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Abstract

The broad spectrum of explosively growing modes cbserved in multihelicity
tearing mode simulations of tokamak plasmas can be accounted for by a
nonphysical feedback mechanism. It is shown that spatially discretised
magnetohydrodynamic (MHD) equations admit both attracting finite time
singularities and exponential, but bounded, deviations from solutions of
differential MHD. Finally, means of avoiding the nonphysical behaviour,

which is characterised by poor energy conservation, are given.
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Experiment and theory indicate that tearing modes are intimately
involved in disruptions. Explanations in terms of MHD activity which have
been put forward fall into three categories: i) thermal shorting, where
conditions in the tokamak slowly change until large magnetic islands of
different helicity overlap each other and the wall1, ii) radiation
catastrophe, where a radiation front propagates in from the wall,
narrowing the current channel and leading to MHD instability2 and iii)
destabilisation due to nonlinear MHD effects 3’4. Case 1i) is most

relevant to "low-gq" disruptions, case ii) to "density limit" disruption.

We consider here only case (iii).

In case iii), it is assumed that unspecified mechanisms lead to
current profiles which are unstable to low poloidal (m) and toroidal (n)
wavenumber tearing modes; typically m/n are 2/1 and 3/2. These modes
interact to destabilise others on a rapid timescale, leading to a broad
spectrum of exﬁlosively growing modes. In the so called "hard disruption"
cases, numerical models are unable to compute through the explosive growth
phase but it is believed that the resulting ergodic field would lead to
heat loss and current collapse. We demonstrate here that the explosive
phase observed in numerical simulations before termination can be
accounted for by a nonphysical feedback mechanism. Our results indicate
the conditions which are required for broadband mode growth and so show

.

how to avoid these 'disruptions'.

The feedback mechanism is simply a manifestation of insufficient
spatial resolution. 1In an almost ideal plasma, nonlinear coupling
cascades energy to shorter wavelengths. If dissipation is sufficiently
weak, energy can flow to wavelengths unresolved by the radial grid. These
subgrid scale components masquerade as (or 'alias') longer wavelengths on
the meshs. If aliases have the correct phases, their contributions to-
mesh resolved wavelengths can enhance the nonlinear terms which cause

them, so leading to positive feedback destabilisation.

Figure 1 gives a simple pictorial representation of the alias
coupling mechanism. Quadratic nonlinearities cause the wavelength of
three mesh spacings (A = 3H) to generate a component with A = 3H/2. When
sampled on the mesh, both of these components appear as contributions to

the component A = 3H. With the phases shown, the alias contribution (A =



3H/2) enhances the amplitude of the principal component (A = 3H). A
larger principal éomponent leads to a larger alias, and so forth, leading
to explosive growth. More generally, alias coupling will involve many
wavelengths with the result that many modes will grow. Such behaviour may

look superficially like a physical process.

To illustrate our interpretation, we consider the reduced MHD
6 )
equations , which comprise evolutionary equations for toroidal vorticity,

w and poloidal magnetic flux, ¢:-
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ez is the unit vector in the toroidal (z) direction. v, B, ¢,j, n and v

~

are respectively flow velocity, magnetic field, stream function, toroidal
current density, resistivity and viscosity. These equations have the

energy conservation law
‘;—t i dr(]gq;lz - lg¢|2)/z - [ ¢%.dag + [ (n3% + wwP)dT =0  (5)
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for a volume v bounded by surface s through which there is no net

kinetic energy flux.



Computer simulations of these equations usually employ finite
differences in radius and spectral approximations in poloidal and toroidal
angles. We locally model them using cartesians (x,y,2), where we treat x
as the radial, y as the poloidal and z as the toroidal coordinate.
Since our mechanism does not rely on external driving terms or gradients
in 2z, we assume uniformity in =z and periocdicity in x and y. The
semidiscrete approximations to Egs.(1) - (4) are obtained by replacing
derivatives with respect to x by finite differences, functional
dependences on y by truncated fourier series, and then projecting the

resulting expressions onto a set of mesh points (in x) and fourier modes

(in y). 1If we write Eqs.(1) - (4) symbolically as 1 - F(u) = 0, then the
finite difference, truncated mode expression becomes E -F = €, and the
Projection gives
L L 2Ty
X v -1 > .
J ax 8(x-x_) [ dy e (W -F) =0 (6)
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where (Lx,Ly) are the (x,y) period lengths, xP (p E[D,Nx-1]) is the
position of mesh point p and & is the y-wavenumber. Taking a uniform
mesh in x, xp = pH = PLx/Nx allows the x coordinate to be fourier

transformed to give the k-space representation of the semidiscrete

equations:—
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The compact notation employed in Egs.(7) and (8) is as follows: The

transform pair for both x and y coordinates is given by

KO i 27kx L -i 27nkx
~ L ~ 1 L
a(x) = Z ak e 7 ak = E f a(x) e dax ,
k==K
o o

K = (N=-1)/2 for N

where L = Lx or Ly, harmonics are zero for lk. & Ko o



odd and Ko = N/2 for N even and N(= Nx or Ny) is the number of mesh

values or harmonics. iK and -Ki are respectively transforms of the

discrete approximations to V and Vi. The symbol (Q denotes a convolution

and cross product:-

F x g ] (9)
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Implicit in Egs.(7) and (8) is a sum over the aliases, n, introduced by

5
sampling in x. Each term is a function of (k + an,l)- The alias sum

periodically extends linear functions of k and periodically wraps round
sums over k' in expressions like Eg.(9). For |k. < Ko' the only linear

terms altered by aliasing are those for which ‘k\ = Ko.

Simulation programs numerically integrate thousands of simultaneous
ordinary differential equations (odes) of the form of Egs.(7) and (8).
We seek intrinsic properties of such systems by investigating solutions
with particular spatial periodicities. The simplest nontrivial instances
we have found are for $ odd and a even in both indices k and &, a
spatial periodicity of 3 mesh points in the x direction (= 1 < k < 1) and
5 wavenumbers (- 2 < L < 2) in the y direction. This reduces Eg.(8) to

the five odes:-

a ==-na - 4dg - 2bf - 4cf - 8eg ,

b = -nb + 2cg -‘2ef + 2af ,

c = -2mc - bg - 2df - 3cg = 3ef - af ,

d = -4nd + dag + 4cf , (10)
e = ane + bf = 2ag ,

and Eg.(7) to the two odes



2f = -4vf - 4be - 4cd  + 9fg + 9ec + ac 7

5g = =25vg + bc - 6ad + Bae ,
where we have taken Lx = Ly = 27m and have ignored the smoothing effect of

differencing, ie, K = (k,2) and Ki = k2 + 22, Including smoothing

changes numerical factors but not the nature of the solutions. a,...,g

Yo,2% ¥rpat P, q Yy oo Forming

the rate of change of specific total (magnetic + kinetie) energy, £, by

denote respectively ¢1 0’ $0 17 ¢1 17
r ' r

multiplying Eg.(7) by $* and (8) by Ki$* and summing gives for the above
7th order model:-

E = -n(2a2 + 2b2 + 16c2 + 3242 + 100e2)
-v(16£2 + 100g2) (11)

-12acf - 24aeg - 24c?g + 12cef + 36f2g .

The underlined terms in Eqs.(10) and (11) are due to aliasing.

We identify three classes of solution of Egs.(7) and (8); i) physical,
ii) bounded with (typically exponential) excursions and iii) singular.
Alias terms are necessarily small for physical solutions to occur.
Setting alias terms in Eg.(11) to zero shows that in the limit of
vanishing aliases, E is a uniformly decreasing function of time. The
physical interpretation is that the undriven dissipative system eveﬁtually
comes to rest due to resistivity and viscosity. It is also a statement of
energy conservation; wupon integration, the alias free form of Eq.(11)
states that the sum of magnetic and kinetic energy and time integrated

joule and viscous power is a constant, cf. Eg.(5).

A simple instance of Eq.(10) with bounded excursions in the phase
space spanned by a,...g is that for initial conditions of zero magnetic

field: a=b=c=d=e=0at t = 0. This yields



f = fo exp {— 2vt - 9 gb[exp(- 5vt)-1]/10v},
£ = - v(16£2 + 100g2) + 36£%g ,

where fO and go are initial values of f and g. For 9g0 > 4v and small
t, f will grow exponentially. Ultimately, £ reaches a maximum fmax a
fo(go/v)-zfsexp(ggo/10v). ie, linear increments of 9 lead to exponential
increases of fmax' Setting v = 0 recovers the well know: instance of
exponential failure of incompressible fluid calculations .

Equation (10) [and also Egs.(7) and (8)] may be written

X, =,

i ijk

admits solutions with finite time singularities, x, = X /(t - t ); t >0,
i i o o

xjxk in the limit of small dissipation. This set of equations

provided a) that real non-zero X can be found to satisfy X = a X X

i i ijk j k
and b) that such solutions have finite domains of attraction for to>0.
Energy conservation shows the non-existence of nonzero real {Xi} in the
absence of aliases. Counterexamples can be found when alias terms are
present; initial conditions a = d =e = £ = 0 in Eq.(10) give for large

(b,c,q)
(b,c,qg) = (borcofgo)/(to- t)
where

(b ,c ,g ) = (t ¥10, F /10, 1)/2 or (£ 2 /10, ¥ Y10, 2)/2 .
o o "o
Linear analysis shows that, for the first pair of coefficients,

asymptotic solutions are stable to small perturbations for t < to’

demonstrating the existence of attracting finite time singularities in the
semidiscrete MHD equations. For small initial (b,c,g), the solutions

exponentially decay.

Numerical solution of the set of Egs.(10) for arbitrary initial
conditions generates further particular solutions which fall into the
three classes described. Singular solutions take the appearance of
broadband mode growth as harmonics tend to their asymptotic values,

growing as 1/(to-t). Similar behaviour is found using our three



dimensional spectral/finite difference code, FORBAK. This code differs
from that of Ref.3 in that it has v#o as an option, a different time
integration scheme and timestep control, additional diagnostics and

programmed current boundary conditions.

Figure 2 shows plots of island widths versus time for a calculation
with v =0, s = 108(= VAa/n where VA is the Alfven velocity, a is minor
(]
radius and n_ is resistivity at r = 0), an initial safety factor profile

2% 17)
q0(1 + (x/x)) | T, = +567a, A = 3.24 and q_ = 1.34,

q
n(r) a« 1/j(r,t = o). The initial axisymmetric equilibrium was perturbed

by 2/1 and 3/2 helical structures with island widths of .05a. The
calculation used 100 radial grid points and 11 modes with helicities 0/0,

1/0I 1/1: 2/1: 3/2; 5/3 and 7/4-

The calculation terminated at time to = .0016 TR because the linear
stability criterion caused the timestep to become vanishingly small.
Figure 3 gives log (epergy) versus -log[(to- t)/rR] for the case shown in
figure 2. The .slope 2 line shows that the calculation terminates with
energy « (to- t)‘z, ie, there is a (to- t)'l finite time singularity.
Corresponding plots for mode kinetic and magnetic energies have the same
(tO- t)~2 behaviour. Simulations using over 100 helical modes have shown
similar behaviour. Radial sampling is the source of the aliases, so
increasing the number of modes does not qualitatively change the feedback.
To ensure nonlinear stability, orders of magnitude more radial mesh points

would be required for the chosen S and v values (c.f. below) .

Analysis of model problems, such as Eg.(10), and physical argument
show how the alias instability can be avoided. One approach is to prevent
the energy cascade to subgrid scalelengths. Energy flows to shorter
wavelengths due to nonlinear waves from transients, and from steepening
gradients (as for instance in tangential discontinuities). The shortest
scale lengths reached are determined by the balance between advective Ta
and diffusive timescales, Td- To prevent energy flow to length scales

less than the grid spacing, H, we require Td/T < 0(1) at scale length H.
a



For Alfven wave processes, this implies a mesh Lundquist number,

Lu = HVA/(n + v) ¢ 0(1), and for flows, the mesh Reynolds number, Re’ and
mesh magnetic Reynolds number, Rm, must also be small: Re = HV/v < 0(1),
Rm = HV/n < 0(1). VA and V are measures of variations (eg, root mean
square deviations) of Alfven and flow speeds. Satisfying these conditions
causes solutions of Eg.(10) to have the property E < 0, as may be deduced
from Eq.(11). Increasing v and n for the case illustrated in Fig.2
eliminates the singular behaviour and ultimately leads to good energy
conservation: under such conditions, the final outcome of the simulation
is saturated overlapping islands covering approximately half the plasma
columns(whereupon, neglected physical processes affecting heat and

particle confinement will become important).

Suppressing nonlinear instabilities by increasing viscosity and
resistivity and/or reducing H has the drawback that Lundgquist numbers,
etc., accessible to computation are considerably smaller than those
achieved in experiments. A more satisfactory approach is to devise
discrete equations which guarantee bounded results. In ref. 9, it is
shown that one such scheme, the EPIC scheme of Eastwood and Arter,
outperforms étate—of-the—art finite difference schemes, giving optimally

accurate results.

This letter highlights the perils of ignoring the limitations of
numerical simulations. BAnalytic and numerical integration of systems with
spatial periodicity, and the outcome of tokamak simulations show the same
singular behaviour that may be understood in terms of alias feedback
instability. Our results do not preclude the existence of physical
mechanisms with similar consequences to alias coupling, but they do
suggest there is as yet no compelling evidence for such a mechanism from
tokamak simulations. In the limits of large S and small v/7
appropriate to experimental conditions, simulations to evaluate the
importance of factors such as cross section shaping, toroidal coupling,
field programming, etc., may become very misleading when sharp gradients

or alfven wave transients occur.
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Fig.1 Quadratic nonlinearities cause wavelengths Ag=3H to generate a component with A; =3H/2. When
sampled on the mesh (crosses), these both contribute (shown by arrows) to mesh resolved wavelength 3H.
CLM-P763
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Fig.2 Time dependence of the radial extent of magnetic islands for helicities 2/1 and
3/2. a is the minor radius and TR=a2/ng. Island widths are defined as in ref. 3.
CLM-P763
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Fig.3 Total magnetic, Esac, kinetic, Exzn, and deviation from total energy conservation, AET

plotted as a function of time (fo— /7.
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