropy on the stability of ideal mhd
ballooning mcdes is studied for a large aspect ratio tokamak of circular
cross section. Significant increase of the perpendicular energy of

electrons or ions can cause strong modifications of the stability

boundary, especially at low shear.
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1. Introduction

With the use of high power auxiliary heating in recent tokamak
experiments there is evidence for the generation of pressure anisotropy.
In TOSCA, for example, operating at densities of order 5 x 1018m~3 with
ECR input power of 150 kW, poloidal asymmetry of the soft X-ray signal was
observed [f], suggesting significant poloidal modulation of density or
temperature, and possibly an increased population of energetic trapped

electrons.

Neutral beam injection perpendicular to the field, and ICRH may be
expected to modify the pressures in a similar way. Under these
circumstances the distortions of the particle distribution functions from
Maxwellian have two characteristics: (i) higher energy in the
perpendicular direction and hence pressure anisotropy with pl > Py

(ii) the presence of a suprathermal tail.

Such distortions can modify mhd stability properties, particularly
the B 1limit for ballooning instability. It is therefore of interest to
determine (i) whether such modifications are favourable or unfavourable,
and (ii) at what power level of the auxiliary heating, if any, they become

significant.

The ballooning stability of anisotropic pressure tokamak equilibria
has been investigated by Fie;ding and Haas [2,3], Cooper [4] and
Mikhailovskii [5]. Fielding and Haas pointed out that stability could be
improved relative to an isotropic plasma if nearly perpendicular neutral
beam injection is employed to generate anisotropy in which the
perpendicular pressure component is modulated in poloidal angle 8 with
maximum value on the inside of the tokamak minor cross section. Thus,

with 8 = 0 defining the outside, pressures of the form
p, = Py(1 + m cos8) with n < 0 (1)

were found to enhance stability.

In reference [3] a model large aspect ratio, circular cross section



equilibrium in which Be is constant on a magnetic surface, was used.
Cooper extended this work and confirmed the stabilising effect by studying
the stability of global equilibria obtained from a numerical solution of
the anisotropic Grad-Shafranov equation. In contrast Mikhailovskii found
that excess perpendicular enerqy, P, > P, has a destabilising effect on

ballooning and interchange modes in a large aspect ratio tokamak.

In this paper we extend these results and investigate the apparent
conflict between references [3] and [5]. In section 2 the validity of the
ideal mhd ballooning stability theory is briefly discussed. Section 3 is
devoted to a description of the large aspect ratio equilibrium model, and
the form of the stability equation fqr this model. 1In section 4 the
results of numerical and analytic calculations of the stability boundaries
are presented and these results are discussed and conclusions drawn in

section 5.

2. Stability of Ballooning Modes

The ballooning stability of anisotropic tokamak equilibria is

determined by the anisotropic ballooning eguation ([3,5]
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where the magnetic field is defined by
B = I Vo=V x V¢

and Bp and B denote the poloidal and toroidal components
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respectively. The distance to the axis of symmetry is R , the poloidal

magnetic flux is ¢ , and K  and KS are the principle and geodesic
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curvatures:
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with ¢ = (p - p )/B? .

Finally the guantity G 1is defined by
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where 1y 1is the poloidal coordinate with V¥ orthogonal to V¢ and

V¢ , and J is the Jacobian.

Equation (2) was derived in references [3] and [4] by minimising the
Kinetic Energy Principle of Kruskal and Oberman [6]. For plasmas with
p"> Pl it can be shown [7] that the kinetic term of this energy principle
yields a small additional contribution of order g3/2 r where € 1is the
inverse aspect ratio. For the case of strong perpendicular anisotropy
considered in this paper, the kinetic term may not be negligible, but
provided the distribution function is monotonic in energy it can be shown
to be positive definite. Its neglect, therefore, yields a sufficient

condition for stability.

Another requirement must be satisfied in order that the use of
equation (2) to study B 1limits be justified. This arises when some of
the plasma pressure and pressure gradients are associated with a high
energy, non-Maxwellian, tail in the particle distribution. When such high
energy particles are present, equation (2) still provides a valid
stability test provided that the mode frequency at marginal stability
exceeds the toroidal precession frequency of such energetic trapped
particles. Finite larmor radius effects determine the frequency at

marginal stability to be
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where W =-—&— —= with A& the toroidal mode number. Thus the
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condition becomes

1
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where <wd> is the precession frequency of the energetic particles. This

is effectively a constraint on the energy W of such suprathermals and is

eguivalent to
— < £ . (6)

When this condition is violated, it has been shown [8] that the
suprathermal particles have a stabilising effect, and that higher B8

values can be attained than equation (2) would predict.
The calculations presented here assume that the inequality (6) is

satisfied so that all parts of the electron and ion distributions behave

in a fluid-like manner.

3. Equilibrium Model

The equilibrium is calculated locally, following Mercier and Luc [e1.,
by expansion around a magnetic surface. For an isotropic equilibrium this
method requires the specification of the shape of the magnetic surface and
the variation of the poloidal magnetic field, Bp , around the surface.

We shall consider a large aspect ratio equilibrium with strong
perpendicular anisotropy, i.e. c/B2 = 0(1) in the aspect ratio

expansion, where

. dF .,
c = 4anim, | 2 (pB) 2 BEJ dudk (7)
377 vy



where | and K are the magnetic moment and particle energy per unit
mass respectively. In this case it is necessary to specify, in addition,

the wvariation of both P, and 6pl/b¢ around the surface.
The equilibrium is determined by the following conditions

(a) Large aspect ratio: € << 1 .

(B) By ~ B ~ €.

({c) Circular magnetic surface.

(d) Vvariation of BP round the surface specified.

(e) C/B2 ~ 0(1) and therefore finite variation of Pl and pr/6¢

round the magnetic surface.

A consequence of the conditions (a) and (b) above follows from the

equilibrium relation

BeVp, + =0 B*VB = 0 , (8)

namely that the.variation of P, and Bp"/b¢ around the surface is of

order € . The O(e) modulation of &;IEJX round the magnetic surface
is nevertheless required in the stability calculation and is obtained

explicitly from equation (8).

To simplify the ballconing equation a convenient variable is the

poloidal angle, O , defined in terms of x by:

X JB
6 = [ —Bay (9)

r
where r is the radius of curvature of the magnetic surface under
consideration. Since we assume this surface is circular r is

independent of 0 .



Using the large aspect ratio expansion and B ~ €& ordering, the

curvatures K and Ks can be evaluated to leading order in e to give

b
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where R = Ry + rcos@ .

The ballooning equation (2) now takes the form
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Making use of the aspect ratio expansion, the expression for G may

be simplified to the form

9 dB? op,

- 2 48 (_p L’

G = - RrB = + (1 - — 13

_ z é - G+ - a5y = } (13)
0 7p

where L(¢) = I(1 - o) , and 6B;/b¢ may be obtained from a local

solution of the Grad-Shafranov equation with the result
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order € correction to is also required and to determine this we

o 3p
introduce explicit forms for pi(e) ’ Sai (9) , BP(B) etc. Thus we take

P = p, (1 + 1 cos8)
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The parameter A represents the effect of the outward shift of the
magnetic surfaces in toroidal equilibrium - the Shafranov shift. The

degree of anisotropy is controlled by the parameters (Plo - p"ﬂ) ’

" - p! and 1 .

Since we are particularly interested in the effect on stability of
poloidal variation of the perpendicular pressure (n # 0) we simplify the
equilibrium model by choosing p, =p, =p;, p; =p° =p; .

g Ly g Ly 0
o,
The small modulation in 8 of (BE—) is now obtained from equation

(8) and found to be
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The parameter pa + LL'/R0 is then eliminated from the expression for G

(equations (13) and (14)] in favour of the global shear, s , defined by
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with g the safety factor.

The ballooning equation then takes the form
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and the bracket notations in equations (18) and (19) are defined by:
1
X> = = §xda8 X] = x- < .

If the poloidal magnetic field is constant round a magnetic surface

(i.e. A =0 ) then in equation (17)

G » s(8- 9y - a1+ ag](sinG - sinf)

2
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If the further limit B/e » 0 is taken, equation (17) reduces to the
ballooning equation solved in reference [3], while if the isotropic limit,
n+ 0, is taken, equation (17) reduces to the (s - a) equation of

Connor et al [10].

4. Stability Boundaries for Interchange and Ballooning Modes
We first note that the criterion for mirror stability,
1 o2
{B-v(e, + 3 82)}{B-v8} > o (21)

takes the form



i |
1+ 7 > 0 (22)
for the equilibria considered in the previous section. Instability is
therefore only possible for rather large values of f/e and for negative

values of 7 (Pl larger on the inside of the tokamak cross-section).

Stability to interchange modes is determined by the Mercier criterion
[11] which is obtained from the asymptotic behaviour of the ballooning
equation. When A # 0 the resulting criterion is complicated and has
been evaluated numerically for the stability diagrams presented below.

When A = 0 , however, it takes the relatively simple form:

s? >n{a+ﬁ—§3- i‘éﬁ+ﬂ—(a+p—‘ﬁ)ﬁﬁ(1-ﬂ°‘—)} . (23)
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For small values of a and qu/e , positive values of mn are seen
to be destabilising. The term mna on the right hand side of the
inequality arises because of the weighting of the radial pressure gradient
towards the qnfavourable curvature region. This effect is however
reinforced by the longitudinal pressure gradient appearing as anz/ E .
For negative 1n values these effects are stabilising so that interchange
modes were not unstable for the inward shifted P, surfaces of Fielding

and Haas.

The destabilising effect of pressure weighting towards the
unfavourable curvature also applies to ideal ballooning modes. These
modes are now required to 'balloon' less and hence cause less field line

bending with its consequent stabilising effects.

In Fig 1 the stability boundaries in an s - a diagram are shown for
B/e = 0 and several values of 7 . Fig 2 shows the destabilising effect
of longitudinal pressure gradients, B/e # 0 , on the stability boundaries
when 1 = 0.5 . In both figures the interchange stability boundaries are

included, and are seen to be important for small shear.

In Fig 3 we show the largely stabilising effect of the outward

toroidal equilibrium shift, A = 0.25 , for an isotropic plasma, while Fig



4 shows the result of the competing influence of the equilibrium shift and

unfavourable pressure weighting {(positive 1 ).

In Fig 5 we show the marked effect of unfavourable pressure weighting
on the second stability region, and for comparison the favourable effect
of inward shifted pressure surfaces. This shows the sensitivity of the
ballooning instability to modulation of the perpendicular pressure round a

magnetic surface.

5. Discussion of Results

From the foregoing results it is clear that auxiliary heating methods
which generate 'strong perpendicular anisotropy', ie finite poloidal
variation of pl(e) , will have a significant effect on the critical
pressure and pressure gradient for ballooning instability. This is
especially true in regions of low magnetic shear s . Fielding and Haas
found that for an inward shift of the pi = const surfaces { nn < 0 in
the previous section) the first and second stability regions coalesce for
low shear. The result of the present investigations is that for n > 0
interchange modes become unstable at low shear. 1In addition we find that
the effect of the longitudinal pressure gradient coupled to the goedesic
curvature reinforces the stabilising or destabilising effects associated

with the poloidal variations of the radial pressure gradient.

In regions of stronger shear the destabilising effect of positive 1

persists, but is weaker.

These effects are quite distinct from the destabilisation found by
Mikhailovskii. The anisotropic equilibria studied by Mikhailovskii differ
from those studied here in the ordering in the aspect ratio parameter e =
a/R , of the pressure-like moment C defined by equation (7). The finite
modulation of pl(e) ; in equation (1), implies that C/B2 ~ 0(1) « 1In

reference [5] the ordering

— ~ = ~ & ¢ oge)
B



is taken. For such equilibria both components of the pressure are
constant round the magnetic surface in leading order in € , so n =10 .

The degree of anisotropy in this case is measured by the parameters

(plo * 9"0) » and (plo - pho) .

If in section 4 we had taken p, # p . p, #p' the interchange
i, "Bl * Py T Bl

stability criterion becomes (when A = 0 )

p, - B
- 1l Il = 1
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Here the first term on the right hand side shows the destabilising effect

of ﬁl > ﬁ" found by Mikhailovskii.

We conclude that two parameters characterising the anisotropy of a
tokamak with auxilliary heating are of importance in assessing the effect
of anistropy on ballooning stability and therefore f 1limits. These are
(pl* p"]/p" , and {pl(e = 0) - pl(e = n)}/pl(e = 7) which is a measure
of the parameter m of the foregoing study. In optimising the parameters
of any heating scheme one desirable feature ought to be the achievement of

small or negative m values.
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