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Abstract

Minimum-B mirror systems provide plasma stability but are
subject to loss through the magne;ic mirrors. Such losses are
absent in systems with toroidal magnetic surfaces but it is well
known that vacuum magnetic fields with toroidal minimum-B flux
surfaces do not exist. Despite this, we have constructed a set of
finite-f toroidal minimum=B equilibria (in which toroidal magnetic
surfaces coincide with constant-B contours and in which B increases
and p decreases with distance from the magnetic axis). These are
the only possible axisymmetric minimum-B toroidal equilibria and are
compatible with the vacuum field result because they have no low-f3
limit. They are members of a family of equilibria all of which
correspond to a single set of magnetic surfaces. This set of
magnetic surfaces is unique and is determined by a novel approach to
the Grad-Shafranov equation. In these configurations all guiding
centre drifts lie in the magnetic surface, so they have no
neoclassically enhanced transport and they are free of all trapped
particle effects. Unfortunately, however, they do not share the

intrinsic stability properties of their mirror counterparts.
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1. Introduction

Minimum-B mirrors, or magnetic wells, are well-known systems for
magnetic confinement of }_Jla.sma.1 . They utilise configurations in which the
contours of constant field strength form a set of nested surfaces with B
increasing, and plasma pressure decreasing, towards the exterior. These
properties provide stability but the field lines are open so that only the
mirror effect limits the loss along the field. Such losses are absent in
toroidal systems in which the magnetic field lines lie on closed toroidal
flux surfaces. However, it is well-known that there are no vacuum or
force-free magnetic fields in which the toroidal flux surfaces are also
minimum-B surfacesz. This might suggest that toroidal minimum=-B plasma
equilibria do not exist - but this is not so, and in this paper we
construct a set of finite-B toroidal minimum~B equilibria. These are
axisymmetric scalar-pressure equilibria with finite aspect-ratio in which
the toroidal magnetic surfaces coincide with the toroidal constant-B
surfaces and in which B increases and p decreases everywhere with
distance from the magnetic axis, with p = p(B). They do not conflict
with the vacuum field result because they exist only at high-f and have no

low=-B8 limit.

The existence of these axisymmetric minimum=-B equilibria is closely
related to the question, discussed in reference 3, of whether the shape of
toréidal magnetic surfaces uniquely determines the current distribution.
In a cylindrical coordinate system R, ¢, Z the magnetic field can be

written



£(¢) % (1

and ¢(R,Z) satisfies the eguatiocn

= 1
AF(¢) = RVe(—= V9] = -pR? p'(¢) - ££'(¢) (2)
r2
where p(¢) is the plasma pressure. If a different plasma equilibrium,
defined by F(R,2) , has identical flux surfaces there must be a

functional relation F = F(¢) so that

2 2
atp = 9 pby 4 &°F 'v¢] . (3)
dd a2

But if F is indeed an equilibrium, the right hand side of this
expression must have the same form as the r.h.s. of Eq. (2). This is the

case if, and only if,
2
7] = ate) + o) R2 . (4)
Hence, if any solution of Eq. (2) can be found which also satisfies (4),
then there will be a whole family of equilibria, with different pressure

and current profiles, which have exactly the same flux surfaces. We shall

refer to these as degenerate eguilibria.

Since the total magnetic field for degenerate equilibria is



ald) + £2(d)
R2

2
82 = (|v| +£2)/R2 = Bo) + (5)

we see that if toroidal minimum=B equilibria (in which B must be
constant over the flux surface ¢ ) exist, then they are members of a
degenerate family in which (a + £2) = 0 . In the next two sections we
will show that there is only one configuration of flux surfaces which is
associated with degenerate equilibria; that these degenerate eguilibria
include a set in which B 1is constant over the flux surface; and that

some members of this set have the full minimum—-B properties.

2. Construction of Degenerate Equilibria

In this section we seek solutions of equation (2) which have the
"degeneracy" property (4). This is an unusual problem. Usually one
solves Eg. (2) in a given boundary for known functions p(¢) and £(¢)
(or something equivalent such as g(¢) the safety factor). 1In the
present problem the boundary and the functions p(¢) and £(¢) , as well
as o(¢) and B(¢) , all have to be determined - given only that the

eventual solution to equation (2) must take a particular form.

We write

v = R%g(¢,R)e (6)

where e 1s a unit vector (eR, 0, ez) and



g2 = (a(¢) + B(GIRZ)/RY . (7)

Then the Grad-Shafranov equation (2) can be reduced to

= (RgeR) = RL(¢) + % M( ) (8)
¢
where
L(¢) = -(p" + B'/2) , M(¢p) = -(££" + a’/2) . (9)
Therefore
gep = 5 L) + 2Ry + Loy (10)

which defines a single surface in terms of the three parameters L, M, C.

If we introduce Ry as the radius at which eR = 0 (ie where the surface

is tangential to the R axis) we have

e. = h(¢,R)/g(¢/R) and e = (1= nZ/g?)1/2 (11)
with
L($) (rR? - &7) M( )
h(¢,R) = > R + =g log R/Ry (12)



and
g(¢,R) = (al¢) + B(LIRZ)L/2/RZ . ' (13)

Several conditions have yet to be imposed. One of these is that the
magnetic surface defined by (10) should be a smooth closed curve - but it
is convenient to defer consideration of this until other conditions have

been dealt with. These stem from the requirement that

Vx[Rzge) = 0 . : (14)

~

Using (11) for eR and eZ ;, introducing (R, ¢) as independent

variables and carrying out some manipulation, this leads to the condition

3 2 2 2
R’ 3g° 3 2%h R 8g° R dh< I S
2 3¢  R9 % T23RR T 23R 2(g® - n%) = 0 . (1)

At this point it is convenient to introduce new guantities

p = a?, o = B/L? and x = R . (16)

Then, when g and h are introduced into Eg. (15), one sees that it is

satisfied if, and only if, M = 0 and



ar 492

(1) an P + xQ

(ii) %% = 3 (17)
R I

where dh = 4d¢/L(¢) .

We must now consider the surface closure condition mentioned earlier.

From (10), using M = 0 , the equation for a single magnetic surface

becomes
(x = X)
& (18)
dx 172
a[P + gx - x(x - X)2/4]
where x = R%2 . Then the closure condition can be written

(s - 1)ds

1
]
o

(19)

F(p/x3, o/x2)
1/2

[P/X3 + sQ/x2 - s(s - 1)2/4]

where the integration is between the two largest roots of the denominator.
The integral can be expressed in terms of complete elliptic integrals (see
appendix).

Note that L(¢) does not explicitly appear in the closure condition

or equations (17) and can be chosen arbitrarily. This reflects the



degeneracy of the plasma equilibria we are seeking. However, the magnetic
surfaces themselves are unique, up to a scale transformation X » pXx , P -
uaP ; Q> uZQ ;, A > ph , which merely magnifies and re-labels the

surfaces.

We now turn to the calculation of these magnetic surfaces. This
proceeds as follows. We first use the scale invariance to set X = 1 at
the magnetic axis. Then the closure condition shows (see appendix) that
near the magnetic axis P+ 0, Q9 + 0 with P/Q = -1/3 . Using these as
starting values, P(A) , Q(A) and X(A) are then computed from the
differential equations (17). We set Ak = 0 on the axis so that Q(A) =
3A . The computed values for P(A) and X(A) are shown in Figs. 1 and
2. [A very good approximation is P(i) = A(10A - 1) and X(A) =1 = 3A .]
Once P(A) , @(A) and X(A) are known the individual magnetic surfaces
are computed from (18). In this way the complete configuration is built-
up surface by surface. The result is shown in Fig. 3. [It is implicit in
this method, (see appendix), that if the initial surface is closed so are

all others.]

The construction of the degenerate magnetic configuration can be
summarised as follows. We first obtain an equation satisfied by a single
magnetic surface; this contains three unknown parameters. The condition
that this single surface be part of an equilibrium imposes constraints on
these three parameters in the form of differential equations and-the
condition that the surfaces be closed provides the initial values for
these differential equations. Their solution then provides the value of

the three parameters on each magnetic surface. Note that the equilibrium



is obtained without at any time needing to solve a partial differential

equation.

3. Properties of the Equilibria

The configuration shown in Fig. 3 is unique, apart from a scale
factor. It is remarkable in three respects. First, it is the only
toroidal configuration which corresponds to more than one plasma
equilibrium. (It is thus the only exception to the argument given by
Christiansen and Taylor3 that the current distribution is determined by
the shape of the magnetic surfaces. In this regard it is for toroidal
equilibria what a configuration of concentric circles is for cylindrical
equilibria.) Second, it is the only axisymmetric toroidal configuration
which may correspond to equilibria in which constant-B surfaces and flux
surfaces can coincide. Third, it is the only such axisymmetric toroidal
configuration which may be a minimum-B equilibrium. We now show that
there are, in fact, equilibria associated with the configuration in Fig. 3

which fulfill the last two conditions.

The equilibria are described by a , B , p , and £ , which are

given in terms of P(A), Q(A) , as



a(h) = TL2(N)P(A)
B(M) = L2(MQ(N)
(20)
d d (L2
% p(h} = = LZ(n) - YN [—Z—Q']
%K (f2 + @) = 0 .

We see that the general equilibrium corresponding to Fig. 3 involves one
free function L(A) and two constants of integration. If the flux and
constant-B surfaces are to coincide we must have (£f2 + a) = 0 which
requires only that one of the integration constants be set to zero. The
other can be used to set the pressure to zero on any chosen surface. Then
the arbitrary function L(¢) still allows a choice of pressure profile.
Consequently there is a family of toroidal equilibria in which flux
surfaces and B = constant surfaces coincide, so that p = p(B) . These

equilibria have the following features.
The toroidal field is
Bi = - LZ(MP(A)/RZ (21)

The poloidal field is

B; = 20 (Qea) + P(A/R2Z) (22)



The total field is

82 = 12(A)Q(A) - | (23)
The toroidal current density is
= -rE+ =% 12) - == L (12p (24)

and the plasma pressure is

2 A
p(M) = pg- E2- [ nZanan . (25)
0

Note that the field strength B2 increases with distance from the
magnetic axis when ALZ2(A) is an increasing function of A so that some
members of the family are full minimum-B equilibria. However, (p + B2/2)
is always a decreasing function of A so that minimum-B fields exist only
for finite~f. Furthermore, although L(A) is arbitrary it must be finite
and so B2 vanishes on the magnetic axis. (In minimum~-B mirrors it was
required that B2 did not vanish in order for the magnetic moment to be

conserved.)

The properties of the equilibria given in Egs. (20)-(25) depend on
the choice of L(A) but some features are independent of L . These
include the safety factor q , shown in Fig. 4, the ratio B /B¢ and p =

P

i'E/BZ given by
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1.2
d 5 ‘
| | - = |p (26)

= ax

4. Stability

The importance of minimum-B mirror systems lies in their intrinsic
stability. This stability is particularly evident when the pressure

tensor takes the form p

= pl(B) y P, = p”(B) and such mirror equilibria

L I

1
are stable under very weak restrictions indeed . Toroidal minimum-B

p(B) but they do not

equilibria have the analogous properﬁy that p

have the same automatic stability as their mirror counterparts.

The energy integral for anisotropic plasma can be expressed in the

form
sw = % (1 + 5 ) + 02 (1 + : )
B B
Pi = Py
2QII
- [—E— + s)[Q-Vpl - [ZPL + C)s] + KZ (27)
£+VB
where s = r g =-E*(n+V)n and Q = V x (£ x B) . The last term

in &W is a contribution due to trapped particles and C 1is a moment of

the distribution function. We also have the equilibrium relations



% (py - 2)) 3B

0s B Os
(28)
4 2
%, (e 4
0s B ds °
Consequently, for mirror equilibria with p = PL(B) . p" = p"(B) ; Where
the parallel current is zero, the energy integral reduces to
PL = P" ZPL + C
&w = 22 (1 + ———————) + Q2 (1 + ———————) + k2, (29)
1 i =1l .

This is automatically positive for all disturbances provided only that the

weak requirements (for mirror and firehose stability)

dpl(B)
B2 + P, > P and —=— +B > 0 (30)

dB
are satisfied. Therefore no detailed stability analysis is necessary for

these mirror minimum-B equilibria, even at finite-p.

On the other hand, the corresponding energy principle for scalar-

pressure plasma (obtained from (27) by setting p, = p" ¢ (2C + pl) =0,

L

and dropping the trapped particle contribution) is
W = 02+ 02 -3 (n.Q xE)+ EeV - s -
" QL * - 3ylag x &)+ &Wpla - s - 20,/8) (31)

This has to be minimised over the two component vector E = Ql but it is



permissible to carry out one of the minimisations over Q" . Then

ow = 92 - 3,(neg, x E) + 2(5%) (gV(p + 82/2)) (32)

where we have introduced the explicit form for s and expressed g as

-e+¥(p + B%/2)/8?

It can be seen from this that with scalar pressure, even though
p = p(B) , potential sources of instability associated with both Vp and
with jII remain. Consequently, unlike the mirror case; no general con-
clusion about stability follows from the fact that p = p(B). Each
equilibrium must be examined in detail though it can be shown (see
appendix) that all are unstable on axis by the Mercier/Suydam criterion.

One reason (in addition to the presence of j") why the stability of

mirror equilibria with p, = PL(B) r Py = p"(B) does not carry over to
scalar pressure can be seen from Eq. (28). With P, = p“(B) this
implies
dp,(B) B " Py
dB - B

and the scalar pressure limit of this is p = constant !

5 Conclusions

Contrary to the impression created by the fact that minimum-B

toroidal vacuum and force-free fields cannot exist, there are toroidal



minimum-B equilibria (whose magnetic surfaces coincide with toroidal
constant-B surfaces and in which B increases and p decreases with
distance from the magnetic axis). They do not contradict the vacuum field

result because they exist only at high-B and have no low-f limit.

These minimum-B equilibria are members of a family of equilibria
which are degenerate in that they all correspond to a single configuration
of magnetic surfaces. We have constructed this configuration, which is
unique apart from a scale factor and is shown in Fig. 3, using a novel
solution of the Grad-Shafranov equation in which the magnetic surfaces are
calculated individually. Each surface is defined by an ordinary
differential equation containing three parameters; these parameters them-
selves satisfy differential equations representing the fact that each
surface is part of a global equilibrium and the initial values for these
equations are determined by the requirement that the surfaces are closed.
Although they all have the unique configuration of surfaces shown in Fig.
3, the corresponding equilibria contain a single arbitrary function by
means of which different pressure profiles can be generated. However,
some features, such as the g-profile and u = i*E/BZ are universal and

apply to all the equilibria.

These minimum-B toroidal equilibria do not fit easily into the
conventional classification of toroidal confinement systems. They differ
from tokamaks in that BP > B¢ and from the toroidal pinch in that gq(¢)
is increasing with minor radius rather than decreasing, and from both in
that B and g are zero on the magnetic axis. Their most significant

feature is simply that flux-surfaces and constant-B surfaces coincide.

This means that plasma pressure is a function of field strength only



[p = p(B)) and all gquiding centre drifts lie in the magnetic surface,
(i.e. the equilibria are omnigeneouss). Consequently, they are not
subject to any neoclassica;ly enhanced transport andrare free of all
trapped particles and any instabilities or anomalous transport they may
cause. However, although they have the property that p = p(B) they do
not possess the automatic stability of their mirror counterparts. Each
case requires individual analysis but all are unstable on axis by the
Mercier-Suydam criterion. We cannot thergfore claim any unique stability
for these equilibria as we could for the corresponding mirror eguilibria.
Nevertheless, their freedom from neoclassical and trapped particle effects
might make them interesting if examples with gross stability could be
found. 1In this regard, the instability to localised modes on axis need
not be catastrophic - any more than it is in tokamaks with g < 1 or in

pinches.
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Appendix

A. The surface closure condition

As explained in the main text, a single magnetic surface is described

by the equation

x - X
_ = (A1)
dax 172
4[P + ox - x(x -X)2/4]

which contains three parameters P(¢) , Q(¢) and X(¢) . These
parameters themselves must satisfy the differential equations (17).
However, in addition, one must ensure that the surface generated by (A1)
is a smooth closed curve. This requires that the three roots Sgr Syr Sy

of the denominator be real and

. 52 (s - 1)ds
v/ﬂ +d/- = 0 (A2)
1/2
S, 1 [

p/x? + sg/x3 - s(s - 1)2/4]

where s; and s, are the two largest roots. [The curve is parallel to
the Z-axis at s = s) and s = s, and parallel to the R-axis at
s =1 .] This closure condition can be expressed in terms of complete

elliptic integrals of the first and second kind as

- 17 =



E(a) + ab X(b) = 0 (A3)
where a = (s, = s81)/(sy - Sg) and b = (sg = 1)/(s2 - 5)) .

At the magnetic axis s; and s, are coincident and the roots
become 0, 1, 1. This occurs for B/%3 > 0 , 9/%2 > 0 . 1In the
neighbourhood of the axis, when P/X3 and Q/X2 are small, the roots
are

1/2
4P 2 P Q
s, = =, Syr S, = 1= %2 (= + =) : (ad)

. . %3 %3 %2

In this limit the integrals in (A2) or the elliptic functions in (A3) can
readily be evaluated to give the closure condition in the vicinity of the

axis as

. (a5)
x2 X9

It can be verified that this is compatible, in the appropriate limit,
with the differential equations (17). We have, in fact, verified (with
the aid of MACSYMA) that the full closure condition (A3) is consistent
with these differential equations. This means that if one ensures that
the initial values of P, Q, X correspond to a closed surface then
closure is ensured for all other surfaces. Closure, although crucial to
the calculation, is required only to determine initial values for the

differential equations (17); thereafter it follows automatically-.



B. Behaviour near magnetic axis

If, near the magnetic axis, we introduce local cylindrical

coordinates (p, 8, s) then A = p2/2 and the equilibrium is given by

Bs = -&_L(p) p Be = /EpL(p) '
V2
(B1)
_ldp _ 5.0 3p ar? - o
= T > L (p) + : +alp) p/¥2 R

where L(p) 1is at our disposal. If; L = 1 then the Suydam/Mercier
stability criterion is clearly violated on axis. Strictly speaking, je
would be discontinuous at p = 0 when L = 1 and such equilibria can
only be considered as a limiting form - in the same way as other idealised
equilibria with discontinuous current density. The current density is
continuous if L ~ ps with s > 0 , but the Suydam/Mercier criterion is

still not satisfied.
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