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ABSTRACT

The theory of plasma relaxation is described and
developed. Turbulence, allied with a small resistivity, allows
the plasma rapid access to a particular minimum energy state.
This process involves reconnection of magnetic field lines in a
mannef which ﬁestroys all the topological invariants of ideal
plasma so that only total magnetic helicity survives. Although
this mechanism, and the equations describing the relaxed state,
are similar in all systems, the properties of the relaxed state
depend crucially on the topology - toroidal or spherical - of
the container and on the boundary conditions. Consequently,
there are several different types of relaxed state each with
its own sSpecial characteristics which are derived and
discussed. The' measurements made on many experiments,
including Toroidal Pinches, OHTE, Multipinch, and Spheromaks
are reviewed and shown to be in striking agreement with the

theoretical predictions.
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I. INTRODUCTION

A. Background

In this report a plasma is regarded as a conducting fluid having
small resistivity and small viscosity. Even in this simple model
interaction of the plasma with magnetic fields leads to extremely complex
behaviour, especially when turbulence occurs. It is therefore remarkable

that one can make guantitative predictions about the plasma configuration

resulting from such turbulence. This is possible because the turbulence,
allied with small resistivity, allows the plasma rapid access (in a time
short compared with the usual resistive diffusion time) to a particular
minimum energy state. This process, known as plasma relaxation, involves
the reconnection of magnetic field lines and is a remarkable example of
the self-organisation of a plasma (Hasegawa, 1985). Since plasma
turbulence occurs frequently so do relaxed states, and the theory of
relaxation has now been successfully applied to plasmas in many different
laboratory systems (see reférences herein) and even to astro-physical

plasmas (Heyvaerts and Priest, 1984; Konigl and Choudhuri, 1985).

An important concept in the theory is that of magnetic helicity,
f&-Eﬁt ¢+ as an invariant of plasma motion. This was used by Woltjer
(1958) and by Wells and Norwood (1969) but relaxation theory as described
here began with the work of Taylor (1974a, 1975, 1976) which explained why
total helicity alone, rather than the infinity of invariants of ideal
magnetohydrodynamics, should be important and determined the properties of

the relaxed states of toroidal plasmas. These calculations showed that



the relaxed state accounted gquantitatively for many hitherto unexplained

observations on toroidal pinch experiments.

The toroidal pinch is one of the simplest systems for confining
plasma by a magnetic field. 1In principle it involves only a toroidal
vacuum vessel in which a toroidal magnetic field B0 is first created by
external coils (Fig. 1). Then, after creating an initial plasma by a
suitable ionizing process, a toroidal current I is induged. This
current heats and compresses the plasma through the well-known "pinch-
effect". [For details of toroidal pinch experiments see, for example, the

review by Bodin and Newton (1980). ]

There are several remarkable features common to all toroidal pinch
experiments. First, it is found that after an initial highly turbulent
phase, the plasma settles into a more quiescent state in which the
fluctuations are reduced. Second, in this quiescent state the mean
magnetic field profiles are essentially independent of the particular
experiment or the previous history of the discharge and depend only on a
single parameter, the pinch ratio @ = ZI/aBU . Third, if € exceeds a
certain critical value the quiescent state is one in which the toroidal
field is spontaneously reversed in the outer region of the plasma near the
vessel wall (hence the usual designation - Reversed Field Pinch, RFP).

Typical mean magnetic field profiles are shown in Fig. 2.

It is clear from this behaviour of plasma in the toroidal pinch that
during the turbulent phase it seeks out a preferred configuration - the
relaxed state. The idea of a relaxed state can be illustrated by a simple

analogy. Suppose a‘flexible, current carrying, closed-loop of wire is



immersed in a viscous medium; what configuration would it adopt when in
equilibrium with its own magnetic field? So long as the wire is moving
energy is dissipated, so it will come to rest in a state of minimum energy
subject to wh;tever constraints are applicable. The magnetic constraint
is that (LI) be constant (where L is the inductance) and the
equilibrium, or relaxed state, is found by minimising LIZ/2 subject to

this constraint. (This corresponds to a state of maximum inductance.)

B. Plasma Relaxation

A plasma resembles an infinity of interlinked flexible conductors and
the problem is to identify the_appropriate constraints. If there were no
constraints the state of minimum energy would be a vacuum field with no
plasma current. This is indeed the eventual state of an isolated
resistive plasma but is clearly not what we are concerned with here. At
the other extreme, if the plasma is perfectly conducting there is an
infinity of constraints. These arise because the fluid moves precisely
with the magnetic field, each field line maintains its identity and the

flux through any closed curve moving with the fluid is constant.

To express these constraints mathematically (Taylor, 1974a) we

introduce the vector potential, B =V x A , which satisfies

oA

EE = v XB+ Vx . (1.1)

Clearly, any variation of A perpendicular to B can be accommodated by



a suitable choice of v , so Eq. (1.1) imposes no constraint on 6AL W
However, despite the arbitrary gauge Y , there are constraints on 6A" P

the variation parallel to B . From Eg. (1.1) we have

oa
BeV = e - 1.
This is a magnetic differential equation (Kruskal and Kulsrud, 1958) for

¥ which can be satisfied only if

(o):% dA
dar ~ ~
Py o fEE ) (1.3)
B ot ‘%l ot

are zero on each closed field line and each magnetic surface respectively.
The variation 6A“ must be constrained accordingly. A convenient way to
express this constraint (Taylor, 1974a) is: for every infinitesimal flux

tube surrounding a closed line of force the quantity

K(a,B) = [ AeB dr (1.4)
a, B

is an invariant. (Here «,f label the line of force.) This infinity of
invariants replaces the single invariant (LI) of the flexible wire
loop. Note that these invariants are essentially topological - they
involve the identification of lines of force and represent the linkage of
lines of force with one another (Moffatt, 1978; Berger and Field, 1984).
They state that if one closed field line initially links another n-times
then in a perfectly conducting plasma the two loops must remain linked n-

times during any plasma motion.



If we minimise the magnetic energy,
1
w o= 5[ (vxa)2ar (1.5)

subject to the infinity of constraints described above, then for a plasma
confined by a perfectly conducting toroidal shell we find that the

equilibrium state satisfies
VxB = X (a,b) B . (1.8)

Thus the state of minimum magnetic energy when all the constraints of a
perfectly conducting plasma are observed is some force-free equilibrium.
(This is hardly surprising since the plasma internal energy has been
ignored.) However, this cannot be the appropriate description of the
quiescent state, for in order to determine the Lagrange multiplier*

Ala,b) one would have to calculate the invariant’ K(a,pB) for each closed
field line and relate it to its initial value. Hence, far from being
universal and independent of initial conditions, the state defined by Eq.

(1.6) depends on every detail of the initial state.

*Strictly, the minimisation cannot be treated by a simple lagrange
multiplier since the paths over which the constraints are applied

themselves vary with 6A . 2An extension of the technique is necessary but

the final result is indeed the simple one of Eq. (1.6).



To escape from this dilemma we must recognise that real plasmas,
especially turbulent ones, are never perfectly conducting in the sense
discussed above. 1In the presence of resistivity, however small,
topological properties of lines of force are no longer preserved. Lines
of force may break and re-connect even though the resistive diffusion time
may be very long and there is insignificant flux dissipation.
Mathematically the situation is one of non-uniform convergence; when
n =0 the egquations do not permit changes in the topology of field lines
. whereas such changes may occur when 1 # 0 , even in the limit of small
n . Physically, as 1n * 0 the regions over which resistivity acts gets
smaller but the field gradients get correspondingly largeér gnd the rate of.
reconnection does not diminish as fast as 1 and may not diminish at all.
Furthermore the effect of local reconnection is felt throughout the
plasma. A similar process is involved in resistive instabilities (Furth
et al., 1963; Furth, 1985) and magnetic reconnection at X-points (Sweet,
1958; Parker, 1957; Petschek, 1965). [See also reviews by Vasyliunas

(1975), and White (1983). ]

We conclude that in a turbulent resistive plasma, flux tubes have no
continuous independent existence. Consequently all the topological
invariants K(«,B) cease to be relevant, not because the magnetic flux
changes significantly but because it is no longer possible to identify the
field line to which the flux belongs. However, the sum of all the
invariants, that is the integral of A«B over the total plasma volume
Vo + is independent of any topological considerations and of the need to
identiify field lines. Consequently it remains a good invariant so long
as the resistivity is small. [For a discussion of another aspect of flux

tubes in turbulent plasmas see Rusbridge (1977), (1982) and for a more



mathematical view of the uniqueness of the helicity invariant see Hameiri

and Hammer (1982). ]

To obtain the relaxed state of a slightly resistive turbulent plasma,
therefore, we must minimise the energy subject to the single constraint

that the total magnetic helicity

Ko = J AeBar (17}
Vo
be invariant. For a plasma enclosed by a perfectly conducting toroidal

shell the corresponding equilibrium satisfies
VxB = h: (1.8)

where |y 1is a constant. This relaxed state depends only on a single
parameter p - which is directly related to the pinch parameter
® = pa/2 . (Already, therefore, this reproduces one aspect of the

quiescent state.)

Cs Boundary conditions and the invariant

Before discussing the nature of the relaxed states defined by Eq.
(1.8) a comment is needed on the boundary conditions. At a perfectly
conducting boundary the normal component Bn of the magnetic field is
fixed. For the present we consider only Bn = 0 which is appropriate for
the Toroidal Pinch and some other systems. One consequence of the

perfectly conducting boundary is that the toroidal flux ¢ in the plasma



is invariant. For the vector potential A the boundary conditions in a
toroidal system require that ﬁ Aed2 and § Aeds (where § di and
ﬁ ds denote loop integrals along closed paths the long and short way
around the toroidal boundary) should be fixed. 1In this case 5 é-dg

prescribes the toroidal flux ¢ .

Some features of the invariant K, should also be noted. One of
these concerns gauge invariance. Under a gauge transformation A =+ A + Vy

the change in the helicity K, is

S (1.9)

With the boundary condition E'E = 0 the surface integral vanishes and
K; 1is indeed gauge-invariant. Nevertheless, difficulties over gauge may
arise because the interior of the torus is a multiply-connected region in
which y may not be single-valued. To overcome this it is sometimes

convenient (Bevir and Gray, 1980; Taylor 1980) to replace KO by
K = A=B - Aed A-d
1 [ BB - §B-aL g Aeds (1.10)
where di and ds again denote loop integrals the long and short way

around the toroidal surface. If a complete conducting shell surrounds the

plasma these loop integrals are constant and nothing in our discussion is

changed; K, is invariant during relaxation just as K; is. The
advantage of (1.10) is that it is manifestly gauge~invariant even for

multivalued gauge potentials.

If the boundary of the plasma is not a flux surface (i.e. Bn #0



everywhere on the boundary) then (1.9) is non-zero and the helicity is not

well-defined. This reflects the fact that A+*B 1is not a local quantity.

One cannot specify the 'local' helicity at a point - only the total
helicity within a flux surface. Where the helicity is located within that
surface is not a valid question, any more than is the related question of
where the linkage between two interlinked hoops is located. Consequently
the question of gauge invariance and the definition of helicity must be
reconsidered when we discuss systems in which (Bn) # 0 on the boundary

(Section VIB).

Although total helicity X is invariant wheﬁ the plasma is enclosed
within a complete conducting shell, it does change when an external loop
voltage V’Q is applied across a gap in the toroidal shell (as when the
discharge is first created). BAccording to (1.10) this change can be

expressed as

dKl
_— = 2V 1. 11
TS 2 {310

where ¢ is the toroidal flux. This shows that helicity can be given a
practical interpretation (Taylor, 1975); at constant toroidal flux it is
proportional to the Volt-seconds stored in the discharge. Eguation (1.11)
also shows that by suitably phased simultaneous oscillation of Vl and
¢ , helicity can be continuously fed into the plasma without the need for

a continuous supply of Volt-seconds (Bevir and Gray, 1980). The mean

rate of helicity injection is

dK dK)
> = <—> = 2¢v&> , 1.1
% ™ > 2 ( 2) 7



D. Plasma Pressure

A comment is also necessary on the role of plasma pressure.
Relaxation proceeds by reconnection of lines of force and during this
reconnection plasma pressure can equalise itself so that the fully relaxed
state is also a state of uniform pressure. Hence the inclusion of plasma
pressure does not change our conclusions about the relaxed state. Of
course, one may argue that pressure relaxation might be slower than field
relaxation so that the former was incomplete and some pressu;e gradients
would remain. A pressure gradient can be introduced directly (Edenstrasse
and Schuurman, 1983; Kondoh, 1981) or by incorporating additional
invariants (Bhattacharjee et al., 1980; Bhattacharjee and Dewar, 1982;
Turner and Christiansen, 1981). However, no convincing argument for
determining the correct residual pressure gradient has yet been given. We
shall, therefore, consider Vp +to be negligible in relaxed states - which

in any event is a good approximation for low-f plasmas.
II. RELAXED STATE IN LARGE ASPECT RATIO TORUS

We now return to the properties of the relaxed state defined by Eg.
(1.8). For a circular cross~section torus of large aspect ratio we may

take the cylindrical limit in which the solution to Eg. (1.8) is

= v = ’ = & ,1
Br 0 Be aJl(p,r) BZ c:JO(pr) (2.1)

_10_



This is the well-known "Bessel function" solution. By straightforward
calculation pa (where a is the minor radius of the discharge) can be
expressed as a function of K/¢2 (Taylor, 1974a). Hence the field
profiles in the relaxed state are determined by this ratio - though, as
has been noted, it is usual to label the relaxed states by the pinch ratio
@ (= pa/2) . Note that the relaxed state is completely determined by the
two invariants K and ¢ ; the ratio K/¢2 fixes the field profile and .
either K or ¢ then fixes the magnitude of the fields. No arbitrary or

adjusted parameters are required in the theory.

The field profiles given by (2.1) agree well with those observed in
the quiescent phase of many toroidal discharges. Figure 2 shows a
comparison with measurements on HBTX-1A (Bodin, 1984). Many other
toroidal pinch experiments show similar profiles. [Several such

experiments are shown in Table I. For greater detail see the references

cited. ]

The onset of the'spontaneous reversed toroidal field at the wall can
also now be determined. It occurs when pa > 2.4 , i.e. when the pinch
ratio O > 1.2. This result too is in good agreement with many
observations. The relevant experimental data is usually presented through
an F-0 diagram, where F is ;he ratio of toroidal field at the wall to
the average toroidal field ( F < 0 implies reversal). Figure 3 shows
points on the F-0 curve for several experiments (Bodin and Newton,

1980), together with the corresponding theoretical curve.

It is noteworthy that the experimental points in Fig. 3 do indeed all

lie on a universal F-6 curve close to the theoretical one, although the

o] J=



experimehtal value of © for field reversal is somewhat higher than the
theoretical value. One reason for this is that p = (l-%}/Bz , which
would be uniform in a fully relaxed state, in fact falls off near the
wall. The observed profile of p(r) in the OHTE experiment (Tamano et
al., 1983; Ohkawa et al., 1980) is shown in Fig. 4. Similar profiles have
been observed in the ETA-BETA (Antoni et al., 1983) and HBTX experiments
(Bodin, 1984) and the effect of the p(r) profile on the value of 6 has
been discussed in detail by Ortolani (1984). The fall in p near the
wall is believed to be due to the high plasma resistivity there -which the

relaxation process cannot fully overcome.

Bnother reason for the discrepancy between the theoretical and
experimental values of © 1is that the measurements are often distorted by
the flux conserving liner and by toroidal plasma shifts. In recent
experiments where 8 1is corrected for these effects, the agreement

between theory and experiment is further improved (Newton, 1985).

Even more striking evidence for relaxation is shown in the time
dependent behaviour of toroidal pinches. This is illustrated in the time
dependent F-6 curves in Figs. 5-6. Figure 5(a) (Bodin and Newton, 1980)
shows that during a fast current rise in HBTX the discharge is temporarily
forced away from the relaxed state, but quickly falls back to it and
subsequently follows closely the theoretical F-€ curve. When the
current rise is slower the discharge lies close to the theoretical curve
throughout [Fig. 5(b) ]. Similar F- curves for ZT-40 (DiMarco, 1983),
for OHTE (Tamaru et al., 1978) and for REPUTE (Toyama et al., 1985) are

shown in Fig. 6.

-12=



These results, and many others from the experiments listed in Table
I, show that the theory presented here accounts extremely well for the
features of toroidal discharges described in the introduction. We now

turn to some additional consequences of the theory.

III. FURTHER PROPERTIES OF RELAXED STATES IN LARGE ASPECT RATIO TORUS

Determination of the relaxed state is actually more complex than we
have indicated so far. This is because Eg. (1.8) ;nay have several
solutions compatible with the boundary conditions and with the given
values of K and ¢ . In this event, one must select that solution which
has the lowest energy. The procedure can be demonstrated by considering

again the large aspect ratio circular plasma (Taylor, 1975).

The general solution of Eg. (1.8) can be written (Chandrasekhar and

Kendall, 1957) as

mk
= o1
B = Jay, B (» (3.1)
: : mk
where the a ; are arbitrary and the individual B are

-13-



g = {kJ'(y) +ZE 3 (y)} sin(me + kz)

r (u2 - k2172 m y m

mk -1 ' mk

B = ————— (y) + — J (y) cos(mb + kz) (3.2)

0 2 o B ThR {me y m }
(p k<)
sz‘ = Jm(y) cos(mb + kz)
with y = r(p2-x2)l/2

Although this solution satisfies Eq. (1.8) we have not yet imposed the
boundary condition Br(r=a) = 0, nor have we considered the value of the
invariant K or the toroidal flux ¢ . Before doing so an important
feature of the above expressions should be noted. The m =0 , k=20
term is different in character from all the others. It satisfies the
boundary condition for any value of p and carries a non-zero toroidal
flux. All the other terms satisfy the boundary condition only for

discrete values of | given by
ka[(u2 - k)1 Z%] a'[(p2 - k2 1/2%a] + mpa g [(w?2-xt/2] = 0, (3.3)
and do POt contribute any toroidal flug.

There are thus two distinct types of solution to Eg. (1.8) which

could be made to satisfy the boundary conditions and correspond to the

given toroidal flux. They are

-14-



1. The 'symmetric' m =0 , k = 0 solution which exists for any g .
For such a solution, as already noted, the appropriate value of

is determined by the value of K/¢2 .

2. A 'mixed' solution containing the m =0 , k = 0 term (to give the
required toroidal flux) together with one of the other terms, i.e. a
; 00 mk . . : ;
solution [QOE + amk B ] . This mixed solution exists only for
fixed discrete values of p and the role of the invariant K/$2 is

no longer to determine p . Instead K/¢2 determines the ratio

amk/aoo

We see that both types of solutions are completely defined by the two
invariants K and ¢ , but in a different way in the two cases. We now
need to determine which solution has the lowest energy. (Note there is
only one solution of type I but there are many of type II.) It can be
shown that the lowest energy solution of Eg. (1.8) is that with the
smallest | (see Appendix, Section IXB), so of all possible solutions of
the second type only that corresponding to the smallest root of Eg. (3.3)
can be of interest. This smallest root occurs for m = 1, ka = 1.25 and
is given by pa = 3.11 (Martin and Taylor, 1974). See also Gibson and

Whiteman (19268).

The selection of the appropriate solution can now be made. The first
' symmetric! splution is the lowest energy state for all values of K/¢2
which correspond to pa < 3.11 . For any larger value of K/¢2 the
lowest energy state is a 'mixed' solution with pa = 3.11 (6 ~ 1.6)

containing a helical component with m = 1 and ka = 1.25 . Since, for

_15_



fixed toroidal flux, K/cp2 is proportional to Volt-seconds in the
discharge the helical relaxed state arises when the Volt-seconds exceed a
critical value. Furthermore, once that critical value is reached further
Volt-seconds do not increase 6 (or the plasma current at fixed toroidal
flux) in the relaxed state. Instead the current channel becomes more
helical and the increased inductive voltage absorbs the additional Volt-

seconds.

Thus we see that the theory of relaxed states predicts not one, but
two, critical values of 6 for the toroidal discharge (Taylor, 1975). At
0 = 1.2 a reversed field is first generated and at © = 1.6 current
saturation sets in. Evidence for this second critical 6 was first found
in HBTX1A (Bodin and Wewton, 1980; Verhage et al., 1978; Butt et al.,
1975) and is illustrated in Fig. 7. This shows a discharge in which 6
was temporarily driven to a large value but gquickly dropped back to around

1.6, where it remained for the rest of the discharge. The drop in 6 was

accompanied by the appearance of an m = 1 helical distortion.

Not all toroidal pinches show this current limitation, though there
are usually increased fluctuations and a higher plasma resistance if 6 is
driven beyond a threshold at ~ 1.6 . 2n example of this is shown in

Fig. 8 (Watt and Nebel, 1983).-

We shall later describe much clearer evidence for current limitation

(Section V). First, however, we must say something more about relaxed

states in general toroidal systems.

-16-



IV. GENERAL TOROIDAL RELAXED STATES

The general theory of toroidal relaxed states follows closely that
for the large aspect ratio circular pinch (Jensen and Chu, 1984; Faber et
al., 1982, 1985) and is described in the Appendix, Section IX. The
present section is a summary of those features which are needed for the
discussion of the Multipinch experiment and is restricted to axisymmetric

systems.

In general the relaxed state of a toroidal system is the lowest

energy solution of

VxVxA = uvVxaAa (4.1)
with neV x A = 0 on the boundary and with éA-ds z &A-dl and the
helicity K given. 1In order to describe the relevant solutions we need
also to consider the associated eigenvalue problem

V x ¥V x a, = A,V x (4.2)

a,
1 o],
with boundary condition ai = 0 . (Note that because of this boundary

condition an eigenfunction carries no toroidal flux.)

As in the circular case, there can be many solutions of Eg. (4.1)

which satisfy the boundary conditions and have the correct values of the
invariants K and ¢ (= éA-ds) but only two of them are possible
lowest-energy solutions. The first is an axisymmetric solution, analogous

to the m =0 , k = 0 solution in the circular discharge. This may

-17-



exist for any value of pu except U= Ki and p is determined by K/¢2.
The second is a superposition of the first solution and the lowest
eigenfunction (i.e. the eigenfunction with smallest positive* eigenvalue
Ag)+ 1In this mixed solution, pu = A, and K/¢? determines the amplitude

of the eigenfunction component.

Bearing in mind that the lowest energy solution is that with the
smallest p it is clear that the first solution describes the relaxed
state when K/¢2 is small and the corresponding p is less than Ao
The secﬁnd solution describes the relaxed state for larger K/¢2 , when p
> AO in the first solution. In this event the toroidal current (at fixed
toroidal flux) is fixed and does not increase with K/¢?2 . [Stfictly,
this second solution arises only if the lowest eigenfunction is
'decoupled', in the sense defined in the RAppendix, but this is usually the
case in axisymﬁetric systems. If the lowest eigenfunction is not
decoupled only the first type of solution is relevant. However, in this
event K/¢2 > @ as p > KO so that it is still true that yu can never
exceed the smallest eigenvalue and that current saturation occurs at this

point. |

Although the relaxed states of general axisymmetric systems are
similar to those in the large aspect circular system, there is one
important feature of the general system which is not apparent in the
circular example. In that example the lowest eigenvalue (pa = 3.11)
corresponds to a non-axisymmetric eigenfunction, in fact to a helical mode

with m=1, ka = 1.25 . [The lowest axisymmetric (k = 0) eigenvalue

*For systems with minor symmetry the eigenvalues occur in pairs * hi.

c] G



is pa = 3.83 and is degenerate.] For many other cross-sections the
lowest eigenfunction is also non-axisymmetric, but in a highly convoluted
cross—-section the lowest eigenfunction may be axisymmetric. This is the
case for the configuration of the 'Multipinch' experiment discussed in the

next section and, as we shall see, it has important consequences.

V. THE MULTIPINCH EXPERIMENT AND AXISYMMETRIC RELAXED STATES

The Multipinch, investigated at GA Technologies (La Haye et al.,
1984; La Haye et al., 1985), is an example of an axisymmetric toroidal
system with non-circular cross-section. The cross-section resembles a
figure-8 whose height is about 2.5 times its width (Fig. 9). The major
radius is 52.5 cm, the height 50 cm and the width 20 cm. The dimensions
were chosen so that the.Multipinch is roughly equivalent to two circular
cross-section pinches [actu;lly TPE-1R(M)] one above the other. The

method of operation is similar to other toroidal pinch experiment.

Axisymmetric relaxed states of the Multipinch are readily found. An
axisymmetric field can be written, in cylindrical coordinates R , $ , 2

as:

E = + i (5.1)

Then for the relaxed state, Eg. (4.1) gives

+ 32y, 0 123
Ay = 22 g 2 (29 | (5.2)
- ®R R 2R

-19-



VE = = unVy . . (5.3)

so that £ = C = py . The boundary condition is ¢ = constant and
without loss of generality this constant can be set to zero. The toroidal

flux condition then gives

1
T=-uf§deZ+CfEdeZ (5.4)

so defining a toroidally weighted average,

Fa
°
v
11

[J’-%dez][I%dez]'l i (5.5)

the equation for axisymmetric relaxed states becomes (La Haye et al.,

1985):

+ <R>¥Y
Ay + pzx - p2<x> = E_K__ (5.6)

where A is the cross—-section area of the discharge.

The corresponding axisymmetric eigenvalue problem, Eg. (4.2),

becomes
Ay + A2 (x, = <x;,>) = o0 (5.7)
i i VA i

with xi = 0 on the boundary.

-20-



Solutions of Eg. (5.6) can easily be computed, and an example of the
relaxed state at pa = 1.5 is shown in Fig. 10 (lLa Haye et al., 1985;
Taylor and Turner, 1985). This configuration is symmetric in the upper
and lower halves of the cross-section and B¢ is everywhere of the same

sign.

Similarly the eigenfunctions, Eq. (5.7), can also be computed. The
lowest eigenvalue is found to be pa = 2.21 (La Haye et al., 1985). The
corresponding eigenfunction, shown in Fig. 11, is antisymmetric in the
two halves of the cross-section, i.e. B¢ is.of opposite sign in the upper

and lower halves.

The axisymmetric relaxed states can also be described in terms of the

toroidal field. The function f satisfies

+

Af + p2f = o0 (5.8)
with f constant around the boundary. In this description there is no
direct reference to the toroidal flux VY , which must be introduced

through the requirement that

<K£> = . {(5.9)

The associated eigenvalue problem is also described by (5.8) with f
constant on the boundary so there may appear to be no eigenvalue
condition. 1In fact this arises separately from the vanishing-flux

condition

._21_



<f> = 0 . (5.10)

One now sees that it is important to distinguish between this
eigenvalue problem (problem A) and the simpler eigenvalue problem defined
by (5.8) with f = zero on the boundary (problem B). Problem A is
entirely equivalent to Eg. (5.7) for Xi with xi = 0 on the boundary
and its lowest eigenvalue determines the point of current saturation. An
eigenvalue of problem B, on the other hand, can at most determine a point
at which the toroidal field vanishes at the wall, i.e. a point of 'field-

reversal' F =0 .

The two eigenvalue problems are guite distinct. However, when there
is an equatorial plane of symmetry, some of the eigenfunctions xi for
problem A are antisymmetric about this plane. For such eigenfunctions
(xi> = 07 so Eg. (5.7) and its boundary condition are then identical with
Egq. (5.8) and its boundary condition in problem B. Consequently the twol

problems then have a common solution and a common eigenvalue.

This coincidence occurs in the Multipinch, where the lowest
eigenvalue (pa = 2.41) of problem A (determining current saturation)
coincides with the second-lowest eigenvalue of problem B. Furthermore,
this second eigenvalue of problem B is very close to the first, which
determines field reversal. [The first and second eigenvalues of problem B
differ by only ~ 2% (Taylor and Turner, 1985): they would be exactly
degenerate if the gap between the two lobes of the figure-eight were
infinitesimal.] As a result, field reversal and current saturation are

almost coincident in the Multipinch.
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In the Multipinch, therefore, the relaxed state for small values of
K/¢2 (low Volt-seconds) is axisymmetric and symmetric about the
equatorial plane. In this relaxed state pa and the plasma current
Aincrease with Volt-seconds. However when pa reaches 2.21 the relaxed
state changes to one which is no longer symmetric about the equatorial
plane (i.e. more current flows in one lobe of the figure-8 than the
other), although it remains axisymmetric. The 'up-down' asymmetry
increases with increasing Volt-seconds but pa and the total current are

fixed and F = B¢(wall)/<B¢> is almost zero.

These features of the relaxed state are all clearly demonstrated in
the Multipinch experiment. Figure 12 (La Haye et al., 1985) shows the
- peak plasma current IP (at fixed toroidal flux <Bz> ) as a function of
the capacitor-bank voltage VCB [the voltage applied to the primary
circuit of which the plasma forms the secondary; X/¢? increases roughly
linearly with VéB ]. At low voltage the configuration is axisymmetric
and symmetric about the equatorial plane and the current increases with
A . At higher VCBthe current saturates and the discharge acquires an

CB

'up-down' asymmetry which increases with Ffurther increase in VéB . The
current saturation and the onset of 'up-down' asymmetry almost coincide

with vanishing toroidal field at the wall, i.e. with F =0 .

It can also be seen from Fig. 12 that the saturation current depends
on <Bz> s i.e. on the toroidal flux V¥ . The variation of saturation

current with toroidal flux is shown in Fig. 13. The straight line

corresponds to pupa = 2.42 and is thus in very good agreement with the

theoretical value (2.21).
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One may ask why current saturation is more clearly demonstrated in
the Multipinch than in the circular cross-section pinch. This is probably
because in the circular pinch the current saturated state is reached only
after toroidal field reversal and so involves reverse current flow near
the wall and strong plasma-wall interaction. [See also Mannheimer
(1981).) Such currents are inhibited by the low plasma conductivity in
this region. On the other hand, because of the coincidence between
toroidal field reversal and current saturation, no such reverse current is

called for in the Multipinche.

In'theory, the up-down asymmetry of the Multipinch in the current
saturated state should increase indefinitely with increasing voltage,
until eventually the current in one half of the cross—section would be
reversed. In practice the asymmetry increases until the current in one
half falls to zero and the discharge is entirely confined to the other
half. From that point-on it acts as a circular cross-section discharge
confined to one half of the machine - with the other half acting somewhat

as an external inductance.
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VI. RELAXED STATES IN OTHER SYSTEMS
A. Spheromak

So far we have considered relaxation only for toroidal systems.
However, relaxed states are of equal importance in another class of plasma
configurations of which the prototype is the Spheromak, Fig. 14. In this
configuration (Rosenbluth and Bussac, 1979), the magnetic fie-ld has nested
toroidal surfaces as in a toroidal pinch, but the confining shell is
topologically spherical instead of toroidal. Of course, although the
spherical topology is essential the actual shape need not be a true

sphere.

The distinguishing feature of a Spheromak is that there is no central
-aperture for toroidal field coils: consequently the toroidal field is
everywhere zero at the wall and in this respect the spheromak resembles a
toroidal pinch at the point of field reversal, with F = b . However, in
the pinch the vanishing toroidal field implies that q(d¢) = 2n/1(¢)

(where 1(¢) is the rotational transform of lines of force on the surface
¢ ) is zero at the wall, whereas in the Spheromak this is not the case.
The factor g(¢) represents an average over the flux surface and although
the toroidal field tends to zero over part of the surface gq(¢) remains
finite. 1In fact, for a truly spherical system q(¢) decreases only from

0.825 on the magnetic axis to 0.72 at the wall (Rosenbluth and Bussac,

1979) .
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Plasma formation in the Spheromak is considerably more difficult to
visualise than it is in the toroidal pinch (Goldenbaum, 1982; Furth,
1981). In one method, used in the CTX, Beta II and CTCC-1 experiments
(Jarboe et al., 1980, 1983; Turner et al., 1981, 1983; Nagata et al.,
1984), a plasma is produced by a coaxial plasma-gun and injected into a
confinement chamber (Fig. 15). Plasma formed in the gun carries both
poloidal field, provided by coils in the gun, and toroidal field produced
by plasma currents. The magnetic forces eject the plasma from the gun
into the container (known as the flux-conserver) where it relaxes into a
Spheromak configuration. Another method for forming a Spheromak plasma
employs a combination of 6= and =z-pinch discharges, as in the PS-1 and
TODAI experiments (Goldenbaum et al., 1980; Nogi et al., 1980; Bruhns et
al., 1983; Katsurai et al., 1984). This process is illustrated in Fig.

16.

Spheromak plasmas can also be formed by a slow inductive process as
in the S=-1 experiment (Fig. 17) (Yamada et al., 1981). An initial
poloidal field is generated by current in a ring-shaped (toroidal) flux
core, and is weakened on the small-major-radius side of the core by an
externally generated vertical field. The flux-core also contains a
toroidal solenoid, which generates a toroidal flux within it. When this
toroidal solenoid is energized it induces poloidal current in plasma
surrounding the ring. The associated torcidal field distends the plasma,
stretching it towards the axis. Then the toroidal current in the flux-
core is reversed and additional toroidal current induced in the plasma.
Reconnection of the poloidal field occurs and a separated plasma toroid is
created on the small-major-radius side of the flux core. This toroid, the
desired Spheromak configuration, is held in equilibrium by the external

vertical field.
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The parameters of several Spheromak experiments are shown in Table

II. The references cited should be consulted for more details.

1. Relaxed states of Spheromak

As in the toroidal systems, the helicity Ky = fA-Bd's is conserved

during relaxation in the Spheromak and the relaxed state satisfies
VxVxA = pvxa . (6.1)

Despite this formal similarity, however, there is a significant difference
between the theory of relaxed states in the Spheromak and in the toroidal
pinch. 1In a toroidal device one has two invariant quantities, the
helicity K and the toroidal flux ¢ , and, as we have seen, these are
Just sufficient to determine the relaxed state. In the Spheromak,
toroidal flux ¢ is not a conserved quantity; annihilation and creation
of flux can occur at the axis of symmetry. Consequently one has only a

single invariant K from which to determine the relaxed state.

On the other hand, the Spheromak is a singly-connected volume and
gﬁi-dg vanishes over any closed path in the bounding surface. Apart
from a gauge transformation this is equivalent to setting A =0 on the
boundary so that the only possible solutions of (6.1) for a Spheromak are
eigenfunctions and the only possible values for L are the corresponding

eigenvalues.
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It is therefore much simpler to find the relaxed state in a Spheromak
than in a toroidal pinch! There is no need to select from different types
of solution, the relaxed state is just the eigenfunction corresponding to
the smallest eigenvalue of Eqg. (6.1). The value of p and the field
profiles are thus determined by the shape of the container alone. The
role of the single invariant K is only to fix the magnitude of the
magnetic field and the toroidal flux ¢ plays no direct role in

" determining the relaxed state.

The axisymmetric eigenfunctions for Spheromak-like systems are easily
found. The magnetic field is again expressed in the form (5.1) and the
eigenvalue problem for a Spheromak reduces to

A7y Ty
with xi = 0 on the boundary. For simple containers the eigenfunctions
can be obtained analytically and for more complex shapes they are readily

computed.

In a spherical container of radius a the lowest eigenvalue is given

by pa = 4.49 and the corresponding eigenfunction is
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B_ = 2By(3,(pp)/pp) cosh

B¢ = B ji(pp) sin 6 (6.3)
B = =B =, [pj (up)] sin ©
) 0 dp 1

where [ , g , ¢ are spherical coordinates and 3 (x) = J3/2(x)/xl/2

{Rosenbluth and Bussac, 1979).

In a cylindrical container of height h and radius a ﬁha lowest

eigenvalue is

3.83 2 2.1/2
b= [) + E)) (6.4)

(for h/a less than a critical value, see below) and the corresponding

eigenfunction is

B = -Bok Jl(lr) cos(kz)

r
B¢ = Bgu J,(2r) sin(kz) (6.5)
B = Bok JU(XI) sin(kz)

where kh =7m , fa = 3.83 and r, ¢, z are cylindrical coordinates (Finn

et al., 1981; Bondeson et al., 1981).
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The eigenfunctions (6.3) and (6.5) are axisymmetric, but it is also
possible for the lowest eigenvalue to be that of a non-axisymmetric mode.
Whether this is so depends on the shape of the container. For example, in
a cylindrical container, the axisymmetric eigenfunction described above
has the lowest eigenvalue only when h/a i 1.67 « When h/a > 1.67 there
is a non-axisymmetric mode with a lower eigenvalue and in this case the
relaxed state is non-axisymmetric (Finn et al., 1981; Bondeson et al.,

1981).

2. Spheromak experiments

Measurements have been made of relaxed state plasmas in several
Spheromak experiments. Some of the data from the Beta-II experiment
(which has a roughly cylindrical flux conserver with h/a = 1) is
illustrated in Fig. 18 (Turner et al., 1983). This shows the measured
poloidal and toroidal fields together with the theoretical profiles for
the relaxed state given by Eq. (6.5). The agreement is very satisfactory,
particularly in view of the complex way in which the plasma is formed. It
should also be noted that the field profiles retained their theoretical
form as the energy in the discharge decayed to about one-eighth of its
initial value. Furthermore, except for a cut-off when the Volt-seconds
are too low or the magnetic flux in the gun too high, the magnetic flux in
the initial relaxed state was proportional to the square root of the

helicity produced by the gun - as required by the theory.

Confirmation that p (= l-B/Bz) is uniform in the relaxed state of a

Spheromak is provided by Fig. 19 (Hart et al., 1985). This shows the
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poloidal current vs. poloidal flux in the S-1 experiment (which has an
ellipsoidal plasma). Not only do the observations lie on a straight line,
corresponding to uniform p , but the slope of the line also agrees well
with the calculated value of pa . A more detailed picture of p is given
in Fig. 20 which shows the profile before and after relaxation, as well as

the theoretical value.

The most striking feature of S-1, however, occurs during relaxation
itself (Janos et al., 1985). Figure 21 shows the evolution of the
poloidal and torcoidal fluxes and of q. on the magnetic axis during the
relaxation phase. This indicates that during relaxation g rises rapidly
from its initial very small value to its theoretical predicted value (0.65
for the ellipsoidal configuration of the S-1 plasma). This development is
accompanied by destruction of poloidal flux and éhe spontaneous creation
of toroidal flux in a very short time compared with the resistive decay
time. Furthermore, following relaxation, ¢ remains constant during the
resistive decay of the plasma, demonstrating the persistence of the

relaxed configuration.

B Flux Core Spheromak (FCS)

An interesting development of the Spheromak is a configuration
obtained from it by introducing a central core of externally produced
magnetic flux along the axis of symmetry (Fig. 22). This externally
linked flux enﬁers through one polar cap and leaves through the other.
[Of course the actual boundary may again depart significantly from the

spherical form. See Jensen and Chu (1981), (1983).] Although the FCS has
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toroidal flux surfaces and may appear to resemble a Toroidal Pinch, it is
in fact completely different. Unlike the Toroidal Pinch there is only
plasma in the central core, not a fixed conductor; consequently toroidal

flux is not a conserved gquantity.

1. Relative helicity

In the FCS configuration the plasma container is not a flux surface
and we have already noted that in this event the helicity K is not well
defined. Some change in the definition of helicity is therefore needed to

deal with the Flux-Core Spheromak and similar systems.

One method (Berger and Field, 1984) is to imagine that the flux
leaving and entering the boundary is extended outside as a vacuum field
(V xB =0) . Then the total helicity fﬁ-% inside and outside the
sphere is a well defined quantity. Furthermore, if the bounding surface
of the sphere is perfectly conducting the normal component of B is
"frozen in" so that changes in the interior field do not affect the
hypothetical field outside. We may then consider the difference in
helicity of two fields which differ inside the Spheromak but have
identical normal field components on the boundary and hence identical
hypothetical extension fields outside. This difference, the relative
helicity of the two configurations, is well-defined and gauge invariant.
[Note that it is necessary to include the contribution to fﬁ'ﬂ from both

the interior and exterior regions even though the exterior field does not
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change. This reflects the fact that helicity is not a local quantity and
can be transferred, within a flux surface, from the interior to the

exterior of the container by a gauge transformation!]

Of course, to make use of the relative helicity KR we must show
that it is invariant during relaxation. A straightforward calculation

gives

dK
R
— = 2/ EBat+ 2/ E*Bat . (6.6)
dt @ & ~ o~ s ~ o~
interior exterior

The hypothetical exterior magnetic field is constant during relaxation, so

VXE=0. Thus E = V¢ , where ¢ is a single valued function and

dKR

_— = E*B + B * &

= 2] EB +2§ ¢Beas (6.7)
interior

When the bounding surface is equipotential, ¢ is constant over it and

the surface integral vanishes. The interior integral is the usual one for
any system and is negligible on the relaxation time scale for a highly
conducting plasma (E“ ~ 0) . Consequently KR is indeed invariant

during relaxation.

Equation (6.7) also shows that helicity may be injected or extracted
from the FCS if one of the polar caps is electrically insulated and
maintained at a different potential to the other. Then helicity is

changed at a rate (Taylor, 1975, 1976; Jensen and Chu, 1984)
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R
el 2VP¢ (6.8)

where Vé is the voltage between the polar caps and ¢P is the flux
through them. This provides another method of sustaining a relaxed state
against resistive decay. [It also describes the production of helicity in

plasma guns (Turner et al., 1983).]

2. Relaxed states

The relaxed state of a Flux Core system is obtained by minimising the
energy subject to KR being invariant and with the boundary condition
that the normal component of B be constant . Once again this leads to

the equation for relaxed states
VxB = uB (6.9)

but for the new system there are new interpretations! Before discussing
these we should remark that by neglecting all other constraints of the
type K(a,B) = constant we are implying that in the Flux Core Spheromak
turbulence can prqduce linking between flux lines which thread the polar
caps and those which do not, i.e. the separatrix between the externally

linked flux and the internal flux is not preserved during turbulence.
For a Flux Core System, the interpretation of Eg. (6.9) which most

closely resembles its interpretation for toroidal systems (Section III) is

applicable when the plasma relaxes from an initial state with given
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helicity KR and with given flux ?p through the polar caps. Then.the
value of p is determined by the ratio KR/Q; (in rather the same way
that the symmetric state of a toroidal pinch is determined by K/¢2 ) and
the magnitude of the field is determined by ?p ¢+ so that the relaxed
state is fully determined by the two invariants K and ¢P . This
interpretation describes the situation immediately following relaxation.
It assumes that the polar caps can supply whatever current is required in
the relaxed state; if they cannot do so the resulting voltage drop would
reduce the helicity until the relaxed state corresponded to the current

available.

The fact that voltages on the polar caps can change the helicity
leads to é second interpretation of Eq. (6.9) for FCS systems. If one of
the polar Eaps, say that in which Bn > 0 , is electrically insulated from
the rest of the container (e.g. by a thin annular gap) and connected to a
suitable circuit, then B can be controlled by the current Ip through
it; b= IP/¢P + (The magnitude of the field is still determined by the
peolar-cap flux ¢P +) This view of Eg. (6.9) describes a steady state FCS
in which initial conditions are no longer significant. The helicity KR
is not then independently specified but reaches the value required to
conform with p- = through a balance between helicity injection (or

extraction) and resistive dissipation.

A computed field profile for a spherical FCS system is shown in Fig.
23 (Taylor and Turner, 1985). BAnalytic solutions for an idealisation in
which the polar-caps are shrunk to polar points (though retaining finite
flux through them) are shown in Fig. 24 (Turner, 1984). This illustrates

some interesting changes which occur in the FCS configuration as the ratio
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Ip/dfp , and hence p , is increased. When IP/¢.p is much smaller than
the lowest eigenvalue for the configuration (us = 4.4%/a) , the
externally linked flux (and current) forms a large part of the total flux
(and current) in the system. As IP/¢P approaches the eigenvalue ps
the ratio of self-generated flux (and current) to the externally linked
flux (and current) increases indefinitely and the externally linked flux
is confined to a slim pencil along the axis of the plasma - which
otherwise is identical to that in a simple Spheromak. As IP/¢P
increases beyond By the configuration switches to one in which the
externally linked flux passes around the outside of the Spheromak.
[However, one would not expect this to be the lowest energy state when

exceeds the lowest eigenvalue (see Section VII).].

The ratio of the self generated poloidal flux to the externally-
linked flux defines a flux magnification ratio M(p) which can be used to
characterise FCS experiments in somewhat the same way that F(6) (the

toroidal field ratio) is used to characterise RFP experiments.

3. Experiments

Flux cored configurations have been produced in the PS-1 experiment
(Bruhns et al., 1983) and in the CTX experiment (Jarboe, 1985; Jarboe et
al., 1983). The latter experiment is particularly interesting as it has
also demonstrated the sustainment of the Spheromak plasma by a voltage
across the polar caps - though in a much distorted form. A schematic
diagram of the configuration in the CTX sustained plasma is shown in Fig.

.

25. It can be seen that there is a core of flux (shown by hatched lines)
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which passes from the inner electrode of the gun, along the axis of the
Spheromak plasma and returns around it to the outer gun electrode. From
the point of view of the plasma the gun-voltage therefore appears across
the flux-core - though the "polar caps" are somewhat distant! The
configuration shown has been sustained by the gun voltage for much longer

than the normal resistive decay time of the magnetic fields.

Recognition that near relaxed state plasmas can be maintained in this
way has opened up new possibilities and led to the investigation of
configurations in which the source of helicity is still more distant from
the plasma containment region (Jarboe, 1985). An example is shown in Fig.

26.

VII. STABILITY OF RELAXED STATES

It is clear that, because they are states of minimum energy, all
relaxed states are stable against perturbations which leave helicity

invariant. This includes all ideal magnetohydrodynamic perturbations.
The stability of the relaxed states was verified directly (Taylor,

1974b; see also Schmidt, 1966; Kruger, 1976a,b) by considering the second

variation of magnetic energy, produced by a perturbation 6&A about the

equilibrium relaxed state,

6W2 = % I(v ® 5&)26_1; - -E fé&vv X 6& dt . (7'1)
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If we use the normalisation
%j(v x 8a)2dt = 1 {302)

and the boundary condition &A = 0 , then the minimising perturbation

satisfies

V xVx 6a- s Vxéa = 0 . (7.3)
~ (1-9 ~

The corresponding perturbation in energy is

(&W,) .

= i 2
- = J(v x 8n)2at (7.4)

and is non-negative if g > 0 . Comparing (7.3) with the eigenvalue
equation (4.2 } we see that g 2 0 if p < the lowest eigenvalue for the

problem - as is the case for all minimum energy relaxed states.

Since this discussion does not require the fluid displacement §& to
be finite it applies to resistive tearing modes as well as ideal modes
(Taylor, 1976; Rosenbluth and Bussac, 1979). Consequently relaxed states
are also stable to resistive tearing modes. This is illustrated by the
result obtained (in Section III) for the large aspect ratio circular
cross-section toroidal pinch. The point at which the lowest energy state
ceases to be the axisymmetric configuration occurs at pa = 3.11. This is
precisely the point at which the axisymmetric configuration becomes
linearly unstable to a resistive tearing mode (Whiteman, 1962; Gibson and

Whiteman, 1968).
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[1deal mhd instability does not arise until pa = 3.18 (Voslamber and

Callebaut, 1962). ]

As one would expect, therefore, the change from the symmetric relaxed
state to the helical relaxed state corresponds to a bifurcation in which
linear stability is transferred from one state to the other. However, it
is important to realise that the theory of relaxed states goes beyond the
linear theory. The helical deformation which occurs in the relaxed state
is fully determined (by K/¢2 ) and in this respect the present theory
provides a non-linear description of the resistive tearing mode (Martin

and Taylor, 1974).

VIII. SUMMARY AND CONCLUSIONS

In this paper we have described the concept of plasma relaxation by
reconnection of magnetic ‘lines of force. This is brought about by plasma
turbulence in the presence of small resistivity and leads to a unique
lowest-energy relaxed state. We should emphasise that, because it is
driven by turbulence, this relaxation occurs on a much shorter time scale
than normal resistive diffusion. It is only on this shorter time scale
that the magnetic helicity KX is invariant. On the longer resistive time
scale, energy and helicity will both decay unless deliberately sustained.
Resistive decay usually causes the configuration to evolve away from the
fully relaxed state and in that event periodic or continuous secondary
relaxations occur to maintain the profile close to a relaxed configur-
ation. Similar minor relaxations must occur when the discharge is

.

sustained by helicity injection.
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Another feature which should be emphasised is that relaxation is not
a passive decay process. It involves the self generation of fields and

currents by plasma turbulence, sometimes referred to as 'dynamo action'.

We have also described the calculation of the relaxed state in
various systems. In all cases it satisfies Eg. (1.8), but the manner in
which the appropriate solution is selected depends on the topology of the
system and on the boundary conditions. Consequently there are several
different types of relaxed state, each with its own distinct

characteristics.

In parallel with the theoretical discussion we have reviewed some of
the experimental evidence for relaxed states. Configurations close to
those predicted are almost universally ocbserved in Toroidal Pinches, in
the Multipinch, in Spheromaks and in Flux Core Systems. [The well-known
disruption in Tokamaks also appears to be an example of reléxation, in
which the theory correctly predicts the negative voltage spike. However,
apart from disruption, and sawtooth oscillation, relaxation does not play
a dominant role in Tokamaks. This is presumably due to the strong
toroidal magnetic field and the care taken to avoid mhd instability. This
illustrates the point that some symmetry-breaking instability is necessary

to initiate relaxation.]

The experiments provide quantitative verification of the distinct
characteristics of the different types of relaxed state. These include
such features as field reversal and current saturation in the Toroidal
Pinch, and in a different form in the Multipinch, as well as flux

annihilation and geheration in the Spheromak and Flux Core Systems.

-40- .



The remarkable success of the theory prompts investigation at a more
detailed level. One question concerns the precise mechanism of relaxation
and flux generation or dynamo action. This may be different in different
circumstances = only the final state is unique. Theories of plasma
turbulence are extensively discussed in the literature and in at least
some cases lead to the relaxed state - but the subject is far from
complete. The interested reader should see, for example, Moffatt (1978),
Montgomery et al. (1978), Riyopoulos et al. (1982), Mattheus and

Montgomery (1980), Ting et al. (1985), Frisch et al. (1975).

A related guestion is that of deviations from the fully relaxed
profile. We have mentioned that in the RFP p = i'E/BZ {which is uniform
in a fully relaxed state) falls off in the vicinity of the wall. This is
presumably due to the high plasma resistivity near the wall which the
relaxation mechanism, or dynamc process, is unable fully to overcome. In
investigating this, experiments of the Flux-Core type seem particularly
relevant since one can control the relaxed state, change from one relaxed
state to another by injecting helicity and, by having two pairs of
electrodes instead of a single pair of polar caps, maintain a partially

relaxed state.
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IX. APPENDIX

A. General theory of relaxed states

1. Toroidal Systems

The theory of relaxed states in a general toroidal system is similar
to that for the large aspect ratio system described in Section III. The
general theory has been discussed by Jensen and Chu (1984), whose
description is followed in this section, but with some additional new
features. A more mathematical view of some aspects of this problem can be

found in Faber et al. (1982), (1985).

In a general toroidal system the relaxed state is found by

minimising

W= —;j(v x A)2drt : (9.1)
over all variations 6& of the vector potential which leave the helicity
Ky = [AeV x A at (9.2)

0

invariant. Introducing a Lagrange multiplier this leads to

| B

61 = [&A[V x VxA - pV xa]+ $6a x (VxA-=")eds . (9.3

We assume that at the plasma-wall boundary the normal magnetic field
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(neV x A) vanishes. This ensures that the helicity is gauge invariant

1

(Section I C) and that &I is also gauge invariant (i.e. &I 0 if
éa = V¢ ). If the wall is also perfectly conducting the condition

E“(wall) = 0 implies that at the boundary Gﬁ" is the gradient of a

~

scalar. Writing ©&A = &A* + V¢ where Bﬁﬁ vanishes at the boundary, the

minimisation (9.3) leads to the Euler equation:
VXVxA-pszi=0. (9.4)

The specification of the relaxed state is completed by the boundary

conditions ne<V x A = 0 and the given values of the loop integrals

ﬁ&-d& and éﬂ-di 5

If we assume that the eigenfunction of the associated eigenvalue

problem

VxVxa = A, Vxa, , (2.5)
et B

with boundary condition Ei =0 , form a complete set then, following

Jensen and Chu (1984), we may write

A = A, + )a.a 9.6
~ ~0 z i ( )
where A, represents a toroidal vacuum field satisfying the boundary

conditions of the original problem. Note that an eigenfunction carries no
toroidal flux and in an axisymmetric system the vacuum toroidal field will

also be axisymmetric.



The eigenfunctions are orthogonal in the sense that

(xi - xj) jgi-v xa; =0 ' (9.7)

but

. 5 2
A fii Vxa, J(vxa )2 > o (9.8)

¥

so that the appropriate normalisation is

1
fii.v X i] = fij o7 x E‘i |K 6. . . (9.9)

Then, so long as yp 1is not egual to an eigenvalue, the coefficients

a, are given by
i

a, = g |Ki' I (9.10)
i (A - ») A TH

where

H
I

fii'V X Ag (9.11)

and the important invariant quantity K/¢2 can be expressed as

2
o'V X g+ ] 1i z s AE g 1) . (9.12)
i | i' g2 Wy T K

K 1
n— ] cm— A
2 2 &

_45_



This expression depends only on the shape of the toroidal container. It
constitutes a relation between K/¢2 and the parameter p . Note that

K/¢2 diverges when u > hi unless Ii =0 .

At this point, we depart from Jensen and Chu to recognise that many
eigenfunctions may not appear in the expansion (9.6). For example, in an
axisymmetric system all non-axisymmetric eigenfunctions (~exp in¢ with
n # 0) are absent since for them Ii =0 . Similarly in the Multipinch,
Ii also vanishes even for axisymmetric eigenfunctions when these are
anti-symmetric about the mid plane of the cross-section. The eigen-

functions for which Ii = 0 will be termed decoupled.

With this in mind, we see that in axisymmetric systems the solution

A

A, + )" = 11 a (9.13)
~0 - ~1
: (ki ) lhil i~

3

(where Z' denotes a sum over coupled eigenfunctions only) represents a
solution analogous to the m =0 , k =0 , type I, solution in the
circular cross-section torus. For this solution p is determined,
through Eg. (9.12), by the value of K/¢2 ; such a solution can always be
found for some value of p in the range h; < W< RT . where RE is the
largest negative eigenvalue and kt is the smallest positive eigenvalue.
For a system which has mirror symmetry about any plane the eigenvalues

occur in pairs, * A, ; consequently it is often sufficient to discuss
i

only positive eigenvalues.
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When W is equal to one of the decoupled eigenvalues A  , an
J
arbitrary multiple of the corresponding decoupled eigenfunction can be
added to (9.13) and it will remain a solution of Eg. (9.4) satisfying the

boundary conditions. Thus another solution is given by

AN,
’ 1 3
A = A+ ) - I, a. + fa, (9.14)
175 | M| By =&y "L T

J

where the sum is again over coupled eigenfunctions only. This solution

is valid only for u = Aj and K/¢2 s, now given by

A, T2 (2h, - A,) o A,
= = L[ @agvxagar+ | R Ju J+§~_Xl- ., (9.15)
¥ g2 14 "] o2 Oy - a2 02 [N

determines the coefficient f§ . These solutions are analogous to the type

II, mixed, solutions of the circular plasma.

Noting that the lowest energy solution is that with the smallest
|p| (see below), we can now summarise the general relaxed states of
axisymmetric systems as follows. (For simplicity we consider that Loy
and K are positive and the expression 'lowest eigenfunction' means that

with the smallest positive eigenvalue.)

If the lowest eigenfunction is decoupled then there are two
candidates for the lowest energy relaxed state. The first exists for a
continuous range of p » from zero to the lowest eigenvalue AO It is
the appropriate solution when K/q)2 is small and p is then determined

by, and increases with, K/¢2 « The second candidate is a superposition
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of the first solution and the lowest eigenfunction. It exists only for
B =Ay and is the appropriate solution when K/¢2 is such that p would
exceed A, in the first solution. 1In this event p remains at A, and
is no longer determined by K/¢2 ; instead K/¢? determines the amplitude
of the eigenfunction component. In this solution the current, at fixed

toroidal flux, saturates with increasing Volt-seconds.

As we have noted, in axisymmetric systems the lowest eigenfunction is
usually decoupled and the above description applies. If the lowest
eigenfunction is not decoupled then only the first solution e%ists and p
is always determined by K/¢2. However, as the lowest eigenvalue is
approached K/¢2 » @ , so that even in this situation p can never exceed
the lowest eigenvalue (Jensen and Chu, 1984). In this regard, therefore,
there is little distinction between the behaviour of systems whose loweéf
eigenfunction is decoupled and those in which it is coupled - especially

if the coupling is weak.

2. Spherical systems (e.g. Spheromak)

For a general (topologically) spherical system whose boundary is a
flux surface, the relaxed state is again given by Eg. (9.4). However, a
spherical system is singly connected and all loop integrals §§-d§ are
zero. Apart from a gauge transformation this is equivalent to A =0 on
the boundary so that the only relaxed states in spherical systems are the
eigenfunctions. The lowest energy relaxed state is just the lowest

eigenfunction. Consequently, as noted in section VI, p and the field
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profiles are determined by the shape of the container alone. The

invariant K determines only the magnitude of the field and there is no

invariant torocidal flux.

B. Lowest energy vs.

In determining the lowest energy relaxed state, there is a useful
relation between the difference in energy of two states of given helicity
and the difference in p for the two states (Taylor, 1975; Martin and

Taylor, 1974; Faber et al., 1982; Reimann, 1980, 1981).

Suppose we have two solutions Al and A2 (corresponding to By
and Ho ) of Eq. (9.4) which have the same helicity K and satisfy the

same boundary conditions. Then apart from a gauge transformation A= A2

on the boundary and consequently one can verify the following identities:

JI7 % (3 =12 = (uy+ up) [(By - 317 x B, (9.16)

J(9 x a2 - [(Vx3))2 (Bp = up) J(B, =2V x By . (9.17)

Consequently, if Wl and W2 denote the energy of the two solutions,

(pp = ) (B, =-B)?
W, = W = 9.18

or
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2 2
W, = W = . 9.19
4 T (By + Hp) 2 (9:13)

Consequently, if there are two possible relaxed states [i.e. two solutions
of Eg. (9.4) with correct helicity] then the lower energy one is that with

the smaller lpl.
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TABLE I. Toroidal pinch experiments.

; a
Representative parameters .

ZETA ALPHA ETA-BETA TPE-IR(M) ZT-40(M) OHTE HBTX-1A REP!

R[ m] 1.50  1.60 0.65 0.5 1.14 1.24 0.8 0

af m] 0.50  0.50 0.125 0.09 0.20 0.19 0.26 0

I( kA] 350 - 180 130 190 230 200 2

S 900 300 280 - 440 500 500 2
T lev] 200 - 40 300 150 75 50

" n[1020m=3] - - 2 0.3 0.25 0.4 0.2 0

Based on table prepared by Ortolani and Rostagni (1983) with additional data fro

Bodin and Newton (1980), Watt et al.

(1985), and Toyama et al.
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TABLE II. Spheromak experiments. Representative parameters.

ps-12  crx® s-1°  BETa 119 crec-1® st cep? Topar®
Flux
container 6x14  30%X40  30%55 40 %40 20%25  6x9  4x8  10x15
(cm)
I (XA) 130 500 300 330 100 240 20 80
max
T_(eV) - 150 110 10 40 10 10 -

2 Goldenbaum et al. (1980).

Jarboe et al. (1980); Jarboe et al. (1984).
€ Yamada et al. (1981); Yamada et al. (1984).
Turner et al. (1983).

€ Nagata et al. (1984).

£ Bruhns et al. (1984).

9 xawai and Pietrzyk (1981).

Katsurai et al. (1984).
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FIG. 5. Time dependent F-8 curve for HBTX1. Times in psec.
(a) Fast mode.
(b) Slow mode.

(From Bodin and Newton, 1980.)



1.00 ,
(a)
F -
0
—0.50 ‘1 l L FIG. 6(a) Time dependent F-0
0 0.5 1.0 1.5 2.0 curve. ZT-40 experiment.
0 (From DiMarco, 1983).

(b}

FIG. 6(b) Time dependent F-0
curve. TPRE experiment. (From
Tamura et al., 1978).

CRBS 267/6 ..

FIG. 6(c) Time dependent F-8
curve. REPUTE experiment. (From
Toyama et al., 1985).




(a)

m=
A=45cm
0 5L
] |
0 20 40
t(us)
(b)
m=1
4 A=15cm
0 2l
] I
0 20 40
t (FS) CRB5.267/7
FIG. 7. Limitation of 6. HBTX1.

(From Bodin and Newton, 1980.)

0.75

0.25

—_II_- Sawtooth amplitude

(5]
| | | 1
1.2 1.4 1.8 2.0 2.2 2.4
()
FIG. 8. Fluctuation level vs. 0. 2ZT-40.

(From Watt and Nebel, 1983.)



\Toroidal fielh

il 1
Carbon coil 1 of 24
toroidal Copper
limiter shell
1of 16
induction
coil
Center
machine
— Upper
elliptic
axis
Lower
.. L—1
elliptic 7
axis
Separatrix
Carbon _|—1 Edge of well
toroidal Edge of
.. Vacuum
limiter \ : plasma
\ liner
CAB5.267/9
FIG. 9. Multipinch experiment.
(From La Haye et al., 1985.)

FIG. 10.

pa '= 1.5.

CR85.267/10

Relaxed profile in Multipinch.

FIG.

pa = 2.21.

CR85.267/11

11. Eigenfunction for Multipinch.




150

0
4
o o
100\~ /w8 858S
(B) =6s8g B 4
g ~
O i
g R
/

T asma (KA)

o
o
[

o _
/ ./ e e
// Asymmetric
i S
Symmetric

CRB5.267/12

] | | |
0= 4 6 8
Vear. sank (kV)

FIG. 12. Plasma current vs. driving voltage in Multipinch.

-
o

(From Ia Haye et al., 1985.)

/
200+ / /-[
/
/
/
/
/
74
150 7

/
//\0= 1.56

1
/
I;ﬂ

I}/
50~ /
/

Toasma (KA)

CRB5.267/13

I | |
500 1000 1500

(Bz) (gauss)

FIG. 13. Variation of Isat with toroidal flux in Multipinch.
(N.B. © = 1.56 corresponds to pa = 2.42 in this
configuration.)

(From Ia Haye et al., 1985.)



SL/L9Z2°G8YD

FIG.

2

14.

CRB85.267/14

Spheromak configuration. Schematic.

L_
2 2
—

<>

C
B B o

FIG.

15.

|
|
|
I
|
|
|
|
4
G\,
|
I
I
T
[

Spheromak formation by plasma gun.

(From Turner et al.,

1983.)

/




Preionization - = > [ ! 'I —»

e T ] A~

"""’-"Iﬂl.'l TR O7 i
T

I

Implosion = —
| ”,ﬂllllllllllym._
/LT— =
& [ =4 | 2
Reconnection =| — c > T) —» |=
| 2r4 1705 ///#7773
7 ? ‘2 ‘/rﬂﬁﬂ\
¥ T T %
[ — 1
Equilibrium —

Y

CRB5.267/16

FIG. 16. Spherocmak formation by ‘combined 8-z discharge.

(From Goldenbaum et al., 1980.)



(a)
Flux core
|
Support
leads
8, \
+ I
8,Coil
[
B, Generating
solenoid
Reconnection
{b) area
|
+
Plasma
|
B, Current
B, Generated reduced
in plasma - thru zero
|
| 8, Current reversed
and crowbarred
+
|
2
2
S
FIG. 17. Spheromak formation by inductive flux core (S-1).

(From Yamada et al., 1981.)



10

(a)

(b)

CRB5 267/18

— l |
o —40 -20

N
(=]
i
o

0
y{cm)
FIG. 18. Magnetic field in BETA II Spheromak. Experiment and theory.

(a) Poloidal Field. (b) Toroidal Field.

(From Turner et al., 1983.)

LA A Y B

CRB5.267/19

FIG. 19. Poloidal current vs. poloidal flux in Spheromak (S-1).
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Sustained configuration in CTX experiment.
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Kinked Z-pinch helicity source

Experiment with remote helicity injection.
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