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ABSTRACT

Mode conversion between the fast and slow electro-magnetic waves in
the lower hybrid frequency range is considered. This phenomenon
determines the accessibility of the lower hybrid resonance to the slow
wave, and 1is also of theoretical interest because the mode-coupling
differs in certain aspects from cases previously investigated by the

authors and others.

A second order approximation is used in the mode conversion region
leading to Weber's equation from which transmission coefficients are then
ocbtained in various cases. Ray-tracing results are recovered for a plasma
with a linear density profile in a uniform magnetic field. The effect of
including a magnetic field gradient in the calculation is also

considered.

The second part of the paper provides justification for the use of
Weber's eguation. The exact fourth order system of 0.D.E.s for the
problem is set down and a linear transformation, which is an extension of

that given by Heading, reveals the second order nature of the coupling

process.

Numerical solutions of the fourth order system yield transmission
coefficients in excellent agreement with the second order theory, and also
demonstrate that the electric field variation across the mode conversion

region is well approximated, via the above transformation, by the second

order theory.
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I. INTRODUCTION

In the cold plasma approximation two waves propagate, one of which,
the slow wave, has a resonance at the lower hybrid frequency. 1In a
considerable number of experiments this mode is used for heating and for
current drive1-

As is well known2'3'4, there is a critical value, nc, of the
parallel refractive index for which, in tokamak geometry, the slow and
fast waves have the same perpendicular refractive index at some point
between the plasma edge and the resonance. For values of n" close to
nC we may expect partial mode conversion in the vicinity of this point,
with energy incident in one mode being split between the two modes after
passing through the coupling region, and in this paper we estimate the
range of n about nc over which such an effect is significant. This

determines the sharpness of the transition between values of nﬂ for
which the lower hybrid resonance is accessible and those for which the

incident slow wave is reflected in the fast mode.

Firstly, however, we discuss the bacic features of the mode-coupling
process which differs in important respects from most cases previously
considered by ourselves5 and others. The mode conversion between fast and
slow waves is then calculated assuming a linear density variation only,
while in the following section we include in the calculations a magnetic
field gradient, the effect of which is to shift the mode conversion region

towards the plasma edge.

In the remainder of the paper, we set down the exact fourth order
system of O.D.E.s for the problem and use a linear transformation, an
extension of that given by Headings, to extract the second order equation
which describes the coupling process. Heading gives a non-singular
transformation which approximately decouples the fourth order system into
two second order equations in which the waves with positive and negative
phase velocities do not interact. While these equations have a conserved

7 C . i ;
quantity , this does not necessarily coincide with the Poynting flux which



is, of course, the guantity conserved by the exact system. By introducing
an extra transformation we can make these guantities coincide so that the
second order approximation maintains the physically correct conservation
law. This new transformation also has the advantage that the terms
neglected in the second order theory are smaller than is the case if

Heading's theory is used in its original form.

Finally, we compare transmission coefficients obtained from numerical
solutions of the fourth order system, in the case of a linear density
variation only, with those predicted by our second order theory and find
good agreement. Approximate expressions are given for the electro-
magnetic field components in terms of the amplitude appearing in the
second order equation, and it is found that these compare well across the
mode conversion region with field values computed directly from
integration of the fourth order equations. For this problem we have
therefore shown that all the information contained in the full fourth
order system can be obtained to very good accuracy from our second order

theory-

II. CONVERSION BETWEEN SLOW AND FAST WAVES

We consider a tokamak-like configuration in which the spatial
gradients are taken to be perpendicular to the external magnetic field.
Then locally., n", the refractive index along the field direction, may be
taken to be constant, while n varies. Ray-tracing studies in toroidal

&

plasmas show that n, changes along the ray due to toroidal effects, but

this can be neglected in the study of a localised process of mode
conversion, so long as it is borne in mind that the nII of a wave when it
undergoes conversion may not be that with which it was launched. The cold

plasma dispersion relation is

slni - [(e, - nﬁ](al ¥ gy) - e2] 02 # &, [(e, - n2) -E%] = g

(1)

where €yr Egr €5 are the elements of the usual cold dielectric tensor

which in the frequency range Qi << w << Qe are approximated by
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€, = 1+ Be _ B ' €y = - B2 ’ Eg = 1- L=
Q2 w? wf? w2
e e

and Qi and Qe are the ion and electron cyclotron frequencies

respectively.

The condition for a confluence of the roots of ni to occur in (1)

is given by

[(nﬁ - El)(ﬁl - 53] + 53]2 + 45%63nﬁ = 0 i

Introducing the following notations:

mgze 2 wz me
EE=, ¢ ¥ Bogg o« Kk FE G
w b g~ 1

and assuming that X is the dominant parameter, (1) can be written

ani - bni +¢c = 0 (3)
where

a = 1 - px(1-y?)

b = -[1-n2-wx(1-29Y))] (4)

c = pyz x3

Then condition (2) for a confluence of the fast and slow wave solutions

becomes

ulx? - 2[nﬁ(2y2 - 1)+ 1]ux o+ [1 - nﬁ 2 =0 (5)

If we suppose for now that the magnetic field is uniform, and that the

density varies linearly, then X is essentially the spatial coordinate.



In general (5) has two non-zero roots depending on nf and y2 . If
these are real and distinct, then there is a region between the plasma
edge and the resonance where the solutions of (3) are complex,
corresponding to evanescent waves, while if (5) has no real roots the fast
and slow waves can propagate independently from the plasma edge to the

lower hybrid resonance. The transition between these two types of

behaviour takes place at a critical value of n, given by
1
nﬁ=——=n§ ; (6)
1 - y2
for which (5) has repeated roots at
Ll
X = = = X (7)
kg - y2

Figures 1(a), 1(b) and 1(c) taken from the work of Bonoli and Ott4
illustrate all three possible topologies for the spatial variation of ni
with (a) n" < nc , (b) n" = nC () n" > nc “

When two propagating modes approach each other closely or cross over,
as in Figs. 1, we may expect a mode conversion process to lead to a
partitioning of the energy between them. In mode conversions previously
considered by the authorss, configurations in the kl - x plane of the
type shown in Figs. 1 have been associated with w - ki diagrams which
also exhibit a crossover of two distinct branches. This is not the case
in the present problem where the dispersion relation plotted in the w -
kl plane describes, in the frequency range of interest, a single curve as

shown in Fig. 2.

In regions where the density is less than the lower hybrid density
for the incident wa%e, the wave frequency, winc ;, is above the lower
hybrid frequency as shown. As the density increases, the maximum, wn 5
in the w - kl plane moves to lower values of w , then increases again,

and we encounter an evanescent region if wy falls below w, .
inc



If w 4is the incident frequency we may write the dispersion relation

in the form

w = f(kl' x) (8)
where the plasma inhomogeneities are contained in the x variation. A
family of curves such as in Fig. 2 is generated at different densities,
for each of which f has a maximum (i.e. af/akl = 0) at some value of

kl' Also the value of f at this maximum has a minimum as a function of

X -

Then at the point x = X s kl =kpg s, w= Wy » wWe have
of _ of -
BT{'J- (kof xg) = x (kof xg) = 0

and in the vicinity of the point (ko, xo) we expand (8) as

1 a2 2
W= wy -y e (x = xp)2 - £ (x = xg)(k, = Xp)
ox2 . ok ox |,
( Ol xﬂ) J- ( OJ‘ xo)
1 ?d2%f
-1 2_2 (k, = %kp2 = o0 (9)
akl (ko, xo)

We now wish to associate with the local dispersion relation (9) a
differential equation, making the usual correspondence kl + =i %; and
seeking a prescription which conserves energy. In our previous paper ,
this was achieved using a pair of coupled first order equations in which
the amplitudes ¢l and ¢2 were identified directly with transmitted and
mode converted waves. However, the present problem is an example of case
(i) given in reference 9 with boundary conditions different from the types
discussed in our previous paper. We associate with (9) a single second
order equation (Weber's eguation) whose first integral7 may be interpreted
as an energy conservation law, allowing us to identify amplitudes
appearing in the connection formulae with the incident, transmitted and
mode converted wave amplitudes. This second order equation is the same as

9
would be given by the theory of Fuchs et ala' =



If energy is incident in either the slow or the fast mode, then the

fraction transmitted in the same mode on the other side of the coupling

region is given by

o e (10)

where

exp[-Zn q/‘ag - bf‘] r N = Wy - W

b=
I

and the remaining coefficients are obtained from factorising (9) as
[atk = kg) + blx - x) J[£(k | = ko) + glx - x)] = =n (1)

If wy-w is sufficiently large and positive, then T =+ 1 corresponding
to Fig. 1(c) in which fast and slow waves propagate essentially
independently to the lower hybrid layer, while if w; - is large and
nagative, T =+ 0 corresponding to Fig. 1(a) in which incident slow wave
energy is completely converted into fast wave energy propagating in the
reverse direction and vice versa. We now estimate the range of n, about
n_ over which the transition between these two types of behaviour takes
place by considering the form of the local dispersion relation as n,

departs from n,- Writing

n = n + An ; (Mn < 0)
I c

we calculate from (5) the positions of the two distinct roots of ni to

be appréximately

X = X, o 22 Y IAnll’z (12)
o1 = g2y /s

Comparing (12) with the separation given by a relation of the form (11)

allows us to identify the parameters appearing in (10) and obtain the

following result for the transmission coefficient



1+ exp( na

(13)

where
2L 1 1

° w2 (1 -y

"8

and L is the scale length of the density variation.

Taking parameters characteristic of PLT, namely w/2w = 800 MHz ,
By = 2.5 Tesla, a deuterium plasma and a density scale length L = 0.4 m

corresponding to the tokamak minor radius, we find that

80 An
= (14)

.
A
lrz B

B

Since Ny < O(1) only for a very small spread in An , the transmission

is either on or off depending as n“ > nc or nn < nc respectively, and

so in virtually all cases the mode conversion behaviour is predicted
correctly from ray-tracing results.

III. THE MODE CONVERSION IN THE PRESENCE OF A MAGNETIC FIELD GRADIENT
Following the general formalism given earlier, we now include a
magnetic field gradient in the calculation, noting that X is no longer
the spatial variable since the latter occurs also in yZ2. Taking the

external magnetic field to have a configuration given by
Eo = B(x)z ; B(x) = B0(1 + x/R)
and writing

X = X,(1+x/L) , y* = y§(1 - 2x/R)

condition (5) for a confluence of the roots of ni becomes



WXo Xo  8ylanf o 2uXg
+
L 't T r x ;2

ar,
p.xo—1+nﬁ [2yg(R—-1)+1] x

+|.L2X§-2|.1Xu [nﬁ (2y§-1) +1] + (1-nﬁ)2 = 0 (15)

If (15) is to have repeated roots at x = 0 , we require
- 2 Fou? o . -
pg ~ 1 +nd (o2 E=-1)%1] = 0
(18)
u2x?2 - 2pX [n2 (2y2 - 1) + 1] +(1-n%)2 = 0
0 il 0 I

From (16} we find that a single confluence of the slow and fast wave
solutions occurs at the point (XD, yo) in configuration space with

2L 2
30 - 2

X, = (17)

1
L yg-(*l - 4L2/R?2)

when n, takes a critical value given by

n? = ! = n? (18)

1 - y2(1 - /R c

Proceeding as before, we find that the guantity nA, characterising the

range of n, over which partial conversion occurs, becomes

2wl An 1 - 2L/R 1/2

"8 T (1 + 2L/R) n_ w1 = y200 - 2w ][0 - y201 - /R ]

(19)

It would seem that this range can become large as R approaches 2L .
However, in (17) and (18), the limit 2L/R + 1 corresponds to ng + 1

and X5 * 0, so that the mode conversion point approaches the edge of the
plasma where the waves are evanescent. The result breaks down under these
conditions because the analysis so far has pertained to the approximate

dispersion relation of (3) and (4), which was obtained assuming that X =

o(1/u) .



In order to examine the mode conversion behaviour at low plasma
densities, we must return to the full dispersion relation (1) and use
condition (2) for the confluence of roots of nf to occur. Here we adopt
a new scaling of the parameters:

H xor p "‘0(1) (20)
1-2a/r = uPp B >0

-~

where a and f are to be determined.

Applying (20) to eguation (2), we find that in order to obtain
consistent relatiocns, analagous to (16), for the critical n, and density

at which a single confluence occurs, we require
a = B = 1/3
In this case we obtain
ng s 1 + 2ul/3 :rcol/2 Yo @ (21)

the value of the density and field parameters, x; and y, , at the

confluence point being related through the equation

%)
y2 - —0 (22)
(1 + pxg)?2

while the mode conversion is characterised by the parameter

2mwl AD 172 1/ (23)
c 1/3 1 0 0
=4

Q

In the limit 2L/R + 1, p + 0 , the mode conversion occurs at a density

given by
X 249
Xg = = (24)
l_I_l/?.l u1/3



and nc becomes

2L 1 An
= —— E- y§/3 (25)
L/R = 1/2 ulfa G

e

Thus the correct mode conversion behaviour as L/R + 1/2 is given by (25)

and shows that n # 0 . In fact, the expression multiplying

L/R = 1/2
A.n/nc in (25) is still large, so that the transmission has a step

function behaviour as in the uniform field case.

It is interesting to note, however, that a magnetic field gradient
can shift the mode conversion point to lower densities, as seen by
comparing (24) with (7). For a deuterium plasma the mode conversion point

could occur at densities more than two hundred times lower.

IV. JUSTIFICATION OF SECOND ORDER THEORY

The lower hybrid mode conversion is of theoretical interest because
we can easily write down the exact fourth order system of 0.D.E.s in the
electro-magnetic field amplitudes, and examine this system to discover in
what approximation a second order description of the coupling process can

be extracted. Starting from the cold plasma wave equation

[+

Vv x ¥ x E - &2
c

m

. -'E_: = 0 (26)

where € is the usual cold dielectric tensor given by

= i52 € 0

lm

0 0 Eq
and taking all field quantities to vary as

A = A(x) exp{ik"z - iwt)



we use Maxwell's curl equation V x E = iwB along with (26) to eliminate
two of the six dependent field variables, finally obtaining four coupled

first order equations of the form

2D
—
n
|,
—
|

Ty x 4 (E) e (27)

e y ¥ z
and
0 0 1] i
0 0 -is3 0
- 2)

52 (El n"

T = - —an - 0 0
€ ] €
g2 - g2 €
2 1 2

—l[n + ] - —n 0 0

Il £ 1 I

The eigenvalues of T , which we will denote by int , in~ , -int , -in~

respectively, are just the four characteristic waves whose perpendicular
refractive indices are the solutions of (1). When these eigenvalues are
distinct the waves propagate independently and are adequately described by
the WKB approximation. However, this breaks down in the mode conversion
region where there is a confluence of two eigenvalues. In general,
confluence of more than two eigenvalues is unlikely, so mode conversion is
expected to involve coupling between the two waves corresponding to the
two eigenvalues. For systems described by a set of ordinary differential
equations such as we have here, Heading6 has given a general method of
extracting the relevant second order equation describing the coupling.

The coupled waves in gquestion are described by
¢'" - B2 =0 (28)

where £ is one half of the difference between the eigenvalues, coupling

to other modes being through terms involving plasma gradients. Details of



Heading's method are given in Appendix 1. If B2 is real equation (28)
has a conserved gquantity, namely im(¢*¢') « On the other hand, the exact
system conserves the x-component of the Poynting flux, a property which
we would like to be maintained by the second order system.

Straightforward application of Heading's procedure does not yield a simple
correspondence between the Poynting flux and Im(¢*¢’) , but by
introducing an extra transformation of the wvariables we are able to
produce such a correspondence. This transformation produces a symmetry in
the neglected terms resulting in the error being smaller than in Heading's

procedure. Details are given in Appendix 2.

The transmission and mode conversion coefficients obtained as a
result of this procedure are identical with those obtained earlier by
postulating that the local behaviour is governed by a second order
equation reproducing the local dispersion relation. In addition we have a
well-defined transformation relating the solution of the second order
equation to the physical fields. We have carried out a comparison between
results obtained from second order theory and numerical solutions of the
exact equations, details of which are presented below. Not only does the
second order theory give accurate transmission and conversion
coefficients, it also gives a very good approximation to the fields in the

mode conversion region.

V. SOME NUMERICAL RESULTS

We now compare transmission coefficients obtained from the exact
fourth order equations (Eg. (27)) with those given by our second order
theory. The approximate expressions as described in Appendix 2 for the
electric field variation are then evaluated across the mode conversion
region and compared with field values computed directly from integration

of the fourth order system.

We examine the uniform magnetic field case, assuming a linear density

profile with
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Using the mode conversion configuration of Fig. 3, in which a slow wave is
incident from the high density region, we solve the following initial

value problem

e’ = Te ;e .. = e 9
~ ~ ’ ~ (E:Lnlt) Nl (2 )
where the starting point, Einit » on the low density side, for the
integration is determined by

d -

— (n* - n7) =0 ,

e =t

init

that is, E'nit is the point at which the two wavenumbers are furthest

apart, and where the initial polarisation, e, s is in the positive nl

slow mode.

Writing
e = MM
A = diag ([n*c*(ct - c™)]71/2, [n7c~(ct - c™)]71/2,

[ntct(ct - ¢ ]717/2, [n=c=(ct - c™)]"1/2) (30)

where the notation is defined in Appendix 2 and where A is chosen to
normalise the magnitude of the Poynting flux of each characteristic wave

to unity. e is given by setting

E
mit) = (1, 0, 0, 0)

b
In the asymptotic region E >> 0 , the solution to (29) may be represented
by the r.h.s. of (30). We therefore invert (30) to obtain the amplitudes
¢ which correspond to the Poynting flux in each of the four modes

respectively. Then the transmission coefficient is given by

- 13 =



2
G (E, )
T = lim iy~ S P, e (31)

g> 0| G g> 0 |oy 8|2

while the fraction of ipcident flux converted to a fast wave is

bo(E)

M = i —
c S TS

E > 0

As expected, we also find that
T +MC = 1 and by = ¢k = 0

in the asymptotic region & >> 0 , so that neither of the negative n_L

waves is excited. Table 1 compares transmission coefficients,
T : , obtained according to this scheme with those given by (13).
numerical

Good agreement is indicated.

Next, we solve the second order initial value problem

1

£] = £ £, 08, ..} = ———

1 2 1'%init (nt-n-) 1/2
“Cinit

H (32)
£ - (n*t-n") 2 & £.(E i = i(nt-n")1/2
2 4 1 2" 5init 2 £z

init

in the region E > E, . where the initial conditions in (32) correspond

init
to those for the full fourth order problem (29). The solutions of (32)
are then incorporated ih the way suggested in Appendix 2 to obtain

expressions for the electro-magnetic fields.

Table 2 is a comparison, for the case n” = nc , of the electric
fields across the mode conversion region obtained from solving (29), with
values given by the above procedure. Figures 4, 5, 6 show the spatial
variation of the x, y and =z components of the electric field across
the mode conversion region. The fields obtained from the fourth order and

second order calculations are indistinguishable on the scale shown.

= Fd, =



VI. CONCLUSIONS

In this paper we have used a second order theory to examine the mode
conversion between fast and slow cold plasma waves in the lower hybrid
frequency range. It is found that the parameters Ny v Mg and e which
characterise the mode conversion in a plasma with linear density and/or
magnetic field profiles are of order unity or less only for a very small
range of n" about its critical value in each case, so that the
transmission coefficient for a particular mode goes very sharply from 0 to
1 as n, goes from n" < nc to n, > n, .

The presence of a magnetic field gradient satisfying L/R = 1/2

does, however, shift the mode conversion point to a density some 200

(1/|.1.2/3 for a deuterium plasma) less than in the other cases.

Secondly, we have investigated the exact fourth order system of
0.D.E.s for the problem in order to discover whether a second order
differential equation representation is justified. It has been
demonstrated that Heading's transformation distinguishes the positive and
negative n, pairs of waves, and extracts the appropriate second order
equations describing coupling events for each pair separately. 2n
extension of Heading's theory has been used in which the Poynting flux is
associated with the well-known conserved quantity of the second order
equation. This modification also improves the accuracy of the second

order approximation.

Transmission coefficients obtained from numerical integration of the
exact fourth order system in the uniform magnetic field case are in good
agreement with those given by our second order theory. Finally, we have
shown how to retrieve expressions for the physical fields in terms of the
amplitude appearing in the second order equation and it is found that
these reproduce the electric field variation across the mode conversion

region in agreement with exact solutions of the fourth order eguations.

We therefore conclude that a second order differential equation
representation cbtained from a local dispersion relation valid in the
coupling region does carry all the information, in a loss-free situation,

about the mode coupling process.

- 15 =



APPENDIX 1

Heading's Transformation

Heading considered6 n dependent variables e, ey, s.- &,

satisfying the n linear first order equations

(1.1)

i

m
Q-' o)
SR

1

=]

o

where T is an n X n matrix whose elements are given functions of 2z .

Denoting the eigenvalues of T by Qyr dor o qn, let Ej be the
column matrix formed from the cofactors of T = qu taken along any

suitable row. Then under the transformation

2 = §f = (il’ E‘Z, ey §-'n) £ (102)

(1.1) becomes

£’ = s”lvsf - s7ls’'s
(1:3)
= diag (ql' qu vey qn) E bl S-lslg

valid at all points at which S is nonsingular.
Now each cofactor of T = qu is a polynomial of degree n - 1 at most

in qj , the coefficients being independent of the suffix 3j and so the

eigenvectors ij may be written as

polynomial 1 of degree n - 1 at most in qj
polynomial 2 " " n " oon " qj
5. = :
~J .
polynomial n " " " "oou " qj




Q a o

n-1

where P 1is the n X n matrix formed from the coefficients of the n

polynomials.
Then
1 1 S 1
1 d, sses a9,
- = 2 2 2 2
s (il, iZ' sy in) P q,l q2 R qn PA
n=-1 n-1 n-1
9, d, q.n
where A is the alternant matrix of the eigenvalues qj; j=1, «., n,
and their powers arranged in order.
Since the determinant of A is given by
n
det A = I (0. - a.) . (1.4)
.. i 3
1,] = 1
12> 3

it follows that A is nonsingular throughout any domain in which the n

eigenvalues are distinct.

Equations (1.3) now take the form

Hh
-~
I

diag (q), «+s q) £ - s~ls'g
(1.5)

of - a~la’s - a~lp~lp’ag

- 17 =



If the original matrix T in (1.1) is constant, then the coupling
matrices A~la’ and A~lP lp’A vanish owing to the presence of
derivatives in every element, and (1.5) constitutes a set of n
independent equations whose solutions represent, in a physical
interpretation, n independently propagated waves. In an inhomcgeneous
medium, the elements of T are functions of the variable =z which
describes the inhomogeneity, and equations (1.5) are rendered simultaneous
through the non-diagonal elements of A~!A and A~lP7lp’a . If the
medium is slowly varying, the derivatives which appear in a~la’ and
A"lP"lp’A make these coupling terms small compared with the elements of
Q@ , except in the vicinity of so-called transition points where two or
more of the roots qj: =1, «.. n attain equality and A becomes

singular.

The explicit form of the primary coupling matrix A'lA’ reveals more

about the nature of the coupling process. It can be shown6 that

a!  (as)
—a 3 #
q. - a, (g ¢ 27
3 4 V3

(A‘lA')i. = (1.6)
5|

n

7 1 . .
. P —— 1 =
CI_.L Pz1 qi _ qp ’ ]

p¥i

where the symbol (qp) denotes the product

(@) = (qp - aq)lay = ap) «ov oy = apq)le = apyy) +or (g, - 1)
Consider a transition point of order two, which is defined by a solution
of the equation ql(z) = qz(z) and denoted by =z = 212 « Referring to
(1.6) every element of the first two rows of A~la’  is singular at z =
Z)| g due to the presence of the factor (q2 -ql)‘l . However, the
coupling coefficients (A"lA')ij (i = 1,2) are larger in order of
magnitude when 3j = 1,2 than when j = 3,4,..n , since columns one and

two involve the factors q; and q; respectively which may also be

singular at z,, .



This suggests that coupling exists primarily between f, and £, , the
other variables fg, ..., fn being relatively free from coupling with £,
and f, and that the 2 x 2 matrix taken from the first two rows and
columns of A"1A’ is the essential feature in determining the behaviour of

the solutions £, and f, near the transition point Zjy .

Similar arguements are used to define an rth (r < n) order
transition point which exists if 9 = G =9, = -+ = @, say, at
L is

z. = . The essential coupling between fa' £

Zabc... W Fg
determined by the rxr matrix taken from the appropriate rows and columns

of A~la’ . Also it is noted that of the remaining n - r roots, s of
these may also attain equality at =z = zabc « If their common value Y

is not equal to a at z = zabc , then this set of s variables is not

coupled to the previous set of r variables.

The coupled first order equations (1.5) in the n wvariables f
possessing a transition point z of order r < n may be transformed in
such a way that the r wvariables associated with the transition point
appear in a set of r «coupled first order equations which are essentially
decoupled from the remaining n = r variables not associated with the
transition point, and so that all coupling terms in all equations are

nonsingular and therefore small at z = Zg .
It is assumed that (1.5) possesses a trénsition point z, at which
q) = 9y = eve T and that in the vicinity of z, the qj may be
written as
j=1 .
qj = a+ k B r J = 1, «aar
where ﬁ(zo) =0 and k = exp(2mi/r) .

A new vector h is defined by

£ = ER-]' E‘ (117)



with Irexp j adz 0
E =
0 I
n=-r
and 1 i 1 , 1 0
8 KB K28 k13 0
- 2 242 . . . BK ©
R B kB . : . 0 I
. . . . - n-xr
r-1 r-1_r-1 _2(r-1) r-1 (r=1)2_r-1
B k- B x B k B
0 0 0 0 1
n-=-r

; r-1 ) .
where B = dlag(1, B, Bz, eos B ) and X is an alternant matrix of the

rth roots of unity.

It can be shown that under transformation (1.7), equation (1.5) becomes

¢ & 1 0 wee 0 R - E“l(ARfl)-chR'l)'EE

E' = 0 0 0 1 ... O primary coupling term
: - E'l(ARfl)_lp'lp'(AR'l)Eg
r secondary coupling term

ﬁ 0 0 0 sss Q-
L. (1.8)

principal term

where Qn—r = diag [qr+1, qr+2, R - qn)

At all points where coupling can be neglected (1.8) becomes

(r) r ’ ;
h = h h, = h. = r+ 1, «ve, n
1 B 1 3 qj j ¢ ] ’ ’
That is, the separation of an rth order differential equation,
describing the coupling among the r variables hyr hyr oeey hr' from
the n = r independent variables has been achieved. It then remains to

show that the coupling terms in (1.8) are nonsingular at z, - Heading
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6

has demonstrated that the elements of AR™! are polynomials in Br . It
Nr-1_,

g

follows that (AR™!)’ contains B’ only through such terms as B
-1
where N is a non-negative integer. Also (AR'l) = adj AR'l/det (AR"l)

where the elements of adj AR"! are further polynomials in ﬁr - The

determinant of AR™! is given by

det AR™! = det A/det R = det A/(det B det K)
" (1+2 + + r-1)
= 1 (qi - qj)/(ﬁ T det K)
159
i>j

from (1.4) and (1.7).

Now the relevant factors in the numerator occur for i, j £ r and

these are
(ap = apq) oor (g = ag)lap g = apy) oon (pq - 9g) oor (g - ay)

which is proportional to

r-1_r=2
B B ... BB
so that det (AR“l) does not contain P as a factor. Hence aR-! is

nonsingular at Zg -

-1
Finally, each element in the product (AR™!) (AR™1)’ has terms of

the form BNI(BMIJ'

N+M)r- -
. Iz 15' with N >0, M 3> 1, the lowest power being Br Tﬁ' E

where N, M » 0 are integers. This is proportional

to B

If B when expanded in terms of =z - z, begins with a term (z - zo)b R
r-1., . , br-1 : \ ;

then B B® is proportional to (z - zg) which is nonsingular at

z, provided b » 1/r . That is, the product (aR"1) (ar"1)’ is

nonsingular at 2z, provided the power series expansion for ﬁr begins
with a term at least linear in z = z, - Hence the elements of the
primary coupling matrix in (1.8) are nonsingular at z0 under these
conditions. The secondary coupling matrix is also nonsingular provided
that P is nonsingular at z - This completes the description of

Heading's transformation.
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APPENDIX 2

This appendix is divided into three parts. In part A we show how
Heading's transformation extracts second order equations from the exact
fourth order system (27). In part B we extend Heading's transformation in
order to identify the Poynting flux with the quantities conserved by the
second order equations. Finally, in part C we use these transformations
to obtain approximate expressions for the electromagnetic fields in the
mode conversion region in terms of the amplitudes appearing in the second

order equations.

A. Application of Heading's Transformation

We return to our system of coupled equations (27) which can be

written in terms of new variables ¢ via the transformation

e = MDp = MD (2.1)
where
ct c~ gt c-
-153p2n" -1s3p2n" -espzn" -153p2n"
= = 3 o+ 5 " - + - =
M (El'Ez'Ea'Eu) 1p2n"n 1pzn"n 1pzn“n 1p2n"n
ntct n~c” -ntct =n~Cc~
ol &2
with ct = p}_(n"')2 - g3, C = pl(n“)2 - €3+ P = g Py = -
E,= £.,-n
177y 17y
(2.2)
The column vectors Ei' i=1,..,4, are eigenvectors corresponding to the

eigenvalues of T ; in other words they are polarisation vectors for the
four characteristic waves, while D is a nonsingular diagonal matrix to

be chosen later. M factorises as
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-€g 0 -p, O 1 1 1 1

-iegp,n, 0 0 0 int in~ -in*  -in”

M=Pa = 0 pa, O 0 -(n*)2  -(n")2 -(n*)2 -(n7)2
0 ieg 0 dpy | |-itn*)3 -i(n™)¥ i(n*)3 i(n7)3

where A is the alternant matrix consisting of the eigenvalues and their

powers arranged in order. We note that the determinant of P given by

222
det P = -E3plp2nu

is nonzero so that P is nonsingular throughout the domain where the fast

and slow waves propagate. The original system (27) now becomes

'Y (M)~ lr(MD)¢ - (MD)"L(Mp)’¢
(2.3)

i diag(n®,n7,-n%,-n7) - p~1a"la’Dy - a~lp~lp’ag - p”lp’g

Here we differ from Heading (see (1.5)) by allowing an arbitrary scaling

D for the matrix of eigenvectors M . A special choice of D will yield
final equations similar to (1.8), whose principal terms satisfy a
conservation law appropriate to the embedded second order equations, and
whose nonsingular coupling terms satisfy the same conservation law

separately.

Since the characteristic roots of T are solutions of a biquadratic
dispersion relation, equations (2.1) possess a second order transition
point & = §, , say, at which the positive n pair of roots become
equal, as do the negative n, pair. As seen from (1.6), the elements of
the primary coupling matrix in equation (2.3) contain the following

relevant factors

=1a=1n* = U
D ‘A 1A'D v u where
_ (nt)y” (™)’
U = % _ v and v (n+)' (n_)'
n=-n
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The difference in order of magnitude of the singularities in U and V
at E; dimplies that ¢, and ¢, are coupled to each other but not to
¢ and ¢, , and vice versa. Hence there are two pairwise coupling
events involving the positive and negative ni pair of waves separately.

Writing

we define a new column vector £ (as in (1.7)), by

¢ = ERTLE
where E = diag(efadg, efada; e-fadg' e-fadgj
(2.4)
1 1 0 0
B - 0 0
and R = 0 0 1 1
o o -B P
Under transformation (2.4) equations (2.3) become
-] ,
o 1 o o|£f =-©g"!l(abr7l) (aDR™L)'Ef
ﬁ2 0 0 0 i coupling
£ =0 0o o 1 - 7! (apr~l)  p~lp’ (aDR™!) Ef | terms
0 0o B2 o
principal term (2.5)

The form of the principal term in (2.5) shows that we will have extracted
the appropriate second order equations describing the positive n, pair
of waves and the negative nl pair separately, provided it can be shown
that the coupling matrix is nonsingular at confluence points. We now

choose D by considering energy conservation.
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B. Conservation of Energy and Extension of Heading's Transformation

The principal term in (2.5) yields

£ =

(2.6)
r_ g2
£5 = B2,

e E TF g L00 - 0718

1 3 £, =0

and similarly for the wvariables £, £, -
For (2.6) with a real potential —ﬁ2 , a conserved quantity7 is
* ¢ *
Im(flfl) = Im(flfz)

In the original fourth order system (2.1) the E component of the

Poynting flux defined by

PE = Re (Eyﬁﬂz - Ez.sy) (27 ]

is exactly conserved.

Using (2.1) and (2.4) to write (2.7) in terms of the wvariables £ we

find that choosing D to be given by

= = +o+ + -y 1-1
where 4, = 4, = [n Ctp,(n* + n )] /2
(2.8)
d, = 4, = [n7Ccp (n* + n7)]71/2
the Poynting flux is made identical to the second order conserved
quantities. That is,
* *
Py = -2{Im(£ £,) + Im(£4£,)]} (2.9)

- 25 =



With D given by (2.8) it remains to calculate the coupling terms in
(2.5). We note that the argument given by Heading6 (and outlined earlier)
which demonstrates that the coupling terms in (1.8) are nonsingular, is
not valid for an arbitrary D . However, in this particular case it can

be verified that the total coupling matrix in (2.5) is of the form

tp 0 t13 ty
e-f2ud§
0 -ty to3 ~t)3
[tij]4x4 - (2.10)
i3 ~Eyy t;; O
J2adE
e
~t23 ~t)3 0 -t
where
1 Pl
ty, = [(a* + n™)’'(Cc* + €c7) + — (n* + n™)(c* + C7)
g(n*tn~ctc™)1/2 By
2€4p,2n2
3P2
- (nt + n7)(et + ¢y’ - I
' Pl(n+ + n”)
+2 +_ - -2 - 2
Qﬁz)' (pl(n + nn + n ‘) 53]
4(n*tn-ctc)1l/2 ((n*c*)1/2 + (n=c™)1/2)2
+. - 2
. (pln n- + 53)
((n+c-)l/2 + (n-c+)1/2]2
EI
€ 1 [(n+n')' 3]
& (11
4 n+n_ Ea
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(pl(n+ +n~7) )’

; + -
tyy, = % 1 {(C+ +~)! - (¢t o) —48 8 — _ {n” +n7) ]
(ntn~ctc—)1/2 pl(n+ +n') n*n”
. n (pyn*n™ + €3) (p;(n*2 + n*n™ + n72) - ¢,)
2(n*n7) /2 ((c*n™)1/2 + (cmn*)1/2)((ctnt)1/2 + (cmnm)1/2)
e} (g2’
X [ -+
sapl(n+ + n”) (ntn—ctc—)1/2
; _ +o= . 1/2 2y €3’
tyy = g [€F + )+ (E5) Tt 4 oy [—E2
n' ' n (ntn~ctc—)1l/2 a3pl(n+ + n)
a2 (py(n* +n7)]’ F =t
- i'g— ] (tct +=)'=(ct +7) —— ) + Aol 4w ) ]
(ntn~c*tc—yl/2 pl(n+ +n~) ntn-

(2.11)

The terms of (2.11) are seen to depend on derivatives of Ei, i=1,2,3

and on combinations of nT and n~ and their derivatives which are well

defined and slowly varying at confluence points.

Moreover, it can be verified from (2.10) and (2.11) that the coupling

matrix [t ]4x4 preserves the conservation law (2.9) separately, that

ij
is, the system

£ = [t5laa £

satisfies (2.9). Also, if we include with the principal equation (2.6)
the neglected terms [tij]; i,y = 1,2, the system describing coupling

between the variables fl and f2 is
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r

’ . 2 -
£3 BS =tn| | £2
. v 2 ’ 2
l.8. fl - (ﬁ +tll+ tll) fi = 0 (2-12)
As seen from equation (2.12), our choice of D has produced symmetries in
the coupling matrix which make the terms neglected in (2.6) smaller by a

factor c/uwL , where L is the gradient scale length, than is the case if

Heading's transformation is applied in its original form.

c. Approximate Expressions for the Electromagnetic Fields

Given that the (fl' fz) and the (f3, fq) pairs of variables are

weakly coupled, we might try to describe the electro-magnetic fields as

follows.

Starting from

£ 2.13
~ [cij]4><4 ~ (213
and concentrating on the pair (fl, f2) which correspond to the positive

n-L waves, we set

everywhere, and take f1 and f2 to be given by the solution of (2.6)
posed as an initial value problem. With the functional behaviour of f
thus prescribed, expressions for the physical fields follow from (2.13).

Then, in an approximate sense
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where

21

2:2

31

32

bl

42

£
- e, .] : 1
15dax2 . (2.14)
2
[ aag
[
1 ((c+/n+)l/2 + (C-/n—)lIZ) e g
2[pl(n+ +n-)]l/2
. f adg
- ’
1 1 ((c+/n+)l/2 - (c"/n-)l/Z) e g
[pl(n+ +n')]1/2 (n* -n7)
-1 (pln+n' * &gl fg’ddi
e
[pl(n+ -tl—n")]"“2 n+n'[(C+/n+)1/2 + (C*/n-)l’z]
-igspzn" f 'ng
(1/(n+c+)l/2 + 1/(n-c-Jl/2) e E
2[p,(n* +n7)]1/2
» (p,(n*2 +n*n™ +n72) - e;) fg’mdi
e
[pl(n+ +n-)]l/2 pznljn+n— (1/(n+c+)l/2 + 1/(n*c")l/2)
ip2n“ f ’GdE
((n+/c+)1/2 + (n-/c-)lIZ) e €
2[pl(n+ +n—)]l/2
] (pyn¥n~ + €3) i ’adﬁ
[pl(n+ +n-)]l/2 E3pzn”((n+/c+)l/2 + (n-/c-)llz) e
[ adg
1 ((n*cH)1/2 4 (nc™)1/2) e A
2[p,(n* +n7) ]1/2
+2 . adg
-3 pl(n +n"'n~ +n” <) €3 EIE'
[pl(n+ +n-)]1/2 (n+C+)1/2 + (n-c-)llz
(2.15)
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TABLE 1 Parameters w/27n = 800 MHz, B0 = 2.5 Tesla, L = 0.4 m

An/ng Thumerical Ttheory
-1.0 x 1073 0.007 0.007
-5.0 x 10~% 0.080 0.079
-4.0 x 10~ 0.124 0.123
-3.0 x 10~% 0.187 0.186
-2.0 x 10=" 0.271 0.272
-1.5 x 10~4 0.320 0.323
-1.0 x 10~ 0.374 0.379
-5.0 x 10”3 0.431 0.438

0.0 0.490 0.500
+5.0 % 10”° 0.549 0.561
1.0 x 10~" 0.607 0.620
1.5 x 10" 0.662 0.675
2.0 x 10”4 0.713 0.725
3.0 x 10~* 0.800 0.814
4.0 x 10~" 0.866 0.877
5.0 x 104 0.914 0.921
8.0 x 10™" 0.981 0.981
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TABLE 2 Parameters w = 27, 800 MH=z, B0 = 2.5 Tesla, L = 0.4 m, n, = n,
£l 4 %) k. ki k:
4th ORDER 2nd ORDER 4th ORDER 2nd ORDER 4th ORDER 2nd ORDI]
-1.056 -14.6 -14.4 0.271 0.267 -0.190 -0.187
-0.956 -27.5 -27.0 -0.035 -0.033 -0.350 -0.347
-0.856 -11.1 -11.4 -0.326 -0.322 -0.141 -0.145
-0.756 17.6 17.0 -0.313 -0.316 0.221 0.215
-0.656 32.3 32.6 -0.014 -0.020 0.406 0.408
-0.556 2957 224 0.322 0.322 0.272 0.278
-0.456 - 6.0 - 6.0 0.453 0.457 -0.078 -0.074
-0.356 -33.0 -33.7 0.295 0.298 -0.411 -0.412
-0.256 -44.0 -44.6 -0.056 -0.059 -0.537 -0.541
-0.156 -33.6 -33.5 -0.426 -0.429 -0.400 -0.402
-0.056 = a7 - 5.9 -0.651 -0.652 -0.068 =0.070
+0.044 26.3 27.3 -0.662 -0.660 0.325 0.324
0.144 55.4 55.8 =-0.479 =-0.476 0.661 0.657
0.244 74.2 74.0 -0.178 -0.176 0.869 0.864
0.344 81.7 80.7 0.150 0.150 0.941 0.935
0.444 80.2 78.7 0.431 0.427 0.912 0.906
0.544 74.1 72.3 0.618 0 &1 0.832 0.826
0.644 67. 1 65.3 0.685 0.675 0.745 0.740
0.744 60.7 59.0 0.622 0.611 0.669 0.664
0.844 52.6 51.1 0.435 0.424 0.577 0.571
0.944 36.5 35.5 0.165 0.157 0.399 0.393
1.044 5.9 5.5 -0.078 -0.083 0.065 0.059
1.144 -35.9 -35.6 =0.131 -0.132 -0.388 -0.390

Comparing the variation of £ = (E,. Eys E,) across the mode conversion regior
calculated (a) from the exact fourth order system, (b) via Heading's
transformation and the amplitudes from the second order initial value problem(:
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Fig.1 Variation of ni as a function of n. (electron density),

(@) my <ne (b) ny=n, and
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Fig.2 Dispersion curve for lower hybrid wave with n,> 1.
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Fig.3 Mode conversion configuration for the
initial value problem (29).
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Fig.4 Spatial variation of E; (arbitrary units) across the mode
conversion region with parameters as in Table 2.
CLM-P759

.68p

i

-.60L

-1.208L ] ] ] 1 ]

wx
c

Fig.5 Spatial variation of E, (arbitrary units) across the mode
conversion region with parameters as in Table 2.
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Fig.6 Spatial variation of E; (arbitrary units) across the mode
conversion region with parameters as in Table 2.
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