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Abstract

The transport of charged test-particles in the presence of given
magnetic fluctuations and collisions is investigated from two approaches,
namely, the Langevin and corresponding Fokker-Planck equations. Analytic
discussion of the Fokker-Planck equation shows the radial particle and
energy fluxes to be purely diffusive. The Langevin approach confirms the
validity of the Fokker-Planck perturbative calculation for sufficiently
small fluctuation amplitudes. From the Fokker-Planck theory we derive an
effective parallel thermal diffusivity wvalid for all collisicnalities,
and show that the high collisionality result of Braginskii and the low
collisionality form previously conjectured by the authors, are recovered.
Application of the theory to TFR leads to gqualitative agreement with the

published observations.
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1. INTRODUCTION

In this paper we investigate analytically and numerically the trans-
port of charged test-particles in the presence of magnetic fluctuations,
taking account of collisions. We set up and solve the Langevin equations
for the test-particles, and also the corresponding Fokker-Planck equat-
tion. For simplicity we restrict ourselves to a periodic cylinder
geometry with prescribed mean and fluctuating fields. We neglect the
Larmor motions of the test-particles about the field lines and any
drifts; thus, in this model, the instantaneous velocity of a test-
particle is always parallel to the instantaneous field direction. The
effect of collisions is represented by a random Langevin force and a
prescribed collision time 7. At each collision a test-particle is
allowed to move in a random direction by a fixed step~length p. In the
absence of field fluctuations the Brownian motion of the test-particle
results in a radial diffusivity, D.Lo = p2/4'|: . The purpose of the
present investigation is to examine the conditions and extent to which

this "background" transport is modified by the presence of magnetic

fluctuations.

We find that for fluctuation amplitudes typical of tokamaks the
Fokker-Planck and Langevin approaches lead to essentially the same
confinement times. It is found that even single coherent fluctuations
(fixed frequency, w, m, n) can under suitable conditions result in
significant test-particle transport. Furthermore, the radial transport
due to a given mode has a resonant behaviour with respect to the

v T
the
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ment time has a minimum when these parameters are of order unity. The

collisicnality parameters wt and in the sense that the confine-
Fokker-Planck calculations in particular show several interesting
features. Firstly, both radial energy and particle fluxes are purely
diffusive and contain density and temperature gradient terms. Secondly,
the particle and thermal diffusivities differ only by a numerical form
factor and are generally of the same order. Thirdly, the Fokker-Planck
theory gives parallel transport coefficents for arbitrary collisionality.
These are shown to reduce to the Braginskii form at high collisionality

and to previously conjectured forms at low collisionality (THYAGARAJA et



al., 1980). Calculations with an ensemble of time-dependent magnetic
fluctuations show that for conditions typical of TFR, the test-particle
transport model captures many features of the observed electron anomalous

transport.

The paper concludes with a brief discussion of the relationship
between test-particle transport and actual plasma transport, as well as a

comparison with earlier magnetic turbulence theories.

2. ANALYTIC FORMULATION

(a) Langevin Approach

We begin with the Langevin formulation. Taking the usual r, 6, z
coordinates, we consider a cylindrical model of a tokamak equilibrium.
The minor radius is denoted by a and the periodicity length is 2nR;
the longitudinal field Bz is taken to be constant and the mean poloidal
field Be is a function of radius, r, only. We further assume a
prescribed fluctuating field 6B (r, 6, z, t) to be superimposed upon

this equilibrium. We consider the motion of a test-particle in the

resulting magnetic field to be governed by

B (z, ©)

&R
|
<

where vy is a random variable determined by the equation

v, v,
= 7 = R(t) (2)

see, for example, UHLENBECK and ORNSTEIN (1930).

To avoid misunderstanding it should be noted that the above
equations refer to a frame of reference in which the plasma ions are at
rest. The plasma electrons will in general have a drift relative to the
ions which is however negligible compared to their thermal velocity. We
have likewise assumed that the test-electrons have negligible drift

velocities as compared with their thermal velocity v , which is taken

the
to be the same as the plasma electrons. Although we consider time



dependent fields in Eg. (1), the acceleration of the test-electrons due
to the associated parallel electric field is neglected in Eg. (2) in
comparison with the random Langevin forces. The validity of these assumptions

with respect to tokamak applications is discussed later.

The parameter T represents a 90° collision time, while R(t) is a
random function such that for t >> <, then <v"> = 0 and <v"2> = vtﬁe.
For simplicity we take the parameters vtﬁe and T to have uniform and
constant values typical of tokamaks. Given the form of R(t) and a
specified number of particles, Eqs. (1) and (2) have been solved numer-
ically by the Monte Carlo method. These equations are evolved for a time
T, at which instant the position of the particles are displaced in a
random direction through a fixed distance p ; the latter parameter is
also prescribed. This procedure is repeated throughout the calculation
and the long-term evolution of the spatial density of particles is
obtained. It should be noted that in this model, stochasticity enters
explicitly through: (a) the initial conditions, (b) the function R(t),
and (c) the random direction of the displacement p at each "collision".
The magnetic fields themselves are prescribed, deterministic functions of

position and t .

The above formulation based on the two Langevin equations for v"
and r, enables us in principle to discuss the evolution of the
distribution function f(r, v", t) in complete detail. We consider the
steady-state or "source" problem. In this, the total number of particles
is kept constant throughout the calculation. To accomplish this, as
test-particles cross the surface r = a , they are reinjected into the
solution domain according to a suitably prescribed source distribution.
Starting from an arbitrary initial distribution, the system will settle
to an essentially steady-state after some characteristic confinement
time, T onf; other parameters being fixed, the final steady-state is
determined uniquely by the source distribution. The rate of recycling
particles is an outcome of the calculation and is a measure of the

confinement properties of the system. These points are further explained

and applied in section 3 and an appendix.



(b) Fokker-Planck Approach
We now turn to the complementary Fokker-Planck formulation. Standard
arguments from Brownian motion theory (VAN KAMPEN, 1983) imply that the

test-particle distribution function f£(x, v , t) corresponding to the Egs.

!
(1) & (2) satisfies the Fokker-Planck eguation

df 1.3 of 2
vt =5 (v 2e rvE) v sy, ), ()

where b = and S represents the particle source. The relationship

W] |

between Eq. (3) and the Fokker-Planck equation satisfied by the plasma
electrons will be discussed in Section 5. We shall develop the solution
of Eg. (3) in terms of the small parameters éBr/Bo . As a consequence
of our analysis it will turn out that for <t typical of tokamaks the

parameter T/Tc (where the confinement time < is defined later)

onf conf
is also very small. Note that in the following we assume w # 0 but
otherwise arbitrary. In particular the parameters wt and vther/qR can

take any values. In the present work we write
b =b_(r) + 8b(z, t) (4)

where &b

<< 1 . The perturbation éb is again a specified function of
position and time, and periodic in 6, z and t. We seek solutions of Eq.

(3) in the form
) + 8e(z, vyr t) - (5)
Assuming non-zero frequencies, it is feasible tco solve Eqg. (3)

perturbatively in the limit p + 0 . Following Eq. (5) we make the

following ansatz for fo g

2
__
n (r) 2v2 (1)
fo(r, v") = 2_ ! o © tha + g(x, v") (6)
Y21 the



The functions no(r), vthe(r) and g are to be determined. We assume
g to be much smaller than the first, Maxwellian term. Averaging Eg. (3)
over t, 6, z, we find that fo must satisfy

of _ v"

1 9 2 o
T 3w, (Vene Bv, * Vi fo) = 7 o (x<8280) - (v x> . (D)

g1

The dominant term is the one involving the collision time T . The
leading order solution is given by the first term in Eg. (6), where no(r)

and v the(r) are as yet arbitrary. Substituting (6) into (7) we find

that g must satisfy

ll 2 gg_ _ lb_ )
T av" (vthe av" * v g) =Y o (r(&br6f>] <S(v", )> . (8)

In order to solve Eg. (8) and obtain a unique solution, we impose the

subsidiary conditions,

J’gav=jv-°-gdvﬂ=o. (9)

These imply that no(rJ and vthe(rJ are the physical test-particle number

density and thermal velocity, in the leading order, respectively.

1
Multiplying Eg. (8) by 1 and E mevﬁ we find the integrability condi-

tions,

=] @

X 8. =
= 2= [=ab | vy 8f av>) = < [ s(v, 1 av > . (10)

-0 - Q0

o dapier g s <) dagdsby D) ep . oo

It will turn out that Egs. (10) and (11) are the 'transport' equations
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oe ; g

— for the given particle source
]

1
<f S(vn, ) dv"> and energy Ssource <f > mevﬁ S(v", ) dv"> « It will

- OO - D

Gz 2
satisfied by no(r) and vthe(r)

be seen that the smallness parameter implicit in the ansatz Eg. (7) is

, where =< is the characteristic confinement time.
conf onf

Linearising Egq. (3) with respect to small amplitudes and neglecting g ,

/%

we obtain the linear (in 6f) equation,

v
3 2 } % 1 "
= SE v D m)WEE BB vy | = e i
i L Y21 'the
1 d 36£
=% 3. (Véhe v * V5) - (12)

In deriving Eg. (12) we have made use of Ve06B = 0 and the tokamak
ordering Bo(r) = Boz (unifom@- This linear inhomogeneous equation for
6f is solved by Fourier analysis in terms of the given 6br and the as
yet undetermined no(r) and Toe(r). The solution when substituted in
Eg. (10) and (11) yields equations for no(r) and Toe(r) » Solution of

Eg. (8) for g can be used to obtain the parallel current in terms of

-]
the momentum source < f v" S(v", £} dv"> .
- 00

Before solving the problem in detail it is instructive to exhibit
dn ar
o

: oe
the 4 d £ th 1 d ener flux on —
e dependence o e particle and e gy uxes no, el Toe T

and the fluctuation spectrum. To see this, we assume

@ i(me + 22 wt)
6br = [ dw ) r, w) e R (13)
- G0 m
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® i(me + == + ut)
(r, w, v ) e (14)

Substituting in Eg. (12) and introducing the transformation

v he(r)x + and defining the functions ﬁ(x, r) and z (x, r)

=v
I t
[where the dependence on the mode numbers is implied] through,

x2 x2
- dn  ->— = av - =
= W 4 Z th 4
F=—£§r—)'75br'dr—oe +¥Tébrnov _dr_ee . (15)
™ /2n Yan the
we obtain the equations
2g 2 - x_2
a<w = 1 X R 4
2t vl - -itlerxv, k)l =xe (16)
27 2 - x_2
a% - 1 x . 3 4
+ - - = - + = - 5
=2t 2 {2 1 itfw + x L k“)} (x X) e (17)

The test-particle flux I' is given by

=]

Iz <&b_ J v, of av >

-

® dn
=-f dw Z v 2—0{‘5 IZI +c.c.}
2 - the dr mn mn
) dv
- —the (1= ]2
I@ dw mgn Fope Bt g {'bmnl g+ c.c.} (18)

where the integrals I and J are defined to be
mn mn
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- S
T x e ol T xe #
I =- — W(x,r) dx , J == f — Z(x,r) dx . (19)
o -= /27 = -= V27

The expression for I' can be put in the following more transparent form,

an n dTOG
== D3 ~ Lo ¢ (20)
n
where the coefficients DL and LT are given by
2 4
D =+ 2v2 =1 dw '5 |
1 the f E mn Real Imn
- m'n
(21)
n Rt T = 2
LT = + —— f dw E 'bmn| Real Jmn .
e - m,n
= a.
The test-particle energy flux takes the form Ql =< ébr f 5 t.‘)fclv’| p
- D
that is,
s mevthe dno ]
co ] aw g elthe  Zo g |2 :
Qo fm w ) > T g {|B|? 2 Real 17}
- m,n
pe mevihe not da 2
: e T g, 1) e
f@ dw ) o o ar Vipe 1[B,| 2Real 37} . (22)
- m'n
where
2 2
© 3 =x“/4 © 3 ~x“/4
X e - -
=- 1 = Wo(x,r) ax, J' =-[ X2 Z (x,r) & .(23)
mn —
-= Y27 -o /27

As before QL can be written more transparently, as



T o oe
Q==& "8 X TE (24]
T 5 @ _ 2
= £ 2
Ln e i f dw Z ‘b | Real Imn
- m,n
(25)
2
v [--]
the " |2 ’
= +
X 5 T [ dw E bmn Real Jmn .
- m,n

We note some important implications of the above formulae. Thus Egs.
(20), (21), (24) and (25) imply that even a single mode Emn at a
particular frequency w (that is, a coherent mode) is capable of leading
to non-zero radial transport. In order to understand this result, it is
essential to bear in mind that the mode is not steady in the frame of
reference of the background plasma. It should also be borne in mind that
this complies with our assumptions that the test-particle trajectories
described by Egs. (1) & (2) would not in general lie on magnetic surfaces
of the single mode in question. It is also important to note that in the
first instance a time-dependent mode alters X, and Dl « Whether the
global 'téonf is or is not affected depends on the extent of the
localisation of the mode. Of course the formulae generally apply to an
ensemble of modes which are not necessarily coherent. Furthermore, there
are no convective contributions to the fluxes. In contrast to
thermodynamics, the cross-coefficients L$ and L: are not equal in
general. Finally, we note that Egs. (21) and (25) imply that D, 6 is less

1
than or of order xl .

We derive some further consequences of the above theory. The test-
particle density fluctuations én(r, 8, t) can be written in analogy with

Eq. (13)

© _ l(me+££+ U.Tt)
én = [ dw ) n (r, w) e (26)

- m,n



where

dn @ _lxz
n (r,w)=1v tb == e f Wix, r) e 4 dx
! the mn dr B tw ’

2
X

dv @ .0
- - 4

+ tn (r) b = 1 f Z(x, r) e dx . (27)
o mn dr S7 e

Thus Eg. (27) expresses the density fluctuation amplitudes in terms of
the magnetic amplitudes. If the profiles of mean quantities are known
the integrals can be explicitly calculated by solving Egs. (16) and (17),
and Eg. (27) can be used to determine the field fluctuation spectrum if

the density fluctuation spectrum is known.

It is also of interest to calculate the parallel heat flux vector in

this model for a given mode m,n. Thus 6Qeﬂ is given by

= me veﬁ
8oy = | 8 —5— av , (28)

whereas fluid theory (LIFSHITZ and PITAEVSKII, 1981) leads to the
expression
dar

_ o= = oe
80, = - gy Xpo Liky T+ DB 32

+ cec. | + 5U" n, Too (29)

where x"e is the parallel thermal diffusivity and 6U" is the parallel
convective flow. The Fourier component of the temperature fluctuation is

defined by

F o x? ax . (30)

Using Eg. (15) and comparing Egs. (28) and (29), we obtain the following

expressions for X and 6U" :

=-10-



2w -
#Ei f x3Z e . dx
_ 727 - 51
Xye = ik T 2 (31)
I = T a
1+ —— e ¢ 23 4 4
Y2m -
and
2 x2
v dn @ -
th - - 4
U, = —— « 1 b —2 {] x*we dx
I = mn dr
/27 n -
o]
2
. p.
iy Xie ® ,- T3
= [ x2we ax } . (32)
the -=

It is easily seen from Egs. (16) and (17), that in the limit of high

R
collisionality (T << %—— ] Xle approaches the Braginskii form
the

2 ¢ . The low collisionality limit must be handled more carefully.

vthe

In this limit we require

R
> T > ;9——
the

T

conf

The above formulae then imply that x"e is a function of m, n and w and
has both a real and imaginary part. A numerical study supplemented by a
WKB method shows that the real part approaches a form conjectured
previously by us (THYAGARAJA et al., 1980). We will discuss this in

section 3.

3. EQUIVALENCE OF LANGEVIN AND FOKKER-PLANCK APPROACHES

We report in this section on some of our numerical results based on
the above theory; details of the actual numerical methods are given in an
appendix. Although some of the parameters chosen are typical of
experiments, the emphasis of the present section is on demonstrating the
equivalence of the Langevin and Fokker-Planck approaches. Accordingly
the choice of parameters such as p and € are largely dictated by

numerical considerations.. In section 4 we shall apply the Fokker-Planck

approach to conditions more relevant to TFR.

-11-



With the above caveats in mind we consider a periodic cylinder model
of tokamak with minor radius a and periodicity length 27nR. The mean
magnetic field Bz is taken to be uniform and large compared with the

rB

poloidal field Boe(r) which is chosen so that g = —2=1+2X . For

i a?
simplicity we consider only test-electron transport ignoring their energy
transport. This is equivalent to assuming Toe(r) is uniform and equal
to a fixed constant of order 1 keV. We also take the collision time T to
be uniform and constant. The spatial step-length p is also taken uniform
and constant in such a way as to ensure that test-electron diffusion in
the absence of magnetic fluctuations is finite but small compared with
the expected diffusivity due to the presence of the mode or modes. The
amplitude of the field fluctuations is prescribed as a function of r and

t. The two principal conditions satisfied by these fluctuations apart

5B

from VeB = 0, and periodicity in 8, z and t, are : E_E << 1 and
o

6B = 0 . The forms of these will be given in the specific examples

A
considered below.

With reference to the Fokker-Planck description, we note that in
principle Egs. (16) and (17) can be solved for arbitrary w, m and n,
exactly, if desired. But this exact solution is of little use in

determining quantities such as D, and the test-electron density profile

L
no(r). For this reason we have chosen to solve Egs. (16) and (17)
numerically to obtain W and Z and evaluate Dl by numerical integration.
Assuming a uniform source of test-electrons é, we then solve the

transport equation

14d dno 2
100 - 9 9 X . =
riel L J+s=0 (33)
dn0
with the boundary condition no(a) =0 and T 0 at r=0 . It is
6B
useful to remark that in the absence of magnetic fluctuations (E—E = 0)
23 o
Dlo g and n,6 is a parabolic density profile.

-12-



In the Langevin approach, we consider a fixed number of test
electrons, N say. At t = 0 , these particles are introduced into the
solution domain 0 < r <a , 0< B0 < 21, 0<z < 27R , the
distribution being uniform in space, and Gaussian in v  with <v"> =0

I
and <v % z v 2. Using the numerical procedure described in the

appendii, the ;Ziite difference forms of Egs. (1) and (2) are solved for
the ensemble of particles. During the course of such a solution, if a
test-electron crosses the boundary r = a , it is reintroduced imme-
diately into the solution domain as at t = 0 . The numerical calcula-

tions show that after times t & Tc the distribution of test-

onf’
electrons to be steady except for statistical fluctuations due to the

finiteness of N. Furthermore, the recycling rate of these particles is
an outcome of the calculation. The recycling rate N is defined in terms

T as
conf

N

(34)

Zie
I

T
conf

This is really an equation for Eoont since the numerical simulation for
fixed N yields N. In order to compare the Fokker-Planck and Langevin

approaches, it is useful to bear in mind the simple relations

a
N = 4n?r f rno(r) dr.
o

and N=282n2Ra2. {359

W;th these definitions the diffusivity Dlo in the absence of fluctuations
is given by p2/41 and Tconf = a2/8Dlo » In contrast to the Fokker-
Planck approach, the Langevin approach does not require the smallness of
5Br/Bo- A more subtle restriction on the Fokker-Planck approach is that
Egs. (16) and (17) become singular at zero frequency and therefore are
only valid for W onE > 1 . The Langevin approach suffers from no such
restrictions and is valid at any frequency or collisionality. The only
limitations are that the time-step At be sufficiently small and the
number of test-electrons N be sufficiently large (for our purpose N ~ 100

and At ~ 10”7 sec. suffices). In fact the relative error AT /T

conf’ ‘conf

-13-



« 1//5;;:;; ; wWhewé Nrecyc is the total number of particles recycled and
is given by N+fin .
We first consider the effect of a single mode on test-electron
transport. The purpose of this calculation is to compare the results of
the Fokker-Planck approach with the Langevin approach. Table I gives the

parameters.

Table I
Parameters Values
R 150 cm
a 10 cm
vthe 10 cm s~
T 1076 g
o 1.0 cm
p2/ 4t 2.5 x 10° cm? g1
T (modes absent) 5 x 107° s
conf
N (Langevin) 128
At (Langevin) 5 x 1078 g
t_. (Langevin) 2.5 ms
fin
Ar (Fokker=-Planck) 1.0 cm
We consider a single mode with m = 3 and n = 2 such that
GEr E (I nz
E;— =5 (;) cos (me - mt) . (36)

This corresponds to a magnetic fluctuation which would be produced
typically by external currents, that is, not by the plasma itself. Of

course, for the Monte Carlo calculation we also need to prescribe GES

(taking BBZ = 0 ) such that % %; (réBr) + % %a 639 =0 . In Fig. 1a we
present Tconf obtained from the Fokker-Planck calculation as indicated in
the procedure described above, with the parameters € and w varied. For

E =0, we note that T 5 x 10°° s as predicted by the exact
solution in the presence of the "background" diffusivity p2/41 « In

Fig. 1b the analogous plot is derived from the Langevin/Monte Carlo

=14=



calculation. This shows that for amplitudes ¢ 2 7 x 1073, the two
approaches are in agreement. Therefore, although it is not obvious from
Figs. 1a and 1b, the differences from the "background" Tconf at even
moderate amplitudes e = 10~3  are significant. This has also been
demonstrated in the Fokker-Planck code by reducing p and thereby

decreasing the effect of the background.

We repeat this comparison for an "internal" 2,1 mode of the form

—=§§exp[—(2—q)2]cos(m9—-rRE+wt). (37)

The results are presented in Figs. 2a and 2b, and demonstrate good agree-

ment between the two methods, except for w = 102 and large amplitudes.

We now discuss interesting features of the properties of Toonf 35 2
function of w and € . With reference to Fig. 1a we note that at
E =3 x 10'3, Tconf as a function of w has the following properties: For

_— is hardly different from the background value. However,

for w > 10° (when wt > 1) there is a very sharp reduction in Tc

w= 102, ¢
o
onf
This general pattern is also repeated at € = 5 X 10"3% and
€ =7 x 1073, Thus we conclude that even a single mode can alter test-
electron transport by a factor of order two over the background value if
the frequency of the mode w is of the order of the collision freguency.
The behaviour at increasing amplitude for a given frequency is fairly
subtle, except when wT ~ 1 , when the confinement time decreases with
increasing amplitude. We note that the confinement time at fixed w does
not scale simply with €2. The main reason for this is that the diffusion
coefficient Dl includes the background diffusion p2/47 « Turning to
Figs. 2a and b we note that there is a clear degradation of confinement
with increasing amplitude at fixed wt and a resonant dip in confinement
at wt ~ 1 at fixed amplitude. It is also of interest to note that the
Fokker-Planck calculation apparently overestimates the confinement time
at moderate to large amplitudes at low frequency relaﬁive to the Langevin

code. The reason for this is that the Fokker=-Planck takes only partial

account of the island structure of the (2,1) mode and its possible

=-]15-



In addition, there is also the less important effect, of the neglect of
the phase-shifts due to the background diffusion in the Fokker-Planck
equation. These effects are fully represented in the Langevin code,
bringing out the deterioration in confinement at low frequencies. Other

calculations which we do not present show that at fixed wt and g, there
L T
the

is a similar resonant degradation in confinement when —_EE__ ~ 1 .

We now turn to an investigation of the effect of an ensemble of
modes (many mode case). Before we describe the numerical experiments
conducted, we wish to clarify certain points. 1In order to highlight the
effect of an ensemble of modes in relation to the background transport,
we have taken somewhat different values for the parameters. We choose p

to be 0.2cm and T = 3 x 10" ®sec, p2/4t = 3.3 x 103 cm2s™ 1. 1If there

1

were no modes in the system, and v = 10° em s~ s R = So'cms and

the
a = 10 cms, the confinement time is 3.75 msecs. It follows from Eg. (33)

that, if in addition we prescribe a diffusivity Do = 10% em? 57! for
r

2 < 0.1, Tconf
r

F < 0.1 certainly are. Inasmuch as we are interested in relatively

is not altered but the central density and profile for

short wavelength magnetic fluctuations, the effect of m=0 , n =0 and
m = 1 oscillations in the central region are schematically modelled by
DO . It is important to note that the main contribution of magnetic
fluctuation induced transport comes from outside the central region and
is expected to be much larger than p2/4r. For ease of presentation we

first turn to the Fokker-Planck results.

We take
8B 10 m 1
E—E - f yo) § exp [- 5 (m- ng)?] cos(mé - %E + mw*t) ,  (38)
o = =

where w* is of order the electron diamagnetic frequency and taken to be

3.3 x 10° and e = 1073 . The particle source S in Eg. (33) is

taken uniform in r. Fig. 3 gives

-16=-



6B_ 2 2 .2 m 1/2
1
GEE) > =155 ] | ewl-1m-na2)}’?
o m=1 n=1

as a function of r/a , where we have deliberately chosen all the modes
‘to vanish at -r = 0 . Fig. 4 gives the calculated values of Dl(r) as a
result of these fluctuations. Fig. 5 shows n0 as a function of r/a .
Although Dl is seen to be highly irregqular, it results in a smooth

no(r) profile. The field fluctuations are important in the region

0.1 < f < 0.9 . The calculations show that Tconf = 0.2 msecs, and this
2
a
is equivalent to a diffusivity of Bt s which is of order 5.0 x 10"
p conf

cam? sec™! + well above the background diffusivity.

We have repeated the above calculation using the Langevin approach
taking 64 particles and a time step of 5 x 10~ 8s, running the code for a

time Tein = 2.0 msecs. The confinement time of 0.2 msecs agrees with the
result of the Fokker-Planck calculation. We have also repeated the

calculation with w* = 0 keeping all other parameters fixed. The con-
finement time in this case is 0.4 msecs. This calculation has no

analogue in the Fokker-Planck approach.

It is of interest to compare the above results obtained from the
test-particle approach to the estimates derivable from our earlier two-

fluid approach (HAAS and THYAGARAJA, 1984) for the same conditions.

2
(_ZE_)._.. 52 . 3 X 10‘1' cm25-1 and T =

Two-fluid theory gives xle 22 Te conf

2
E%— = 0.3 msec. This is of the same order as the results quoted for both
L
the Fokker-Planck and langevin approaches. xle calculated from the

2

RECHESTER and ROSENBLUTH (1978) formula xle ~ gR v £ is of order

the

1.5 x 10° em?2 s ! , implying =« ~ 8.0 x 10~2 msecs.
conf

4. APPLICATION TO TFR

In this section we consider an application of the present model of

ancmalous transport to TFR (EQUIPE TFR, 1983). This work relates to high
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m,n density fluctuations and anomalous electron thermal conduction. We
note that the density fluctuations observed are apparently consistent
with certain general features of drift waves, but have been found
incapable of predicting the radial dependence of xle(r) as obtained in
experiment. We give below an outline of a magnetic fluctuation
interpretation of the same data. We do not enquire as to the origins of
the fluctuations (drift waves or otherwise) but take them as specified
below. Here we make the explicit assumptions that the expressions for X,
and 6&n/n calculated in terms of éBr/Bo for test-electrons apply to

the plasma electrons; we discuss this further in section 5.

5B
As before we represent E_E as a function of position and time by
o
the expression,
6B "max m - 1 (m—nq)2
r EY 4 nZ
— o — - — *
3 oa Yy ) e cos (mé R T M owrt) (39)
o m=1 n=1

Choosing

g(r) =1 + 3

Pl s
[3%]
-

€=3x 1073, w* = 8 kHz (5 x 10" rads sec"!), R = 100 cms, a = 20 cms,
we model the effect of a large numbg; of resonant modes with frequencies
in the range 1b-1,000 kHz and k9 ~ kr ~ E . Provided we choose

mmax ~ 100 the calculations are not sensitive to this quantity, which in
the particular instance given below is taken to be 80. 1In order to
estimate the transport, we further assume that the Braginskii collision
time 1T = 10'653c and vthe = 10% cm sec‘l, both taken to be uniform in
r + These conditions approximate fairly closely to the experiment.
Since the value of g is reasonably small, we have used the Fokker-Planck
approach, with a "background" diffusivity %; ~ 600 cm? s'l, well below
the measured experimental Xle values and of order the ion neoclassical
conductivity. The results of this calculation are given in Figs. 6a and

b. Fig. 6a gives the calculated value of Xle [see Eq. (25)) as a

-18=-



function of r. At

"R

= 0.5 , x.Le =3 x 103 cm? s"l, the same as in the
experiment. This has been used to fix the assumed value of ¢ + there
being no other free parameters. Both the profile of xle and the
numerical values agree with the experimental values of XJ_e for all larger
radii (see Fig. 14 of TFR paper). For i < 0.5 the calculated Xle falls
away steadily to zero, whereas the observed xLe has a minimum and rises
again towards the magnetic axis. This is merely an artefact of our
neglecting sawteeth and associated low mode activity in the vicinity of
the ¢ = 1 surface. It should also be noted that the "spikeyness" of the

calculated Xe profile is again an artefact due to the low-order modes in

Egq. (39). Substitution of such an xle(r) in a transport equation always
leads to smooth Te profiles which are flattened in the vicinity of the
. . // Bn 2 . r
largest spikes. Fig. 6b shows a plot of ﬁ;—) as a function of =y
o
dn

[e]

as calculated from Egs. (27) and (39) assuming i; rrake 4f§) . We note
that from i = 0.1 to i = 1.0 the curve is almost linear as indicated
r

by experiment. The value at = 0.5 1is 0.1% which is a factor of two

lower than indicated by experiment, but consistent with the measured

accuracy. The corresponding magnetic fluctuation intensity which is

(SBr 5
—_— 1 x — ¥
(B ) is 5 10

o

We next address certain interesting features observed in the TFR

: 8n .
experiment relating to the time variation of xle ¢ # O during the
o

flat-top phase as shown in Figs. 8, 10 and 12 in the TFR paper. It is

seen from Fig. 8 of TFR paper that from 100-200 msecs the current and the
absolute level of the density fluctuations <(6n)2> remain approximately
constant while the density rises by 100%. This is also confirmed by Fig.

5} ; ; .
10, where during the corresponding period ;ﬂ falls linearly with time.
o
Fig. 12 shows that this is correlated with a sharp decrease of xle' We

have attempted to simulate this behaviour as follows. We have performed

a series of calculations in which v + 9 and w* are held fixed. The

the
variation of mean density is simulated by taking a series of values for
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the collision time T . We have also slightly altered the representation

6B
of B—r in Eq. (39). Thus
o
B, & max m - Z(m-nq) 0%
E -2 Z z Eon © cos(me "R + mw*t) (40)
o m=1 n=1

where the parameters €, are now chosen so that the amplitude of the

th . ; 1 .
m,n Fourier component is proportional to % corresponding to the
1
L
kl n
linearly rising radial profile for gﬂ , the values of which depend on
le]

; n ; ; .
experimental statement that %— ~ ; this choice results in a

the meanadensity n . The results of this density variation at a

particular point i = 0.7 are shown in Figs. 7a, b, ¢. Fig. 7a shows
5n y 2

the assumed variation of v (E—) evaluated at r = 0.7a with the

o
collision frequency t~! which is proportional to the mean density .

Note that we have deliberately chosen a rather wide variation of !

spanning the experimental region. Fig 7b shows the resulting variation

8B 2

of ¥ (E—E) at the same radius. It is seen clearly that over this

° 8n 6Br
range of variation, = and E_— are simply proportional to each other
o
to a good approximation. Thus for the conditions of TFR the variation of
5B

1 ; 1 :
%E and o implies, according to our model, E_E LRl Fig. 7c shows
o o o o

the value of X calculated at the same point as a function of the

collision fregquency. It follows from Fig. 7¢ that over the range of

bl-—‘-

collision frequencies considered, Xis * , as suggested by the TFR
o]

results.

An interesting implication of the above results (at r = 0+7a) is
5B

; 1
that for the TFR experiment at least, Xie ™ Xje (ErE) ; With X1e “ 5
o o
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B
and E—E « implies < lEEElE and not «v,_ 21 or «
B, n_' 3 Xle T Xle © Vthe Xle
2TR vthe » This can also be directly demonstrated from our results to

hold for each value of r . Thus Fig. 8 shows the ratio of the effective
value of x"e obtained from Eg. (31) and averaged over all the modes

2
ABOR) - oa & PunpEioH GF § . It is that this

present, to the quantity
guantity varies between 0.5 and 2.0 across the plasma. Thus the test-
particle calculation appears to confirm a global scaling conjectured by
us based on ALCATOR and other ohmic experiments (COOK et al., 1982). It
is also interesting to note that if it is assumed that +<(6n)2> is more

or less constant from the g = 1 surface to the edge, then xle is propor-

tional to « In more collisional conditions where Ly & F 2¢ ,

no(r) the
the magnetic fluctuation theory can account for the scaling Xig « &— ’
6Br °
if, and only if, B is independent of n, -
o

5. DISCUSSION

We now discuss a number of points raised by the proposed model of
test-electron transport due to magnetic fluctuations. Although we have

formulated the model for test-electrons, the calculations apply with

suitable modification to any other test-charges. Addressing the question
is test-electron transport indicative of plasma transport? - the
following comments are in order : The plasma electrons respond to E and

B fields according to the exact Fokker-Planck equation

o v xB

e e
ot + E.er - me (E %

)V £, = ClE, £) + C(f,, £;) + 5 . (41)

Eg. (3) which is satisfied by the Fest-electron distribution function can
be "derived" from Eq. (41) by approximating the collision terms
drastically to preserve only their essential properties (parallel
velocity relaxation and spatial diffusion p2/41 ) and by averaging over
velocities in the plane perpendicular to the instantaneous field line.

These approximations alone would not quite yield Eq. (3), but a slightly

=21~



more general form in which v b in Eg. (3) is replaced by

Vd.rift(r’ t) is in lowest-order given by

v,b + v

I (E' t) where

drift

where p and n are the test-electron pressure and density respectively. In
of
addition the force term - ;— E, -5‘-,5 will have to be included. Taking
I
a suitable gauge, it is easy to extend our Fokker-Planck treatment to

cover this case.

Taking full account of the electric fields in the Langevin

treatment, it is easily seen that Eg. (1) must be replaced by

E X B
[shny ==
p———a = +
at k¥ o 2z Sl (bget)
where ‘ELI is of order L - and El is a rapidly rotating vector

perpendicular to b . Eg. (2) is replaced by

dv v
It Il
+——-—

e
atk Tt Rt} ~ m, E,(t) -

It is easily seen that the full effect of the EL term is included in

our present description if we take Pe to be the electron larmor radius
E X B

v /mce . For typical tokamak conditions the velocity c is much

the
B2

smaller than v, ~ v « Also for the frequencies considered v >>
i f the the

——l . In any event a theory including the full electric field can only

m w
bz compared to experiment if at least two fluctuating quantities are
simultaneously known, &n/n and éTe/ Toe ;, say. We note also that a
different interpretation from the one given above can be attached to the
spatial step p . Thus p2/41 can be used to represent phenomenc—

logically all other transport processes neglected in the present theory.
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For example, the transport due to a single-mode can be interpreted as
relative to all other transport processes (described by p2/41). In the

second interpretation p need not be the electron Larmor radius.

The crucial difference between the plasma electrons and the test-
electrons is that the test-electrons respond to given E and B fields,
whereas the plasma electrons together with the ions, self-consistently
determine the E and B fields. If E and B are completely known from
experiment and are of small amplitude, the test-electron response is the
same as the plasma response. To the extent that experiment does not give
such detailed information, the test-electron transport determined by our
model can at best represent plasma transport in a schematic way. It is
of interest to observe that several general features of our test electron

results appear to resemble gross features of experimental plasma trans-

port.

We regard the present work as an extension in one sense of our
earlier two-fluid turbulence interpretation. In the fluid theory, Xle is
a prescribed quantity, especially at low collisionality. Given
expressions for Xjo We were able to derive effective perpendicular
transport coefficients in the presence of electromagnetic fluctuations.

In the present work no assumptions have been made about collisionality

other than = << 1 . This, in fact, is no more than assuming
conf
&B 2 2
<(E—£) > << e ~ 107° . Under these conditions we have explicitly
o v, 2 12
the

evaluated the parallel transport and shown that Xie is indeed reduced

2

Y T as we had assumed in our fluid theory.

relative to v

Finally, we note that some of our results, especially the maximum

v T
the

gR
YAMAGISHI and BHADRA (1983). Their model is for a system with homo-

transport at wt ~ 1 and ~ 1 , are similar to those obtained by

geneous turbulence. Our model is also different from the theory due to

RECHESTER and ROSENBLUTH (1978) and expounded by KROMMES et al.(1983).

In this double diffusion theory, the effective perpendicular transport of
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test-electrons is, in the low collisionality regime, the result of

parallel convection at L and stochastic field diffusion due to overlap

of stationary islands. This theory apparently does not lead to transport

from a single mode - time-dependent or stationary. Whereas in this

theory the ergodisation of field lines is explicitly due to island

overlap, the particle trajectories described by our Langevin eguation,

Eg. (1), are in general ergodic, irrespective of whether the instantan-

eous field lines are ergodic or not. Furthermore, collisions play an
vthe *

essential réle in our theory, despite the fact that —__EE— and wt are

sometimes much larger than unity, for the important reason that

p << 1 , as is true in actual experiments.
conf

6. CONCLUSIONS

The specific conclusions of our calculations have already been
listed in the introduction. More generally, the test-particle model is
effective in calculating parallel transport at arbitrary collisionality
in the presence of magnetic field fluctuations. 1In this sense, it
extends and justifies our earlier two-fluid approach to anomalous trans-—
port in tokamaks. We note, however, that the two-fluid approach is
better able to take account of gquasineutrality and its consequences for
particle transport. Thus the two-fluid theory (HAAS and THYAGARAJA,
1984) suggests that particle and energy fluxes have in general convective
contributions which may be inward depending on the conditions. Experi-
ment is known to be in agreement with this prediction of two-fluid theory
(COPPI and SHARKY, 1981). Thus the present level of test-particle theory
complements rather than includes the two-fluid interpretation of

anomalous transport.

-4



REFERENCES

COOK I., HAAS F.A. and THYAGARAJA A. (1982) Plasma Physics 24, 331.

COPPI B. and SHARKY N. (1981), Nucl. Fusion 21, 1363.

EQUIPE TFR (1983), Plasma Physics 25, 641.

HAAS F.A. and THYAGARAJA A. (1984) Plasma Physics 26, 641.

KROMMES J.A., OBERMAN C. and KLEVA R.G. (1983) Journal of Plasma Physics

30, 11.

LIFSHIFTZ E.M.
Press, Oxford,

RECHESTER A.B.

THYAGARAJA A.,

and PITAEVSKII L.P. (1981) Physical Kinetics, Pergamon
Section 58.

and ROSENBLUTH M.N. (1978) Phys. Rev. Letts. 0, 38.

HAAS F.A. and COOK I. (1980), Nucl. Fusion 20, 611.

UHLENBECK G.E.,and ORNSTEIN L.S. (1930), Reprinted in Selected Papers on

Noise and Stochastic Processes, edited N. Wax, Dover Publications, New

York, 1954.

VAN KAMPEN N.G. (1983), Stochastic Processes in Physics and Chemistry,

North Holland Publishing Co., Oxford, p. 209.

YAMAGISHI T. and BHADRA D.K. (1983) Plasma Physics 25, 1414.

-25-



APPENDIX

The numerical treatment of the Fokker-Planck formulation is
straightforward. As noted in the text, Egs. (16) and (17) can be solved
in terms of Weber functions analytically, but this solution is not
useful. Instead, we choose an x interval [- 7.5, 7.5] and finite-
difference the equations. Centred-differencing gives a tri-diagonal
matrix (inhomogeneous) system. Applying the boundary conditions ﬁ,ﬁ =0
at both end points, the system is solved by standard methods. This
procedure is repeated at each spatial grid point L using the appro-
priate values of w, k" etc. for all the modes present. Calculating
Dl(ri) in this way, we finally solve for no(ri) . Since the test-
particle sources are specified, nO(r) is obtained by two quadratures.
Typically, we find that 51 equally spaced mesh points in the x (i.e.
velocity) space and a similar number of r-grid points give adequate

accuracy.

The numerical analysis of the Langevin equations (1) and (2)
requires more work. Using the tokamak ordering Boz >> Be p Br and
éBz = 0 , the equations of motion are written in terms of non-dimensional

variables as follows:

EV

ar _ _ = 7u ay
at - = 26 (I, 6, ¢, t)
v EV
de _ Il Il 2¥
ac ETETE t o A (X, 8, ¢, t) (R.1)
dp _ 11
dt R
where

1 r2 z rBoz
TEga2r ¢3¢ a5 v
ob
- _e¥
6b_. = T 26 (A.2)
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We take g(I) £ 1 + 4I . The poloidal flux function ¥ takes the form,

2]
111

E L F (I) cos (m@ - np + mw,t) (A.3)
mn
m n

an can be arbitrary smooth functions such that an(o) =0 .

The equation for ¢ is trivially solved. In order to calculate the
motion between collisions, the equations (A.1) must be cast in suitable
finite~-difference forms and solved. Clearly they imply the area-

preserving property,

3(1(t), o(t))
3(1(o), 8(c)) ~ & 4)

Denoting I(t + At) by I’ and 6(t + At) by 8’ , the following
implicit-finite difference egquations are derived from (A.1) using a

Picard iteration.

eV, t+At v,
I'"=1I+ mzn an(I') m { sin(meo(u) - n ]/ t+ mwu + @0) du
L
At v, eV, dan t+At v,u
8’ =0 + — + 2 ) 3 [ cos(meo(u)-n Rt mwu + @O) du
g(I )R m,n dI t
(A.5)
where
Yy
¢, = mb(t) - no(t) + wmt , 6, (u) = .
q(I")R

These implicit equations are iteratively solved for I’, 6’ given I, 0,

¢ and t . It is easy to prove that the exact solution of (A.5) satis-

fies
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a(r’, 8" _
o(1, 8)

These methods can be readily extended to situations in which GBZ ¥ 0

(these are more relevant to reversed field pinch applications).

The Langevin equation (2) is written in the finite-difference form,

, e
2 -
Gtk & AEY = | ——aF Loy ey 4 B et | (A.6)
I ax | Vi At :
1+ &t 1 4+ AE
27 2T

If we choose R from a Gaussian with zero mean and

<V"(t + At)> = e R v, > .

Provided ?% <1, <v (£)> >0 irrespective of <v (0)> . If at each
time-step R is chosen in the above way (i.e. uncorrelated with the

previous values, fulfilling the Markoff property), then

2 - 2 ;i
> = .
<v"(t) vthe for sufficiently large t

Furthermore the v"'s will be Maxwell distributed. The random spatial
jumps are taken with the length p(%z) at every time step prior to
the deterministic integration for each particle. This procedure captures
the essence of the 'persistent' collision effect of the Fokker-Planck
equation rather well. It should be noted that in the text - for concep-
tual simplicity - it was stated that a random spatial step of length p
is taken at each collision, rather than at each time-step. All calcula-

t -
L chosen sufficiently small (~ 10”%) to

tions are vectorised and ¢ vr{I e

ensure accuracy.
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Fig.1 Plot of confinement time (70,7 versus mode frequency (w) and amplitude (e).
Note 7.,p is linear in scale and the interval e=0—1 %107 is not to scale.

(a) Fokker-Planck, external (3,2) mode.

(b) Langevin, external (3,2) mode.

For both cases 7.on (background) = %107,
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(b)

£=6.0%x107
W = 102

Fig.2 Plot of confinement time (7., versus mode frequency (w) and amplitude (e).
Note 7eon is linear in scale.

(a) Fokker-Planck, internal (2,1) mode.

(b) Langevin, internal (2,1) mode.

For both cases 7., (background) = 5x107°s.
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Fig.3 Radial profile of magnetic fluctuation level .| (8B,/Bo)*:
€=10"2, My =10 (see Eq.[38]).
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Fig.4 Radial profile of magnetic turbulence induced diffusion
coefficient (D, [+/a]), calculated for the fluctuation intensity

given in Fig. 3.
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Fig.5 Radial profile of ny(r/a) (from Eq.[33]) for the same
conditions as Fig. 3.
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Fig.6 Radial profiles of magnetic fluctuation induced quantities for TFR:

(@) thermal diffusivity x,.(r/a).

(b) RMS density fluctuation
from 68,/B, given by Eq.(39).

(6n/ng) ®. These are calculated
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Fig.7 Variation of turbulence properties with collision frequency (7).

The quantities plotted are for TFR at r/a=0.7 with collision frequency

7~ Yeeng, all other conditions being fixed (log-log plots).

(a) Assumed variation of RMS density fluctuation (6n/ny)* versus 7
(b) Calculated variation of RMS field fluctuation (8B,/B,)* versus 7.

(c) Calculated variation of thermal diffusivity (x, ,) versus ..
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Fig.8 Radial variation of the Knudsen correction factor C(r/a)= ""

where (x“e) is calculated from Eq.(31) and averaged over all the [(2xR)*]/7
modes present for TFR conditions.
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