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Abstract

The power i.g* dissipated by electrostatic waves interacting with a
non-Maxwellian electron velocity distribution is considered. Its
component terms illustrate the similarities and differences between
collective and siﬁgle particle treatments of the anomalous Doppler
resonance. Examination of the large-k region of wavenumber space - in
contrast to the well-known small-k region - shows that ion dynamics are
important in stabilising plasmas for which the electron velocity
distribution considered alone is destabilising. The sensitivity of
theoretical descriptions to the choice of representation of the

superthermal electron tail is examined analytically and numerically.
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I. INTRODUCTION

The collective description of the anomalous Doppler effect retains
many features of the single-particle description. Consider a system with
to;al relativistic energy E and internal energy U, travelling with
velocity Bc in a medium with refractive index n. When it emits a
photon at an angle © to its direction of motion, the energy

AE = (h/2m)w0 supplied to the photon is related to the internal energy

change AU of the system by1

2 172
-8y
R npBcos 6 (1

For motion with nB<1, Eg.(1) gives the Doppler frequency shift with

AU = (h/ZnJQD, where ug is the frequency in the rest frame of the system.
For superluminal motion with nf>1, a positive value for AE remains
possible within the cone |9|<eo = cos'l(1/nﬁ) provided that AU is
negative. In the case of a superluminal electron in a magnetised medium,
the negative AU corresponds to an increase in the energy of perpendicular
gyration. This is the single-particle anomalous Doppler effect, in which
the parallel kinetic energy lost by the electron exceeds that given to the

photon (wave), and the balance is transferred to the electron gyromotion.

Consider next a cold beam of electrons in a magnetised plasma. The
beam will support waves additional to the bulk plasma waves. These can be
negative-energy waves, whose excitation involves a loss in parallel

kinetic energy and a smaller gain in perpendicular kinetic energy. When



such a wave resonates with a bulk plasma wave, both will grow. Nezlin2
has pointed out the correspondence between this effect and the single-
particle anomalous Doppler effect. There is a net flow from the parallel
beam kinetic energy into the perpendicular component of collective motion

associated with the beam wave, and into the bulk wave. The diagnostic

potential of this process has also been noted.3

II. GENERAL PROPERTIES OF THE ANOMALOUS DOPPLER RESONANCE

A collective description of the anomalous Doppler effect arising from

the interaction of resonant electrons with electrostatic waves in a
: ; : 4

magnetised plasma follows from the dielectric response function. We
shall show below that ion dynamics play a significant role in wave damping
under conditions where the wavenumber is sufficiently large that the ions
can be regarded as unmagnetised. For this reason, we include the
corresponding ion contribution in the expression for the full dielectric

response function:
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Here VL and \f characterise the electron velocity perpendicular and

parallel to the magnetic field direction, f(vl, v") is the electron

velocity distribution function, Jn denotes the Bessel function of order



n, and ub and ' are respectively the electron plasma and cyclotron
 frequencies; kl and ku are the components of the wavenumber k
perpendicular and parallel to the magnetic field direction, fi(vi) is the
ion velocity distribution function, and wpi is the ion plasma freguency.
For ions of charge Z in a neutral plasma, gsi = Z(me/mi)gg, where me and
11:1:L are the electron and ion masses. The real part Ereal of £ is in
general dominated by cold electron plasma terms which are independent of
the exact form of f(vl, v"). For (99/0)2 i 0.2, the electrostatic waves

which are roots of E. 0 are well described by w = ub k"/k in the

eal
frequency range of interest. The imaginary part €im of & describes

wave-particle resonance, which leads to electrostatic wave growth or

damping at a rate given by
= = 2
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By Eq.(2), a negative contribution from the electrons to Eim arises from
the n = -1 term at the parallel resonant velocity VADE (w + Q)/k". This
is the anomalous Doppler resonance. If the Landau damping terms are

sufficiently weak, wave growth can occur.

The anomalous Doppler effect is of interest as a fundamental limit on
superthermal tail formations in tokamak Plasmas, and as a probable
explanation5’6 of the relaxation oscillations seen in the soft X-ray
signal from Ohmic plasmas7 and in association with lower hybrid current
drive.a'9 In this application, the divergence of fast-electron motion
from the parallel direction as the anomalous Doppler instability proceeds
is responsible for the shift in the predominant direction of electron

bremsstrahlung, which follows the fast-electron motion. A number of



5,6,10-16

studies have considered such quasilinear development of the

. ; 17
instability. The linear instability remains of interest, however, and

we shall return to examine this aspect of the phenomenon.

For a wave of given (w, kl’ k"),‘Eq.(B) leads to wave growth if the

Landau damping terms associated with af/av" at V= w/k“ and dfi/dvi at

v, = w/k in Eg.(2) are so weak that they can be overcome by the anomalous

Doppler resonant term involving bf/avl at Vg Wy pw The latter is

proportional to the magnitude, rather than the parallel gradient, of the
parallel component of the electron distribution function at the

superthermal parallel velocity vﬂ= VAD- Let VB denote the thermal

velocity associated with the isotropic bulk Maxwellian distribution.

Electron Landau damping is weak firstly for v_ > 2.5 vB, beyond the main

N~

body of the bulk, and also for v << vy deep in the bulk distribution.

The first possibility for wave growth has been examined in the

literature5'6’10'17; the second does not appear to have been studied

previously.

Let us consider an isotropic bulk Maxwellian electron distribution,

together with a small tail whose distribution in v is not yet specified,

but which has a fixed perpendicular thermal velocity v_ :
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In general p<<1. We also specify a thermal ion distribution
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where vTi is the ion thermal velocity. We shall assume the bulk electron

and ion temperatures to be equal, so that Vs = (me/mi)llzva.

Substituting Egs. (4,5) in Egs.(2,3), we obtain
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Here YAD is the anomalous Doppler driving term, YLB and YLT describe
electron Landau damping in the bulk and tail distributions respectively,
Y describes Landau damping on the ions, B_ = k2v2/202, B = (v 2/vz)ﬁ 2
LI B 1B T TL B B

and Ah(B) = e-BIn(ﬁ), where In(B) is the modified Bessel function of order



n. The representation in Egs.(7-10) indicates those features of the
instability which are universal, rather than specific to particular

choices of parallel electron tail distribution F(v").

The dielectric response function €& in Eq.(2) is given in terms of the

dielectric tensor Eij by € = kikjaij/kz. In the region of instability it
will be shown that the ion contribution to Eij can be neglected. For the
electrostatic waves excited by the anomalous Doppler instability, we have

E. = IE’k‘/k' Let us take k = (kl, 0, k"). In this case, the rates of
i -1 i -

energy dissipation by the electrostatic field on the electron motion

perpendicular and parallel to the magnetic field are given by
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From the definition of Eij, Egs.(11,12) give
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where we have used Egs.(7-10). Here +§l2/4n is the electrostatic field



energy density of the wave, and the factors of 2 arise from the quadratic
dependence of power on field amplitude. Eqg.{13) describes the field
energy dissipated by the wave in increasing the perpendicular kinetic
energy of the electrons undergoing the anomalous Doppler resonance. The
first two terms of Eg.{14) describe the field energy dissipated by lLandau
damping on the electrons, which increases their parallel kinetic energy.
The final term in Eg.(14) describes the parallel kinetic energy given up
by.the anomalous Doppler resconant electrons. The net flow of parallel
kinetic energy from these electrons to the field and to perpendicular
kinetic energy occurs in the ratio 1 : Q/w. This reflects the original
concept of Kadomtsev and Pogutse,19 who treated (h/27m)Q as the energy
quantum of perpendicular gyromotion, and (h/27%)w as the quantum of wave
energy, both of which are drawn from the electron parallel kinetic energy.
If the energy transfer to the field is sufficient to overcome the Landau
damping losses, Y is positive and wave growth occurs: thus, -(Px + Pz) =
27|§12/4n as expecfed. A larger energy transfer occurs from the parallel
to the perpendicular component of electron motion. In both these
respects, Egs.(13,14) demonstrate explicitly how closely the collective
anomalous Doppler effect follows the single-particle effect described in
the Introduction. The essential difference lies in the existence of a
threshoid, since Landau damping of the wave by the bulk distribution and
by the ions, where appropriate, must be overcome in the collective case.
This also differentiates the instability of an extended tail from that of
a beam in a cold plasma. We note also that the contribution to Pz from
the anomalous Doppler term in Eq.(14) is negative, independently of

whether the relative magnitudes of YLB' Y. , and YAD are such as to give

LT

overall wave growth or damping. It follows that anomalous Doppler



resonant electrons may reduce the absorption of driven waves that
are undergoing damping, while they increase their perpendicular energy at

the expense of their parallel energy.

I1II. THE EFFECT OF THE TAIL STRUCTURE ON INSTABILITY

Let us return to Egs.(7-10). We note first that, subject to other
constraints, instability is favoured by small values of k"/k. Secondly,
for B << 1, Ab(ﬁ) = 1 and A1(E) = B/2; however, for B8 > 2,

Ao(ﬁ) = A1(ﬁ) = 0.2. There are thus two candidate regimes for

instability:

(1) kl small such that SB, BT << 1. In this case, Qp/ka can be
sufficiently large that the exponential term in Eg.(6d) renders ion Landau
damping negligible; The stability of the wave is determined by the
electron velocity distribution alone. Electron Landau damping can be weak
because the parallel velocity lies beyond the bulk thermal electron
distribution. Owing to the factor A1(ﬁT)= BT, the ratio of - to Yo is

independent of the perpendicular temperature of the tail, and decreases as

Q/w increases at given density.
p

(2) kl large such that BB, ﬂT > 1. In this case, the parallel phase
velocity mp/k can be much less than Wy and lie in a region where electron
Landau damping is again weak. Since A1(ﬁT) = AO(ﬁB), the ratio of Yap E°
Tig increases with Q/QP, and decreases as the perpendicular temperature of

the tail is increased. 1In this low phase velocity regime, Landau damping

on resonant ions becomes a significant phenomenon.



Consider by way of illustration a flat tail which extends as far as a

maximum velocity vM-

= 1/
F(v") 1/n ZvM, 0 < v’r < VM
(15)
= 0 otherwise
For instability in region (1), combining Eq.(15) with Egs.(5-9), we
obtain
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In Fig. la, the growth rate Y/QP given by Eg.(16) is plotted as a function
of the dimensionless wavenumber coordinates (klvB/Q' k"VB/Q) for a
distribution function as in Eg.(15) with p = 0.001, VM = 30vB, le = VB'
and mP/Q = 0.4. The corresponding contour plot is shown in Fig.1b. The
dependence of growth rate on tail and plasma parameters has been examined
numerically. For a tail fraction pu = 0.001 (0.1% of electrons in the

extended tail) we find that

(i) For wP/Q = 0.4, instability occurs only when Y > 15 Vg The growth

rate rises to y = 2 x 10~5y when vM = 30 VB, and thereafter is
P



insensitive to vM.

(ii) For Ve ™ 20 Vgr Y= 1.6 % 10'5wP when wp/Q = 0.4, but y falls to

zero when QP/Q < 0.29.

(iii) The growth rate is independent of le.
We note from Eg.(2) that the ratio of the anomalous Doppler parallel

resonant velocity VAD to the parallel velocity VL at which electron Landau

damping occurs is given by
= 1 + 18
VAD/VL R/ w (18)

Thus, point (i) illustrates 'the fact that for instability to occur, the
tail must extend sufficiently far for electrons to exist at the value of
vAD given by Eg.(1B) when L is a few times Ve SO that Landau damping is
weak. Points (ii) and (iii) quantify and confirm remarks made above. For
the tail parameters considered, it is possible to suppress the instability
by a relatively small increase in magnetic field strength at constant
density. Result (iii) holds only for a Maxwellian distribution of
perpendicular velocities in the tail. If there were a plateau in the vl~
distribution in the anomalous Doppler resonant region, it is clear from

Eq.(2) that the instability would be significantly affected.

For region (2) we find that no instability occurs. While there can

exist a region of wavenumber space - typically at k VB/Q = 0.3, klvB/Q = 3

- where the anomalous Doppler resonance can overcome the effects of

-10-



electron Landau damping, this effect is always overcome by ion Landau

damping. From Egs.(8,10), we have

Tox m M2k ' T TR
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In the region of wavenumber space indicated, YLI exceeds YLB by a factor
of order twenty for the case of Hydrogen ions, and this is sufficient to
keep Yy given by Eg.(6) negative, even though YAD > YLE'

Now let us examine the sensitivity to the choice of tail
representation. A wide range of monotonically decreasing superthermal
tails in the electron velocity distribution can be represented by Eg.(4)
when

- = 2.2
1 V= v gy
F(Vﬂ) = e (20)

1/2
TV

The parameters (., VD' Vf") can be chosen so that the tail structure has a
slow, plateau-like decline (Fig. 2a), or a much steeper fall-off (Fig.
2b). In the parameter range of interest, the value of VD is kept be%ow
4vB in order to avoid describing tails which have a bump rather than
monotonic decrease. We have also taken steps in our code to preclude
spurious effects arising from a positive TLT given by Eqg.(9) near v" =0,
where YLBis small. Physically, these constraints ensure that the electron

distribution function is monotonically decreasing in " throughout its

range. For all these distributions, it is clear from Eq.(7) and the

=-11-



exponential dependence of Eg.(20) that the anomalous Doppler effect can
play a significant role only for those electrons for which vAD is close to

the characteristic drift velocity of the tail. This has two consegquences.

~

Firstly, the anomalous Doppler rescnance condition can be written k”vD

= 1 2[ 2 2 : 2
+ ~ - -1,
wpk"/k Q so that ki k"[w /(k"vD ) 1] The requirement that kl

> 0 therefore gives

ky = v,

Q/vD

< 9] 21
£ 8.0 (21)

and under the conditions of interest, w /Q < 0.5. We conclude that for a
P ~
wide range of monotonically decreasing tail formations, any unstable

region in k - space must be localised around k = Q/VD. This conclusion

I
applies independently of the particular region of velocity space in which
Landau damping occurs. Secondly, since VAD = VD, it follows from Eg.(18)
that in general the corresponding value of vy will be so small that it
lies within the region of strong Landau damping by the bulk electron
plasma. These considerations suggest that monotonically decreasing tails

described by Egs.(4) and (20) are stable against the anomalous Doppler

effect. We have confirmed this result numerically.

IV. CONCLUSIONS

The components parallel and perpendicular to the magnetic field of
+*

the power j.E dissipated by an electrostatic wave interacting with a non-

Maxwellian electron wvelocity distribution have been considered. They show

-12-



how the parallel kinetic energy given up by anomalous Doppler resonant
electrons is partitioned between the electrostatic field and the
perpendicular component of electron motion. This process can occur both
when the wave is growing, and when a driven wave is undergoing damping due
to the dominance of Landau damping terms over the anomalous Doppler
resonance term, provided that the latter is non-zero. We have indicated .
the role of ion Landau damping in stabilising plasmas against the emission
of electrostatic waves in the large-k region of wavenumber space, where
the anomalous Doppler growth term can exceed the electron Landau damping
term. The sensitivity of stability calculations to the choice of
representation of the superthermal electron tail has been examined

analytically and numerically.
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Fig.la Growth rate y/wp as a function of k; ve/Q (left axis) and
kywa/Q (right axis) for a flat tail with parameters displayed.
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Fig.2a Use of a drifted Maxwellian component to represent a plateau-like
monotonically decreasing tail, with p=0.001, vp=3vs, vn =6vs, v =75
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Fig.2b Use of a drifted Maxwellian component to represent a more steeply
monotonically decreasing tail, with p=0.001, vp=2vs, vn =3vs, V1 =08
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