





CLM-P742

ANALYSIS OF INTERNAL MAGNETIC FLUCTUATIONS
IN THE HBTXIA REVERSED FIELD PINCH

D.Brotherton-Ratcliffe*, C.G.Gimblett, I.H.Hutchinson®
Culham Laboratory, Abingdon, Oxfordshire, U.K.

(Euratom/UKAEA Fusion Association)

ABSTRACT

An insertable magnetic probe has been used to investigate the internal
structure of the magnetic fluctuations in the HBTX1A Reversed Field Pinch.
A statistical method for determining the radial amplitude distributions of
instabilities is discussed in some detail. This is used to analyse the
experimental data from which it is possible to distinguish three types of
instability: At low frequencies (4-20kHz) the dominant internal
fluctuations are to be associated with a band of global m =1, |n| =8
resistive modes resonant inside the reversal surface. Although non-linear
processes are taking place, these modes possess a radial structure in
agreement with that predicted by a linear tearing mode stability analysis
of the measured equilibrium. At similar amplitudes to these modes there is a
short correlation length component (A, = 3 em) which is peaked in the
central regions of the discharge. At high frequencies ( > 30kHz) this local
activity dominates over the global fluctuations. Finally, at about 1/4 the
peak power of the dominant global instabilities and with a similar
frequency dependence, an m=1 mode with some ideal MHD characteristics is
observed. Stability calculations show that ideal modes whose growth rates
are controlled by a resistive wall could have similar radial structure and

timescales as this mode.
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1 INTRODUCTION

In the Reversed Field Pinch (RFP)({1] it is thought that fluctuations play
an important role in the development and sustainment of a reversed field
configuration and that they may also be respensible for the anomalous
confinement observed in these devices. Detailed studies of fluctuations
thus offer a way to the understanding of the physics of these two important
topics, field reversal and transport.

Recently fluctuations have been studied in various machines, notably
OHTE [2];  ETA-BETA-II [3],  ZT-40(M) [4] and  HBTX1A [5,6]. These
investigations, while producing new results, also substantiate older
measurements from ZETA [7,8] and MkIV torus [9]. From these studies it
appears that the principal fluctuations are characterised by an 'm = 1"
symmetry. This is also the case for fast-programmed pinches such as
HBTX1 [10]. For HBTX1A, it has been shown that the m = 1 modes are to be
associated with |n| = 8 and are resonant inside the reversal surface.

In this paper a statistical analysis method is developed for
distinguishing linearly independent processes from quasi-random data. This
is used to analyse measurements from an insertable magnetic probe on
HBTX1A. The technique allows, to a large extent, the determination of the
radial structures of the various instabilities responsible for the observed
(temporally incoherent) fluctuations. The results of this study are
compared with predictions from the linear MHD theory applied to the

measured magnetic equilibrium.

2 EXPERIMENTAL TECHNIQUE

The magnetic probe is illustrated in figure 1. There are twenty-seven
colls divided into nine sets of three. Each set of three comprises a

radial,toroidal and poloidal coil, thus defining the time varying magnetic



field in nine equally spaced radial locations. The coils are set into a PTFE
former which itself fits into a silica glass sheath, 6mm in (outside)
diameter. The entire probe is attached to a bellows assembly which enables
the tip of the probe to be positioned anywhere across a minor radius.
Typically we operate with the probe extended fully to the minor axis.
Throughout this study we will consider only decaying current discharges
of around 100 kA and of about 2 ms duration. The properties of these
discharges are little affected by probe insertion [11] and the fluctuation
structure as measured by edge coils is the same as that for higher current
sustained discharges which have been studied previously [5]. The evolution

of the main parameters for a typical discharge is shown in figure 2.

3 DETERMINATION OF THE RADIAL STRUCTURE OF INSTABILITIES

An insertable magnetic probe provides information on the time-history of
the magnetic field at a finite number of radial locations. When there is
just one mode present, this information can easily be translated into the
radial amplitude distribution of that mode. For instance, this may be
accomplished by taking the square-root of the radial power distributiocn.
However, when there is more than one mode present the problem of determining
the various radial amplitude distributions becomes non-trivial. Since this
case typifies the RFP it 1is of considerable importance to formulate
algorithms capable of solving this problem to some extent. In this section
we will thus develop an effective solution which will then be wused

extensively in interpreting probe data in the following sections.

3.1 Introduction To Correlation Matrix Fitting (CMF)

To a certain approximation the fluctuating magnetic field may be

regarded as the sum of several (linearly) independent gaussian processes of



zero mean. In such a case the first order statistical moments completely
define the combined probability distribution function and hence the

correlation matrix, defined as:

— -

T

1 < Jobi(t)bj(t)dt 2y = {1).
represents the totality of information obtainable from the probe data (in a
given frequency band). In this definition b;j(t) is the fluctuating magnetic
field at the radial position dictated by the suffix i. The integral is a
time integral and should be taken over .a statistically stationary [12]
region of the time history described by the region {0,T}. Triangular
brackets indicate an ensemble average over many statistically similar
shots.

The approach we take is thus to assume a finite number of linearly
independent or randomly phased processes (global or local modes) and then
to use the correlation matrix to define the various radial amplitude
distributions characteristic of each process. In this way we sacrifice
information about the time variation to gain more information concerning

radial structure.

3.2 2=-Process CMF Model

To begin with we will assume that the fluctuating magnetic field may be
decomposed into just two components; a global mode with a radial
correlation length of the order of the minor radius and a local component

defined in terms of the correlation matrix:

R.: « §

ij ij i - - (2)

1 ;
0 = j.
We denote the time dependence of the local contribution by 2i(t) and that of
the global contribution by gi(t). Then, further assuming that there is no

radial propagation associated with the global mode, by using equation 1 we



may calculate the correlation matrix:

Rij = % < JZ(ii(t)+Ei(t))(lj(t)+8j(t))dt>
i T
-7 f fozi(t)gj(t)dt> -(i)
. T
g 4 Ioii(t)ij(t)dt> -(i1)
! T
¥ Jogi(t)gj(t)dt> ~{111)
1 T
* T ¢ f gi(t)ej(t)de> ={iv). - (3)

o

Terms (i) and (iv) vanish since we assume that the local turbulence is not
linearly correlated to the global instability (this essentially defines
what we mean by linearly independent). Term (ii) will also vanish when i=j
since this was our definition of local 'turbulence'. Hence we may rewrite

equation 3 as follows:

T T
1
Rij = T € J Ri(t)ﬂj(t)dt + J gi(t)gj(t)dt>
0 0
= Bglylyy + BiBy , - ()
where the operator '—' denotes a signed root-mean square over the interval

(0,T), the sign depending on whether gj and gj are in or out of phase. Given
the measured correlation matrix this equation may now be sclved for the Ei

by minimisation of the quantity:

Q=11 (R - Bigj)*, ~ {5)
i2]
which is essentially a non-linear optimisation problem and may be solved
numerically by the method of steepest descents [eg 13]. Denoting the nth

successive estimate of Ei by Ei(“) we use the following algorithm:
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and B is a small positive constant. If desired this procedure can be much

improved for speed by the use of conjugate gradients [13]. However we find

that with LSI 11/23 computers and N£10 this is unnecessary. Note that when

the Ei's are known, the profile of 1local turbulence may easily be

calculated:
g.1. - (7)

This follows directly from equation 4.

In the above model we have made several very particular assumptions.
Notably that the fluctuation activity is due only to two components: a
global instability and a loecal contribution. 1In equation 5, where we
eliminate the local turbulence by not summing with i=j, we are thus fitting
the correlation matrix with an N-parameter family. However the correlation
matrix itself (ignoring diagonals) is a function of N(N=1)/2 independent
parameters. Hence the value of Q is a strong indication of whether or not
the initial assumptions were correct. In fact a better indication is

furnished by a chi-squared parameter:

2 1 - — 2 2
X N = TR g$§ { R;y” gigj} /045 (8)

where ojj is the error bar associated with the measured Rjj. If x®/N is
approximately unity then the fit is good and we will have confidence in the
initial assumptions. If, on the other hand, x*/N is much greater than one,

the fit is not consistent with errors and we must adopt another model.



3.3 Many Process CMF Model

The fact that Q depends on many more variables than the number of
signals, N, allows us to consider more complicated cases than that of just
one global mode and local turbulence. In fact we may generalise our model to
the case of there being p linearly independent global modes present in
addition to the 1local turbulence. Extending our previous notation, we
denote the time history of the global mode, i by igj, where j ,as usual,
indicates radial position. Then in the same fashion as we derived
equation U4 we may write:

( Sefgj ) . - (9)

Rij = P—iljﬁij + 1

S

I ~'0

where quadratic terms involving different modes cancel due to the linear
independence of each global mode. Again we may now solve this equation for

the Sgi's by the minimisation of a modified Q function:

( Sgsey))’, - (10)

Q=z{(Rij'1

i=] <

Il ~'o

which leads to a similar algorithm as that in equation 6. At this point we
must be careful, however, as equation 10 is invariant under rotations in
the function space comprised from the vectors Sg. This can be seen simply

for p = 2 by noticing that the following transformation leaves Q unchanged:

1, . oy 2
g > (sina) . g+ (cosa) . g;

-1 i . B -
g; * (cosa) . B; (sina) . B, (1)

a being a constant in the interval {0,2n}. Thus for p > 1 the solution of
the equations aQ/BSEi=O is not unique. Rather the minimum Q is mapped out by
the surface of a hypersphere in the p-dimensional Sg function space.

Hence, to completely determine the global modes of a system we must

supply extra information. If we visualise p global modes we will need



p(p-1)/2 constraints. Compared with pN, the total number of independent
variables that we ultimately wish to know, this number is rather small.

In the many-process CMF model the procedure that we will use in this
paper is thus to perform the minimisation of equation 10 in the fashion of
equation 6 and then to 'rotate' the resulting modes (e.g according to

equation 11) until they satisfy additional constraints.

3.4 Concluding Remarks on CMF

In the light of the non-uniqueness of the many process CMF model it is
pertinent to discuss under what circumstances we are Jjustified in using the
unique 2-process CMF model, To facilitate this it is advantageous to
consider a variant of the many process CMF definition for Q given in
equation 10 in which diagonal summation is included. When N is large this
would be expected to make little difference to any results that we may
deduce and has the merit of making the analysis easier. In this case, under
the stipulation that the various global modes are mutually orthogonal in
space, the equations 3Q/85Ei=0 can be shown to possess a unique solution in
Wwhich each global mode is an eigenvector of the symmetric matrix Rij- All
other solutions on the general hyperspherical surface in function space can
then be generated from this unique set by rotation.

If we now consider a case in which an Rjj matrix is constructed from
several spatially non-orthogonal global modes and we attempt to recover one
of these modes by doing a CMF fit with p=1 then the predicted mode will
clearly be the largest eigenvector of Rij; There are two cases in which this
answer 1is generally useful. The first is when it is known beforehand that
all the global modes of a system are mutually orthogonal in space in which
case the largest eigenvector of Rij is the largest global mode. The second
case is when it is known or can be inferred that the amplitude of the global

modes form a descending series so that the first mode is much larger than

.



the second and so forth. In this case the largest eigenvector of Rij is, to
a good approximation, the largest global mode.

Regarding the many-process CMF model, it is very interesting to note
that if mutual spatial orthogonality between global modes can be assumed,
then the technique actually specifies all global modes uniquely. In this
paper we will not be able to make such an assumption though clearly other

future applications may be able to.

y RESULTS

4.1 Time History Analysis

The most obvious rudimentary way of analysing probe data is to look for
similarities in the individual time histories pertaining to a single shot.
Figure 3 shows an example of this technique for the Bg signals obtained from
our probe in the frequency range 4-20 kHz. It can be seen from this diagram
that there is no unique relationship between the various signals at
different radial locations. Rather, on close inspection, it is apparent
that many features appearing on one trace do not seem to relate to features
on the other traces. Some features, however, can be related and for these it
is apparent that maxima on traces of large radial position seem to be
associated with minima on traces of small radial position. This is shown
more clearly in figure 4 where a least squares linear fit has been computed
for each time-step and plotted in a 3-D format. By doing this, features
peculiar only to one trace are heavily damped whereas the global traits are
accentuated.

We find, then, that many of the features visible on the individual
time-histories of the probe data are peculiar to just one coil. These are
then local fluctuations. In addition to this, however, we also see the

presence of common features to all traces, which represent global



fluctuations. For Bg these global fluctuations are characterised by the
outer and inner regions of the discharge being 180° out of phase. The null
point of this 'flipping' motion is about 10 em. With a similar analysis B¢
is found to behave in the same fashion but with a null point near the
reversal surface. The B, component, on the other hand, seems to be in phase
throughout the discharge radius. The absolute magnitude of the combined
fluctuations 1is typically about 2 to 3% of the spatially averaged
equilibrium field at low frequencies and falls off inversely with

increasing frequency as 1/v.

4,2 Radial Propagation And Perturbation Phasing

To gain more information about the character of both these local and
global fluctuations we must resort to a statistical analysis. An important
question concerning the fluctuations of a system is the existence of radial
propagation. If this occurs, it might produce an energy transport which
could explain the anomalous confinement observed in the RFP. In order to
investigate propagation effects we define the normalised time-delayed cross

correlation matrix as:

18
<Jobi(t) bj(t+r) dt>

R (1) = - (12)

ij 2 T2 1}2
{(Ib.(t+1)dt>}
oJ

T2 1/
{<[b.(t)dt>}
01

where bj(t), as usual, represents the fluctuating magnetic field at the
radial location dictated by the suffix i and 1 is a time delay parameter,
Figure 5 shows an example of this matrix for B¢ in the sustainment phase of
the discharge, where it is clearly apparent that Rij(1) has its greatest
value at zero time delay for each i and j. In fact, from an estimation of
the associated errors we may calculate that the greatest phase difference

between any two coils is at most about =/10. Exactly similar results are



found to hold for B, and Bg and so we may conclude that there is no evidence
for global propagation within the statistical accuracy.

In order to investigate the phasing between the various fluctuating
field components it is useful to define the phase spectrum between two

signals x(t) and y(t):

¢x§v) = Arg < x*(v) y (v) >, - (13)

which measures the average phase difference, as a function of the frequency
v, between the two signals. '*' denotes complex conjugate. Figure 6 shows
the two examples of ¢(By Bg) and ¢(B¢,Br) computed at r = 14em. Clearly, in
the region of 4-20 kHz By and Bg are in phase whereas By and B, are out of
phase by about w/2. At higher frequencies, particularly for ¢(B¢.Br) the
phase becomes randomised largely due to a rapid decrease in absolute power.
In some discharges ¢(B¢,BF) appears to be a little less than w/2. However

¢(B¢,Be) tends always to remain approximately at zero.

4.3 Radial Structure

Now that we understand some of the basic properties of the magnetic
fluctuations, we would like to have a more detailed knowledge of their
radial structure. Since we have already discovered from a cursory
inspection of the individual time histories that there is more than one
process involved we must rely on the CMF analysis model developed in
section 3. This model is particularly appropriate as there is no evidence
for radial propagation (see above). It is worth noting that it is possible
to formulate models which account for propagation but they all suffer from

non-uniqueness problems in the predicted radial structures.
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4.3.1 2-process CMF Model

As a first approximation we regard the fluctuations as being composed of
two linearly independent processes, a global and local cocmponent, From the
results so far this would represent our best guess at the simplest possible
structure. With this approximation we could use the =zero-time delay
correlation matrix defined in equation 1 to choose the most likely radial
distributions of the local and global modes by wusing the iterative
algorithm outlihed in equation 6. As it turns out, howevgr, it is better to

use a quasi-normalised version of the correlation matrix defined as:

.

T [obi(t) bj(t) dt

R .= < 5 T ¥ e - (14)
) {[ b (t)dt ]

=1 ‘0

[
[SFH
=z |

k
but otherwise to proceed as outlined above. The reason for adopting this
strategy is that for each discharge the fluctuation structure appears to
remain roughly the same but with widely varying amplitudes. Hence, if we
were to use the definition given in equation 1, the error bars which we
would calculate, a standard error in the mean over many shots, would be
largely linearly dependent. By using this quasi-normalised form what we are
essentially doing 1is restricting errors so that they pertain to the
Structure of the fluctuations and not to the absolute amplitude. Using this
method we are able to predict accurate relative amplitude distributions for
the assumed component processes. These may then be translated into absolute
estimates by means of multiplication by a spatially averaged fluctuation
amplitude.

Figure 7 shows the measured correlation matrix for B¢ taken for twelve
shots in the frequency band 4-20 kHz. Also shown in this diagram is the
computed correlation matrix representing the best fit. It is clear that the

fit is quite good on all off-diagonal components. In fact the chi-squared
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parameter defined in equation 8 has a value of about 2.5 and so we may
express confidence in our initial assumptions. Figure 8 shows the predicted
global-mode radial amplitude distribution for this fit and also for Bg and
B, obtained from similar fits. Now, in principle, the local turbulence
profile is defined by the mismatch between the measured and fitted
correlations (e.g. equation 7). However it would be a mistake to interpret
all the mismatch on diagonal elements in figure 7 as being due to local
turbulence. In particular we will see that by assuming more than one global
process it is possible to obtain better diagonal fits. At this point we
should also mention that there are problems associated with the fact that
the probe extends to the geometrical minor axis rather than the plasma axis,
which is 3 em shifted due to toroidal equilibrium [14]}. This essentially
means that the central B, coil actually measures Bg and vice-versa.
However, it turns out that these effects largely cancel for the global modes
due to their 'm = 1' symmetry and the fact that B, is temporally w/2 out of
phase with Bg.

So far we have been able to elucidate the relative radial structure of
the three field components of the dominant global instabilities. However,
since we have calculated these stuctures separately, we cannot be sure that
they are all associated. For instance, suppose there were actually several
global modes present in the plasma, of which the dominant instability had
virtually no field component in one direction. In such a case our algorithm
would choose, for this field component, the.next most dominant mode. And so
Wwe would obtain a set of three radial amplitude distributions which were not
all associated. To confirm that our above radial estimates, given in
figure 8, are in fact associated we can fit the cross-component correlation
matrix. For instance, to obtain the associated radial structures for B¢ and
Bg we simply minimise:

2

Q=77 (r¥ 1, - (15)

~ g.. B.:
1*j lJ B1 ¢J
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where ggi and §¢i are the 6 and ¢-components of the global radial amplitude
vector and Rije¢ is the quasi-normalised theta-phi cross-component

correlation matrix defined as:

L (T
= f be(t) b,(t) dt
8¢ 0 J
Ro= ¢ > .=(16)
- { g [sz(t)dt 3 § Jsz(t)dt /e
k=1 ‘0 °K k=1 Pk

==

0

Fitting this matrix we obtain radial variations for Bg and B¢ fairly similar
to those in figure 8 which confirms that the 6 and ¢ radial amplitudes of
figure 8 are to be associated with the same mode. In addition fitting RO¢
establishes the relative phasings between Bg and B¢. Specifically, Bg is
found to be in (temporal) antiphase with B¢ in both the inner and outer
regions of the discharge but is in phase in the central region. This agrees
well with phase spectral estimates similar to those mentioned above.

It is worth noting that the cross-component matrix contains twice as
much information as the auto-component matrix since it is not symmetric.
This allowed us in equation 15 to fit twice as many parameters as usual but
with the same accuracy. One could thus envisage the possibility of using
both auto and cross matrices to predict all three field components by

minimising a combined Q function defined as:

2

[ ®)
n

80 _ = = .z %0 _ = =
D1 Ul Ryy - gy 8gj] * BL Ry = &y 8]
i=j
rr _ = - 2 ¢ _ = = 2
Y[ Rij - grj] + 6[ Rij Bgi S¢JJ

+

+

g _ = == 2 or _ = = 2 -
el Rij By grj] + ¢l Rij 8yi arjl Y C17)

where the constants a to z should be suitably chosen so as to weight the fit
to each correlation matrix according to its statistical errors. 1In
principle this would be expected to allow us to estimate the amplitude

vector associated with a given mode with greater accuracy. Further, this
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method defines the relative phasings between the field components and of
course there is no association problem. However there is one problem in that
we already know that B, is about w/2 out of phase with Bg and By and so
Rijﬁr and Rij¢r are by definition very small (and hence prone to large
errors). This can be resolved by forming a new Bp(t) time-history by taking
the Fourier transform of the initial Bp(t), shifting the phase by w/2 and
then inverse Fourier transforming. By renormalising the resultant radial
amplitudes we are then able to plot our best possible estimate of the
amplitude vector associated with the dominant global instability. This is
shown in figure 9.

There are a number of points we may extract from this graph. Firstly the
By trace appears to almost intersect the minor axis with a non-zero
gradient. Secondly we see that on axis Er = -ge. By considering the single
valuedness of the fields at the origin in a cylindrical geometry this may be
shown to imply that the process is at least partially m = 1. Assuming only
m = 1, the observation that §¢ =-2E9 at the wall allows us calculate an
|n|—number of (very) approximately six from the equation ng = 0. Finally,
from the fact that Er does not cross zerc at any point in the discharge
radius we may identify the mode as being resistive.

In order to relate this picture to other measurements we may use arrays
of edge coils to calculate the poloidal and toroidal mode spectra [5,6].
Figure 10 shows these spectra plotted for both Bg and B¢. The dominant
feature on the n-spectrum is a band of instabilities centred around
]n] = 8. The m-spectrum shows dominantly m = 1. By forming the 'association
spectrum' [5]), we may link these two features and show that the most
powerful instabilities are a band of resistive m = 1 modes of |n|] =8
resonant inside the reversal surface. In addition to this, however, there
also appears to be some m = 0 on B¢ and some m = 2 and low n-number features
on Bg. Virtually all the m = 2 may be explained by linear coupling due to

toroidicity [5]. The 1low n-number features on Bg can be shown to be
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indicative either of m=0 , n=0 modes or low n, m = 1 modes.

So the edge coil measurements are in good agreement with the CMF model
predictions for the dominant global instability. However, as we have seen,
the edge coils also predict other modes of lower power, the most obvious of

which are the m = 0.

4.3.2 3-process CMF Model

By assuming a two-process fit we have seen that it is possible to obtain
fits to the various correlation matrices with a chi-squared parameter of
about three. There is thus information to be gained by including another
process. Indeed, as we have discussed above, this may lead to the
identification of other modes predicted by the edge-coil data. Therefore we
will now assume two linearly independent global processes and a local
component. With this type of model, as we discussed in section 3, CMF will
not specify the two global modes uniquely but rather it will specify a
T-parameter family of possible radial profiles connected together by the
rotation transformation given in equation 11. It should be noted that as
long as the particular second global process which is spatially orthogonal
to the first is small in amplitude then the rotation family will always
contain one mode very similar to our original first global process.

As before we start by fitting the auto-component matrices. Figure 11
shows, for each field-component, that member of the rotation family for
which the two component processes are approximately spatially orthogonal
and, as an example, figure 12 shows the fit to R®®, A1l of the autocomponent
fits are typically much better now, being characterised by a chi-squared
value of about unity.

It is apparent from figure 11 that the first global process obtained
with the three-process CMF model is almost exactly the same as our previous

results using the two-process model. This is actually not a consequence of
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the smaller amplitude of the second global process but is a direct result of
the orthogonality criterion we used to select out one member of the Bg, B¢
and B, rotation families. The reason for employing this criterion is that it
minimises the amplitude of the second global process for each field
component. Hence figure 11 demonstrates that our experimental measurements
require a second global process of a peak amplitude of at least just under
half that of the first global process.

A question which now arises is whether this second global process might
be explained by phase distortions or a plasma shift phenomenon. In fact one
can show that propagation effects, which lead to different phasing of
different coils, act to create spurious processes. However, taking the B¢
component as an example, if the second process 1is regarded as a phase
distortion of the first, one is led to the belief that there are phase
differences of the order of =/2 between various coils. As we have seen in
section 4.2 the phase of B¢ is the same on all coils to within about /10
and so the second process cannot be explained in terms of a phase
distortion. The explanation in terms of an equilibrium plasma shift is
again inadequate since excluding the first two coils, which are the ones
affected by this shift, does not alter the results. Also a theoretical
analysis of the expected effects of such a shift does not explain the
observed form of the radial distributions of the second process.

We must conclude that the second global process is a real effect.
However, as before, we cannot be sure that each field-component of this
process is associated. To find this out Qe must proceed by the type of
prescription outlined in equations 15 and 17, fitting both auto and
cross-component correlation matrices. A point to realise here is that, by
including cross-component matrices in the minimisation of Q, the number of
rotation angles needed to specify the composite rotation family for all
field components is reduced from three to one. Without cross-component

correlations each field component is unspecified by one rotation angle.
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With such correlations the three angles are locked together.

Using the technique referred to above we find that all three components
are indeed associated and we may plot one member of the 1-parameter rotation
family of the combined renormalised second global process vector. This is
shown in figure 13. The criterion used to select this particular member of
the rotation set is that of maximum spatial orthogonality between the first
and second global process vectors. The fact that the overall shape of
figure 13 is very similar to the second global process of figure 12
indicates a high degree of such orthogonality. Another interesting feature
of figure 13 is that at r =0 Er =-é; and BE¢/ar # 0. Since this also
approximately holds for the first global process this indicates that the
second process, like the first, must be at least partially m=1. To
somewhat substantiate this we can recall that the edge coil analysis rules
out an m > 1 explanation on account of absolute power considerations.

Returning to figure 12, which shows the fit to R®® we can now use
equation 7 to calculate the profile of local turbulence. We must be careful
however, since the probe is inserted up to the geometrical minor axis and
not to the plasma axis, the two being separated by the Shafranov shift. As
we discussed briefly before this means that the first Bg coil actually
measures Bn and vice-versa., Nevertheless it can be shown that the Shafranov
shift does not affect the local turbulence profiles for By and B, deduced
from the diagonal element mismatch apart from interchanging the two
components on axis. For B¢. the Shafranov shift acts to create a spurious
quasi-local process producing anomalous diagonal and next-to-diagonal
mismatch on the first two coils. From figure 11 (and from the fits to R%¢
and R'" not shown) it is thus apparent that the By local turbulence is
peaked on axis, falling, within errors, to zero at the edge of the
discharge. For B¢, allowing for the Shafranov shift effect, the 1local
activity seems to peak a few centimetres out from the origin but

nevertheless falls, within errors, to zero at the edge of the discharge. For
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both By and Bg the peak amplitude of the local turbulence is roughly equal
to that of the global modes. For B., the local activity is subject to some
uncertainty due to a lack of coils at large radial positions. However,
evidence suggests that it follows the Bg behaviour but at a lower

amplitude.

4.3.3 Higher Process CMF Models

In principle it is possible to extend our previous analysis to cover
three or more global modes using mutual spatial orthogonality to define a
unique series. In fact we find that such a series is rapidly descending in
amplitude, reaching statistical limits at the third global mode. The
conclusion to be drawn from this is that any higher order global modes are
either very small in amplitude or are very similar in shape to a linear

combination of the first two global modes.

4.3.4 High Frequency And Setting-up/Termination Results

A similar analysis to that discussed above for the sustainment phase of
the discharge in the frequency band 4-20 kHz has been applied to the
setting-up and termination phases and to higher frequencies. A striking
feature which appears is that as the frequency increases the local
turbulence becomes dominant over the global instabilities. Indeed, in the
range 50-100 kHz the globai modes are barely visible. This is shown for B¢
in figure 14, where we plot a normalised cross correlation matrix. Fitting
these high frequency correlations actually yields very similar global
patterns to those we have been discussing above, although the decreasing
amplitude means that we may only use the two-process algorithm.

Regarding the setting-up and termination phases of the discharge, our

study again reveals the same qualitative picture for the global and local
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modes. However there are two effects' of interest concerning the local
turbulence profile. In the setting~up phase, while the B¢ local component
remains at the same amplitude in relation to the global component, the By
term becomes much stronger. In the termination phase both the Bg and the B¢

components become stronger in relation to the global modes.

5 LINEAR STABILITY OF THE EQUILIBRIUM FIELDS

5.1 Introduction

The derivation of the equilibrium magnetic field profiles from probe
data has been reported elsewhere [11]. Here we report results obtained from
analysing these profiles for linear stability to ideal current and pressure
driven modes and, in the limit of infinite Lundquist number, to tearing
modes. The rationale for considering the linear theory, when in reality
instabilities are not observed to grow exponentially with time, is that the
observed fluctuations are small in comparison to the neighbouring
equilibrium and thus the dominant mode-saturation processes might be
expected only to be quasilinear. Figure 15 shows the equilibrium field
profiles measured directly from the probe. The curves fitted to the
measured points are least-squares polynomials. It should be noted that
before testing these profiles for stability it is necessary to apply a small

correction [11] for the outward Shafranov shift.

5.2 Ideal Stability

A general guide to the stability to ideal pressure driven instabilities

is furnished by the Mercier criterion (for stability) [15]:

2
2
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The first term represents the shear of the magnetic field lines and is
always stabilising whereas the second term, which depends upon the pressure
gradient is, for typical RFP configurations, destabilising. Within the
large errors associated with estimating the pressure gradient from the
measured fields we find that this criterion is marginally satisfied for all
radii.

In order to analyse the ideal linear stability to current driven modes
we use the Newcomb procedure [16] applied to deflated field profiles which
possess no pressure obtained by calculating the profile, defined as
i.g/Bz, and then solving the force-free relation VxB=uB for the fields. In
actual computation we find complete stability to all current driven ideal
modes when the liner is regarded as an infinitely conducting wall. However,
if we disregard the 1liner and take the shell as being the relevant
infinitely conducting wall we find that, within errors, on-axis m =1

current driven modes have marginal stability.

543 Resistive Tearing Mode Stability

The method of A' analysis [17] offers a very simple solution to
investigating the linear stability properties of tearing modes in the limit
of infinite Lundquist number. It has been shown that this method agrees well
on the prediction of marginal stability points with finite Lundquist number
codes as long as S > 10® [18). For HBTX1A S = 10° to 10°.

The basic element involved in A' analysis is to calculate, for given m
and n numbers, a parameter A' such that if A' > 0 there is instability and
if A' < 0 then there is stability [19,20,21]. In the case of A' > O the
value of A' is directly related to the growth rate of the particular mode
pertaining to that A'. As for ideal current driven instability tests, for
self-consistency, we eliminate pressure from the field profiles by the

deflation process described above.
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Figure 16(a) shows A' as a function of the parameter kza (k, = n/R where
R is the major radius, and a is the liner minor radius) for poloidal mode
number, m = 0. In this case the liner has been assumed to be an infinitely
conducting wall. Clearly for low k,, corresponding to n £ 2, there is
instability whereas for high k, there is stability. Similar m = 0 stability
calculations where ; vacuum region is included, the liner conductance
assumed negligible and the shell taken as an infinitely conducting wall
indicate slightly higher A' but otherwise very similar results. The m = o,
|n[ = 0 activity observed by the edge coils (figure 10) would thus seem to
be explicable in terms of the linear theory.

The situation for the m = 1 instabilities is not quite so simple.
Figure 16(b) (trace 1) shows A' for m = 1 plotted as a function of the
resonant radius. As with the m = 0 case the infinitely conducting wall has
been taken as the liner. It is clear that A’ certainly peaks at about
r = 0.4a, where edge coils indicate a dominant instability, but it never
actually goes positive. By ignoring the liner conductance and taking the
shell as the infinitely conducting wall this picture does not qualitatively
change although A' does increase. However, by steepening the equilibrium
u~profile to the edge of the estimated errors (figure 17(b)) in a plausible
fashion an instability can be generated. This is shown in trace 2 of
figure 16(b). Thus the m = 1 linear stability appears, within errors,
approximately marginal at the helicity observed for the dominant
fluctuations.

In order to pursue the question concerning the origin of the observed
m = 1 modes it is possible, for the 'perturbed' equilibrium u profile of
figure 17(b), to compare the eigenfunctions associated with the consequent
instability with the radial amplitude distributions reported in section 4
of this paper. Of course the latter distributions are uncertain to a
rotation and so the real global modes will be linear combinations of these

distributions. However, since the second global mode of figure 13 is much
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smaller than the first global mode all rotations will produce (at least) one
global mode fairly similar to our first process. Figure 18 shows the
calculated m = 1 eigenfunctions. Comparing them with the measured first
process-shown in figure 9 it is apparent that there is good agreement. It
should be noted that calculating the stable eigenfunctions using the
non-perturbed p profile yields very similar results.

Stability calculations for m 2 2 show A' << 0 indicating complete

stability.
6 DISCUSSION

An analysis of the internal structure of magnetic fluctuations obtained
from measurements from an insertable magnetic probe has been presented. To
distinguish linearly independent processes (modes or sets of modes with
similar radial structures) the technique of correlation matrix
fitting (CMF) has been developed and applied to the probe data. As a result,
in the sustainment phase of the discharge, it has been possible to
distinguish three linearly independent processes simultaneously and to
obtain information on their radial distributions.

The most prominent process distinguishable at low frequencies (4-20 kHz)
possesses a radial structure which identifies it with the global m = 1,
In| = 8 instabilities detected by edge coils. The fact that g; = 0 for any
r < rya]] Substantiates previous timescale arguments (5] suggesting that
these modes are resistive. In addition, the agreement of the 'measured'
radial amplitude distribution with the field-eigenfunctions of the most
unstable tearing mode, computed for the measured equilibrium, demonstrates
the close connection with the 1linear or quasi-linear theory. For
non-resonant radii, of course, such agreement is at least partly ﬁo be
expected as here the form of the resistive MHD field-eigenfunctions simply

depends on a small amplitude helical equilibrium.
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In this study the stability of resistive pressure driven modes has not
been addressed. This is because the pressure profile deducible from probe
data is not accurate enough for such a study. Indeed it is very hard to see
that further measurements will change this situation. However, it has been
shown that the observed m = 1 fluctuations can be adequately interpreted in
terms of tearing modes of almost marginal stability. Previous measurements
indicated that the temporal behaviour of the m = 1 modes is that of a
quasi-cyclic process [5] with different n-numbers being present at
different times. This process would fit in nicely with the observation of
marginal stability since the measured equilibrium fields represent an
average over many such cycles. However it is not possible to exclude the
g-mode as a possible source of the observed m = 1 fluctuations.

For the case of the m = 0 tearing instability it has been shown that the
measured equilibrium is in fact always unstable. Edge coil measurements
predict a mode of this type although there is a slight uncertainty about the
n-number which might possibly be zero as well. In this case the observed
m = 0 modes might well be associated with mode-mode coupling effects
produced by the m = 1. Further investigation will be required to elucidate
this.

The second most prominent process discernible corresponds to local
fluctuations of a correlation length of about 3 em. This local turbulence
is peaked in the central regions of the discharge at an amplitude similar to
the dominant global modes and falling, within errors, to zero at the plasma
edge. At high frequencies (>30 kHz) these fluctuations dominate over the
global modes.

Observation of such local modes has been reported before, notably in
ZETA [22] and more recently in ETA-BETA~II [3]. In all cases these
observations have been confined to high frequencies where the global
instabilities are 1less apparent. The importance of the observations

reported here is that, even at low frequencies, local fluctuations are of a
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comparable importance to that of the larger scale lengths.

The final process discernible is a global mode of a peak amplitude of at
least about 1/2 that of the dominant first process and possessing a similar
frequency dependence. The actual radial profile of this mode is undefined
to within a linear combination with the first global process shown in
figure 9. To define the coefficient of this 1linear combination or
'rotation' and thus to expose the true second process eigenfunction we must
use some external constraint. Without such a constraint, however, it is
still possible to deduce a significant m = 1 nature for this process as the
form of both the first and second global processes is the same at the
origin.

Now as we have seen from the ideal stability analysis, within errors,
the measured equilibrium is marginally unstable to on-axis current driven
modes if we ignore the stabilising effect of the liner. However, by
inspection of the measured equilibrium g-profile (figure 19) we see that
the nearest integral mode number to the axis is actually |n| = 6 which is
resonant at r = 8 em. Thus, taking into account the toroidal nature of the
HBTX1A pinch, we must conclude that the most unstable ideal mode will have
|n] = 6. Within errors this mode still plausibly has marginal instability
given the intrinsic error in the minor radial position of the shell in a
Shafranov-shifted plasma.

The timescales observed for the third process are clearly not consistent
with direct ideal instability. However we have seen that if the liner is
taken as the relevant infinitely conducting wall then there is no
instability. The fact that the liner is resistive means that instability
can occur [23] but at a timescale determined by field diffusion through the
liner. At low frequencies this timescale may be estimated by matching the
value of (1/5})d§r/dr at the liner as computed by (i) the integration of the
linearised forms of Vx(JxB)=0 and V.B=0 from the resonance to the liner and

(ii) by the solution of Laplace's equation in the vacuum region between the
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liner and shell. Doing this we find w £ 50kHz, comparable with our
observations. Further to this, 1f we assume that this timescale is much
smaller than that of resistive diffusion, a small layer expansion about the
resonance shows that the amplitude of the mode (magnetic field)
eigenfunction is very small from the origin to the resonance. This provides
a good test as to whether the 3rd process is really a low frequency ideal
mode as it constitutes many more constraints than we could hope to fit using
the avaliable one parameter rotation. In practice we find that by applying
the rotation transformation of equation 11 to the first and second global
modes, at one unique value of a (or equivalently at one rotation angle),
within statistical errors, g} = gé = g; =0 fromr =0 tor =6 cm for the
second global process. This is shown in figure 20. Discrepanéies might be
explained by the fact that the instability time is not much faster than the
tearing growth time, making a sheet current approximation invalid. The
first global process is, as expected, largely unaffected. We would thus
conclude that the 3"'CE process could be éxplained in terms of a
'liner-liberated' current driven ideal instability.

Since the ideal stability is, within errors, marginal it should be
mentioned that there exists another explanation for the observed timescales
of the third process. It has been shown [23] that for the near-marginal case
hybrid growth rates can be obtained for a resistive wall. Thus if we
consider the shell to be resistive and further that the marginal point for
stability is Jjust on the shell then we might expect 'resistive-shell'
hybrid timescales. These timescales would, of course, be modified by the
resistive liner. Owing to the critical dependence on the condition of
marginal stability we are unable to estimate exact growth rates. However we
cannot rule out this shell-hybrid explanation.

Finally we come to the question of radial propagation. Within errors we
find that there is no such propagation and hence there is no evidence that

energy is directly carried out of the plasma by this mechanism. The
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observation that there exists an almost m/2 phase shift between B, and By
(or E¢) is indicative of propagation in the toroidal or poloidal directions
(consider V.B = 0). This supports previcus observations of plasma

rotation [5,6].

The present study has provided some interesting and important results.
Nevertheless there are still many unanswered questions which need
attention. At least some of these areas may be capable of being studied by a
more precise but otherwise similar type of analysis than we have used here.
In particular the CMF analysis model may be used to study many more global
instabilities given better accuracy and more simultaneous measurements of
the fluctuating field at different radial positions. This may shed light on
aspects such as the non-linear couplings present between modes and exactly
what they are. The local fluctuations present a little more of a problem and
in general these may require different experimental techniques to learn

about their detailed structure and behaviour.

7 CONCLUSIONS

In this paper we have discussed results obtained from an insertable
magnetic probe on the RFP HBTX1A concerning the internal structure of the
magnetic fluctuations. A statistical technique has been developed for the
determination of the radial amplitude distributions of instabilities. This
has been applied to the probe data where it has been possible, in the
sustainment phase of the discharge, to distinguish three types of
instability. At low frequencies (4-20 kHz) the dominant internal
fluctuations are a band of global m = 1 |n| = 8 resistive modes. The radial
structure of these modes is in good agreement with that predicted by a
linear tearing mode stability analysis of the measured equilibrium, Of

similar amplitudes to these modes there is also a short correlation
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component (correlation length A, = 3cm) which is peaked in the central
regions of the discharge. At high frequencies this local turbulence
dominates over the global modes. Finally at about 1/4 the peak power of the
dominant global modes and with a similar frequency dependence, an m = 1
mode with some ideal characteristics is observed. Stability calculations
show that ideal modes of m = 1, |n| = 6 whose growth rates are controlled by
a resistive wall could have similar radial structure and timescales as this
mode. No evidence is found for radial propagation but phasing of the
fluctuating field indicates that toroidal and poloidal propagation occur.
The internal structuré of fluctuations in the termination and setting-up
phases have been studied. Results indicate a similar scenario to the
Sustainment phase but poorer statistics do not allow the clear observation

of them = 1, [n| = 6 mode.
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