





CLM-P744

THE STABILITY OF RESISTIVE BALLOONING MODES
IN A HIGH TEMPERATURE PLASMA

by
J.W. Connor, R.J. Hastie and T.J. Martin
Culham Laboratory, Abingdon, Oxfordshire, 0X14 3DB, U.K.

(Euratom/UKAEA Fusion Association)

Abstract

It has been suggested that the combined effects of electron pressure
gradient in the parallel component of Ohm's law and finite parallel
electron thermal conduction can stabilise the resistive ballooning modes
in a high temperature plasma. We have analysed this problem and conclude
that an unstable ballooning mode persists. This contrasts with the

situation for tearing modes which are indeed stabilised by these effects.
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I INTRODUCTION

The suggestion has been made (CARRERAS et al., 1983) that pressure
driven resistive ballooning modes may cause the observed deterioration in
confinement in high-P tokamaks. A simple resistive mhd plasma model pre-
dicts that these modes will always be unstable. On the other hand when a
more realistic plasma model has been used to study the stability of a
related class of resistive modes - tearing modes - a stabilising effect
appears at higher B (DRAKE et al., 1983). This effect arises from
currents driven by the electron pressure gradient in the parallel compo-
nent of Ohm's law in the presence of a radial temperature gradient and

finite parallel electron thermal conductivity.

Because of apparent similarities between the theory of tearing modes
and resistive ballooning modes SUNDARAM et al. (1984) considered the poss-
ibility of an analogous effect on these latter modes. In the limit that
there was no source of instability from ballooning pressure gradient terms
they located a damped mode. Balancing the damping rate of this mode

against the conventional growth rate of resistive ballooning modes they

deduced a critical B for stability given by

E; Vei Ln
He = (=] al (1)

Here vei and Vihe 2Te the electromion collision frequency and elec-
tron thermal speed respectively, Ln is the density scale length and Aé
is the balloconing analogue of the tearing mode stability parameter

{CONNOR et al., 1983 and STRAUSS et al., 1983).

In this paper we have re-examined this problem with the intention of
investigating the validity of the conjecture (1). We have found however
that, although there is a damped mode as Aé + 0 , there is also a
distinct unstable mode for any positive value of Aé « Thus resistive

ballooning modes differ markedly from tearing modes in this respect.



Our analysis is based on equations derived from Braginskii's two-
fluid model (BRAGINSKII, 1965) in a general axisymmetric torus, which are
discussed in Section II. They are appropriate to a large aspect ratio
tokamak with cold ions. Neither of these simplifications seriously

affects the improved description of electron dynamics which is the essence

of the present treatment.

In Section III a preliminary analytic treatment of some limiting
cases is presented as an aid to a qualitative understanding of the
numerical results displayed in Section IV. Finally in Section V our

results are discussed and compared with those of previous authors.
II RESISTIVE BALLOONING EQUATIONS IN A HIGH ELECTRON TEMPERATURE PLASMA

The relevant equations for resistive ballooning modes were derived by
CONNOR and HASTIE (1985) from the Braginskii two fluid equations. After
linearisation and introduction of the ballooning transformation (CONNOR et
al., 1979), the equations were simplified using the cold-ion approxima-
tion. In this approximation ion collisional viscosities are neglected
and the ion temperature is assumed to be small, Ti/Te << 1 , so that ion
diamagnetic effects may also be ignored. All the electron physics,
including the Hall effect, electro-thermal terms, resistivity and thermal
conduction is retained. Under the ballooning transformation, resistive
effects come into play at large values of the extended poloidal angle, 8,
the independent variable of the one-dimensional linearised ballooning
equations (CONNOR et al., 1983). The existence of two scales, the
periodic scale associated with the equilibrium and the longer scale
associated with resistive effects, allows the exploitation of an averaging
technique to remove the shorter periodic variation. This averaging
procedure was carried out by CONNOR and HASTIE (1985) to derive a set of
three second order differential equations for the perturbed pressure,
temperature and electrostatic potential. These equations contain field-
line-averaged equilibrium quantities, most of which were first defined by
GLASSER, GREENE and JOHNSON (1975) in their toroidal analysis of tearing
modes. In a subsequent paper of GLASSER et al. (1976), these equilibrium
quantities were evaluated for a large aspect ratio tokamak with circular
cross-section and B ~ €2 (¢ = a/R), and in the present paper we will

apply our general equations to this situation.



For such an equilibrium many of the field-line-averaged quantities

are small, so that the two-fluid equations of CONNOR and HASTIE (1985)

reduce to the form
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in terms of the independent variable X = G/BI, where
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Here the magnetic Reynolds number § = wA/mn with the Alfvén and

resistive frequencies defined by
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where g is the safety factor and vg = Z;; is the Alfvén velocity.
Frequencies are normalised to
1/3
2.
o = wy (57)

so that Q = (y - iw)/mr « It is also convenient to introduce



0 =9+ iw[1+ (1+ al)ne]

where n = d(in T )/d(fn n ). w, = w, /w_ is the normalised electron
e e e &r T

diamagnetic frequency, where e = = %% with ¢ the poloidal
e

flux. The dependent variables in equations (2) - (4) are defined by
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and the quantities T) and TIjp by
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The numerical coefficients ai have been given by BRAGINSKII (1965). 1In

particular, for a hydrogen plasma, i.e. Z = 1,

a; = 071 , a2=-1:'.—=1-95 ¢ 03 = 3.2 .

v
Equations (2) - (4) also contain a parameter v = EE :F , where

4 /2 n in A e*
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is the electron collision frequency (BRAGINSKII, 1965), characterising

electron thermal conductivity effects.

Finally, there appear the field line-averaged quantities D and G
which also occur in single-fluid resistive mhd theory (GLASSER et al.,
1975). The mean curvature for resistive modes, D, is typically negative
in Tokamak geometry (favourable average curvature) with the consequence

that resistive interchange modes are stable. The gquantity D is small, of



order €2 when B ~ €2 . It is retained in equation (2) in order to
facilitate the identification of independent solutions in matching the
solutions of the equations in the resistive region, X ~ 1 , onto the
solutions of the ideal mhd region, X << 1 , as discussed in Appendix A.

The quantity G is defined as

2
2
G = L = ﬁ—l -
anp(1 +.2q2) 1 + 242

It differs from 'G' of GLASSER, GREENE and JOHNSON (1975) in the replace-
ment of the adiabatic index y by unity, and as noted by DRAKE et al.
(1983) it differs from the eguivalent quantity in a plane slab theory by

the factor (1 + 2q2).

Whereas the equations of single fluid resistive mhd are obtained by

taking the limit

in equations (2) - (4), we consider the more realistic regime

(.1)*
= {1} g %»1,

Q
i.e. the mode frequency and diamagnetic frequency greatly exceed the ion-
electron collision frequency. Equations (2) - (4) simplify considerably
when use is made of the fact that G >> 1 and v << 1 for resistive

ballooning modes. We adopt an ordering in which
Q~Q1 ~w, ~ VG ~1

so that equation (2) gives a characteristic scale X ~ 1. With this
ordering electron thermal conduction along the field is a significant
effect in equation (4), while equation (3) simplifies to the algebraic

form
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Using this relation to eliminate p , equations (2) and (4) reduce to

2 2A2
4 (X2 d¢y _ X9 -
ax (1‘1 dx) 5 (6 - <] (6)
a2 x29? %202 _ 1.5 Q0 VG
2 QT3 [6- <]- (@ + 10T, alp - ) + 5 9+ o7 iw*)l“3[(r3‘ 16 + 1)
(7)
where
(1 + al)iw*(1 = ne) ne
TE Q + iw, [t'1+ne¢]

2
- B

I3 = Q + iw, VG

= a2 2
= +  — L] -+

a=1 i3 (15 + (1 + a1)?]

Equations (6) and (7) are the basis for the equations used in the
numerical solution of the stability problem and form the starting point

for the analytic solutions.
III ANALYTIC SOLUTION OF THE BALLOONING EQUATIONS

In this Section we derive analytic dispersion relations valid in the
limit Q) + 0 . This may be realised in two situations characterised
respectively by Aé + 0 and Vs »>> 1 . It is convenient to define a new
independent variable W= (¢~- 1)/Q, in equations (6) and (7). Incor=-
porating the boundary condition at X + 0 , as shown in equations (A.23)

and (A.24) of Appendix A, these equations become, for I} + x2/91 ’
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The resistive scale Br - (12/8) and the ballooning parameter AB is

defined in Appendix A while
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In the limit vG »> 1, I'3 + 1 and the characteristic X ~ (VG R
so that equations (8) and (9) simplify to
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The eigenvalue follows from the condition
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and is given by
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The solutions of equation (13) oscillate along the anti-Stokes lines
Arg p = ®/6 which, in fact, corresponds to real k.

However it is demon-
strated in Appendix B that one of these solutions is acceptable as it



decays when one retains the terms from equations (8) and (9) which were
omitted in equations (10) and (11). Further, it is shown that this

solution decays exponentially along real P .

In the limit Q; + 0 , pg + 0 and we find

A’ Y2, n  S5/12
= (B I (o) 1/6 e B
Q1 (9 ) v w, (H2VG) exp (5imA12) (16)
r pn .

: i
where, in calculating Arg Q), it is necessary to ensure 'Arg Pt‘ < 5 S°

that the transition point pt lies within the Anti-Stokes lines. Numeri-
cal solution of equations (13) and (15) yields I(o) = 0.530. We nofl:e2

: -1/
that the self-consistency of this procedure requires Aé/er << (vG) .

There are additional modes in the limit Aé + 0 corresponding to the
solutions of the homogeneous form of equation (13). In Appendix C an
approximate phase integral eigenvalue condition is derived by asymptotic
matching procedures which agrees well with numerical solutions of equation

(13). This takes the form (C.13)

pg = B(n + %) T , n integer

or
2/3

] (17)
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Since this result is based on WKB analysis, valid for n >> 1 , we have

compared a numerical evaluation of the lowest eigenvalue of the homogen-

eous form of equation (13). We find P, = 150 compared with

pt = (9ﬂ/8J1/3 = 152 which is in surprisingly close agreement.

Thus for small values of Aé there is both an unstable mode

(equation 16) and a damped mode (equation 17).



This contrasts with the results of DRAKE et al. (1983) for the
opposite parity tearing mode. In our formulation this case can be

considered by the replacement
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in equations (8) and (9) where A’ is the value of Aé for odd-parity
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modes. A similar treatment leads to the same result as DRAKE's (1983),
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In this case when Aé + 0 there is a stable mode with p% = (0B85 , i.e.

with a damping rate comparable to (17). However above a critical value

B, = 0051 0,8, (Efgg) (20)

instability occurs. We note that, incorporating the toroidal (1 + 2q2)
factors into this stability criterion, the tearing mode is found to be

stable when
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Thus the toroidal effect increases the critical value of Aé required for
instability while impurities, through their effect on ur and the co-

efficients a); (tabulated by BRAGINSKII (1965), decrease it.



Now we turn to the opposite limit VG << 1 where we find the

-1/2
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Again it is expeditious to introduce fourier transforms, leading to
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Evaluating the integral by contour integration and noting << 1 we
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obtain an unstable mode given by
J172 172 1/4
AB ne w, '
Q) = 1+14 exp (3in/8) (26)
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The analytic solutions obtained in various limits are of value in

interpreting the numerical results discussed in the following section and

relating our results to those of other authors in Section V.

= 10 =



v NUMERICAL SOLUTION OF THE BALLOONING EQUATIONS

Equations (6) and (7), (with TI) replaced by xz/Ql) have been
solved numerically for modes with ballooning and tearing parity. As

discussed in Appendix A, the boundary conditions for ballooning modes are

AI’
= . ﬂ = = B H i'E =
¢(0) 1 ; x (0) erQl i x (0} 0

and ¢+ 0, T >0 as X » » , while those for tearing modes are

Al
@ g 0 5 e =
6(0) = 1; F (O 5.0; T(0) = 0

with ¢+0, <T>0 as X + = .

The presence of an unstable ballooning mode even for Aé << 1, as
predicted by the analytic results (16) and (26), is confirmed numerically.
In Fig. 1 we display the numerically calculated growth rate (Re Q) as a
function of Aé for VG =5, 1 and 0¢2. BAlso shown are the results of
the analytic calculations in the vG >> 1 and VG << 1 limits. These
show satisfactory agreement. Instability is always present, and becomes

more vigorous as B increases (i.e. G decreases).

The damped mode found by SUNDARAM, SEN and KAW (1984) when Aé =0 is
also found numerically. In Fig. 2 we compare the analytically calculated
damping given by equation (17) with numerically calculated values
[actually we use P, = 1+50 as discussed below equation (17)]. Agreement
becomes close at large values of VG (Z 100) . Fig. 3 shows the dependence
of this damped mode on the ballooning driving Aé for vG = 1 and 5.
Although the damping rate initially decreases as Aé increases, this mode

does not become unstable.

Tearing mode growth rates have also been calculated numerically and
agree well with the analytic results of DRAKE et al. (1984) [equation
(20)].



v DISCUSSION

It is clear from our numerical results that a positive valﬁe of Aé
always leads to an unstable resistive ballooning mode, unlike the results
of DRAKE et al. (1983) for tearing modes, where a positive critical value
of Aé is necessary. They also contrast with the prediction of SUNDARAM
et al.(1984) that a critical value of Aé is necessary in the ballooning
case. In order to understand these distinctions we have developed analyt-
ical theories in the }igiting cases vG >> 1 and vG << 1. In botﬁ cases
a growth rate vy « Aé is predicted and the numerical solutions in the
appropriate limits have a similar behaviour to the results (16) and (26)
respectively. The stable mode obtained by SUNDARRM et al. (1984) agrees
qualitatively with the expression (17). However the validity of the
procedure of SUNDARAM et al. is unclear, since it corresponds to the
regime treated in Appendix C. The true solutions to the eigenvalue
problem in that limit exhibit oscillatory behaviour along the X—%xis as
discussed in Appendix B, unlike the trial functions used by these authors.
Although our analysis of this stable mode was only valid for VG >> 1,
our numerical calculations indicate a similar mode for VG ~ 1 as
Aé_+ 0. The result (20) for the tearing parity (also valid only for
VG >> 1 ), indicating a critical value of A; for instability, essentially
reproduces the result of DRAKE et al. (1983). However the present calcu-
lation exhibits a modification to the cylindrical result in that the

quantity G includes a toroidal contribution to the inertia. (DRAKE et al.

were aware of this point).

Clearly the parameter vG is of considerable importance in
discussing the results and it is useful to consider its magnitude in

experimental devices. It can be represented in the form

& 1/3
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or, in practical units, as

1 R2r2 ng" (28)
2 gyl 92
Zeff( 2g€)“ 1

=]

where T is in keV, n in units of 101”cmF3, B in Tesla and distances in
metres. Thus typical values of vG are less than unity and the

expression (26) is the more appropriate for tokamaks.



Appendix A

Boundary Conditions for the Resistive Region Equations

Equations (6) and (7) are to be solved for the eigenvalue Q subject
to appropriate boundary conditions. For X + 0 these are the usual
conditions required for the convergence of the ballooning transformation,

viz. ¢ +0, T -+ 0 as X * @ . For X + 0 the boundary condition is
obtained from the condition that the solutions in the resistive regime
match onto the solutions of the ideal mhd region (X << 1) , and it is
through this boundary condition that the driving mechanism for resistive

ballooning modes appears.

The equations of the ideal mhd region may be obtained from equations

(2) = (4) in the X » 0 Llimit. They are

%(xz ':}—?)+pD=0- (A.1)
i ) o Q-i-im* 'I]e Q - ialm*
P (Rl e R 7 )l e
2 n
-‘3—2 T4l =0 (A.3)
ax

These equations show that between the ideal mhd region (ngzG << 1) and
the resistive region (x2 ~ 0(1)] the solutions must be matched through a
transition where XZQZG ~ 0(1) . 1In this transition region, the sound

frequency is comparable to the mode frequency and growth rate.

. Thus four separate regions can be identified. These are: (i) 8 ~ 1
where local, unaveraged, ideal mhd equations apply, (ii) Or'z < x2 ¢ éaz
where averaged ideal mhd eguations hold, (iii) Eéz <x2 ¢ 1 , and (iv)

>
x2 2 1, the resistive region.



In region (ii) eguations (A.1) - (A.3) have the general solution

t TF 7 ¢ =CgTC; 0, (A.4)
P - ¢ = C2 + C3 e ’ (Aos)

Cs
¢ = Cy4 [1 - Din O] +G—+ i (A.6)

For modes of twisting parity (even t, p and ¢) the constants C) = C3 =0,
since these are exact solutions of the unaveraged ideal mhd equations of
region (i), and the ratio C4/Cg is in general a number of order unity
which we denote by Aé . Similarly, for modes of tearing parity,

Cg =Cs =0, and we denote the ratio Cy4/Cs by Aé . Expressions for

Aé and A& have been obtained for model equilibria by STRAUSS (1983) and
DRAKE and ANTONSEN (1984).

Solutions in the transition region, where X2Q2G ~ 1, are given by

ne
t - T ¢ = Dg + DIX (A.7)
e
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Matching these solutions onto the ideal solutions for small X , and
requiring in addition D; = 0 so that the exponentiating solution in

P - ¢ is absent, one obtains:-

Dg = Cq ; D) = erCl H Dy = D3 =0
Al Al

Dg = — C3 ; D] = — ; =

= o= B3 1~ %2 9. C3 Dy = Cy

Cs

D5=e_';
r

1/3

= 2
where Gr = (S/i ) .

These relations constrain the ideal solutions to satisfy the
conditions
A2 Ao

Cy = XI Co : C3 = KT C; -

(A.12)

Extending these results into region (iii), the solution there is given by

ne
£, &= ?—:—;; ¢ = Cp + C1X Gr . (A.13)
A2
P-¢=37 [co + c) erx] (A.14)
Cg .
= - + "
¢=cy [1-Dtm(x0)]*g Y F s (A.15)

In their analysis of tearing modes in slab geometry DRAKE et al. (1983)

found that, near marginal stability, the guantity Q; = 0 even when‘ w,
(and therefore ¢Q ) remain of order unity. Weakly unstable ballooning

modes are found to have the same property so that, in the X2 ~ 1 regime,
'y =1+ XZ/Ql has become large. Thus a second transition region with

x4 ~ Qil can be treated analytically. This represents a transition from

electromagnetic behaviour at smaller X, to electrostatic behaviour



(E“ ~ = V"¢) at larger X. The appropriate equations describing this

transition region are:-

de . e 1 dey_ (A.16)

2
d (X2 3¢ _
= FT ) te=0- (A.17)
Ao n
— — =
p- 6= ™ (t I ¢) =0 . (A.18)

Matching the solutions of these equations onto (A.13) - (A.15) for

Xz/QL ¢¢ 1 one can determine the structure of t and ¢ when

X2/9) > 1.

Thus, for

Qll << X2 << 1, one finds

ne
t-1—+-;]';¢=c0+clxer. (A.19)
CsX
=Cy4y - . (A.20
9 4 Qler )

These relations provide the boundary conditions as X + 0 for equations

(6)and (7) of Section II (with I'j replaced by X2/Q);.

Thus, for resistive ballooning modes the appropriate conditions for

T and ¢ as X + 0 are:-

>
oo~

dat

— (o) =0 ; d(o) = 1 ; % (A.21)
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]
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An interesting distinction between resistive tearing and resistive
ballooning modes is now apparent. In the limit A’ + 0 the boundary
conditions for ballooning modes become %% = %% =0 at X + 0, i.e. they
are just the boundary conditions for even parity radially localised
resistive modes. In the limit A’ + 0 , however, the tearing parity
boundary conditions are T = 0 , %% = 0 , and are therefore quite

distinct from those of a localised, odd mode, namely T = ¢ = 0 .

It is sometimes convenient in an analytic treatment to incorporate
the boundary conditions (A.21) and (A.22) into the resistive equations

explicitly. Thus for resistive ballooning modes the relevant equations

can be written in the form:-

24!

2 2
40 20 o) - =2 4(0) 6(X) (A.23)
a2 als 216,

1.5 2 QLVG

a3 (Q+iw, )T [(T3=1)e+c]. (n.24)
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APPENDIX B

Boundary Conditions for the Analytic Solution of the Resistive Egquations

In this Appendix we discuss the boundary conditions for the analytic

solution of the resistive ballooning equation.

If we seek an eikonal solution

X
g v eidex
v
3“n
to equations (8) and (9) we find, defining A = ;_;E , that
e
i plp% m*x2 plu% w*xz 2 pzu% vG mf x2 1/2
2z —— s | J = b
- zne(1 + Ax2) zne(1 + sz) ne(1 + sz)

As X + 0 we find there are two decaying solutions given by

X 1/2
+1i [(k2) &
b ~e N
1/2
where RE(KE) > 0 . More precisely these take the form
-cix
¢ ~e
172
(L - i) IJ'_1p"r1 B VG 4“:“3
= + -
0'1 2 B [1 = (1 K ]]} .
3 1
4n po VG
In the regime X2 ¢ ———— these solutions become
Unpl
3/2 372
¢ ~ elﬁx . BX
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where

Ln i 3|x’3’2
This is the asymptotic form for the solutions of the simplified equations
(10) and (11). 1In solving equation (13) we need the corresponding asymp-

totic form in the fourier transformed space.

If we seek symmetric solutions,

S = [ & T pmyax

0

Evaluating this by staticnary phase for large k we find the acceptable

solution is
- & 3 3
o(k) ~ exp (- 3 f:&f x3)

which oscillates along the real k-axis and, as observed in the text,
in/6 X

decays exponentially along the real p-axis where p = |k‘e

Thus we must solve equation (13) with the boundary condition that

ﬁ(p) decays exponentially as p + @ along the Re p axis.

- 21 -



Ageendix C

A Phase Integral Eigenvalue Condition

In this Appendix we obtain an approximate phase integral condition

for the eigenvalue of the homogeneous equation

(Pz-pE)WEqW- (C.1)

This equation has transition points, ie. zeros of gq(p), at p = 0, % Pt .
We solve it by obtaining exact solutions in the vicinity of these tram
sition points which are then matched asymptotically. The eigenvalue
condition follows from applying the appropriate boundary condition,

obtained in Appendix B, ie. even solutions which decay as p * = .

For p << pt

2
d<w
_=-PZPEW' {C.2)
dp2
and this has an even solution
w = u(o, /Ziptp) + vz v(o, /Ziptp) (Cc.3)

where U and V are parabolic cylinder functions defined by MILLER
(1965). As shown by MILLER the asymptotic form of these for large

arqgument is

2 : 2
_ L in ip.P 1p.P
2 . kol 4 2 . 2
W~ = T(1/2)(2ip.p) e [e + e I (C.4)
But in the region 0 < p < p, we can use WKB solutions
B .12
e -
L~ et ifg (c.5)
= ql/'+

= 5



Matching solutions (C.4) and (C.5) we find

W= W+ + e:l'ﬂ/4 W_ (C.8)

£ 0 < < .
or P <P,
Near p ~ P, equation (C.1) simplifies to
___-p3 P-P W o7
2 t ( t] LG 1)

with solutions in terms of Airy Functions (ANTOSIEWICZ, 1965)

1/3 1/3
W= Ai[- (pt-p]z Pt] + v Bi[- (pt-p]z Pt] . (C.8)

The asymptotic form of the Airy Functions for large negative argument is

3/2

1 . 2
W~ —————{sin (5 [2"? ptp-m]  +7)
(e-p, )
1/3 3/2
+ v cos ( % [2 pt(pt-p)] + % )} . (C.9)

Since this must match to the WKB solution (C.6) we find

-211-%
= e (C.10)

i

where

. 1/2
I = f q dp =
(o]

t w

. (C.11)

ul'a

Finally we impose the physical boundary conditions (discussed in Appendix
B) that W must decay for p >> P, From the asymptotic forms of the

Airy functions for large positive argument this requires v = 0 in

equation (C.B). Thus we obtain a phase integral condition
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I=(n+=)n (& 12)

which is, of course, only asymptotically correct for large n. This yields

the eigenvalue condition

3
pg = 3 (n + E) T . (C.13)
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Fig.1 The normalised growth rate Q, as a function of the ballooning parameter
Ap’ for various values of the collisionality parameter vG. (The dashed lines for
vG = 0.2 and vG = 5 are analytic approximations).
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Fig.2 Numerical (solid line) and analytic (dashed line)
calculations of the variation of the damping rate (—Q,) of
the damped mode with the collisionality parameter vG.



Fig.3 Variation in the damping rate of the damped mode as the
ballooning parameter Ag’ increases, for vG = 1 and vG = 5.
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