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ABSTRACT

In this paper we consider the trapping and containment of particles
injected into a non-adiabatic magnetic mirror trap. The results of
numerical orbit calculations are compared with the statistical theory
which is shown to give essentialiy identical results. This statistical
theory leads to simple expressions for the mean containment time and
the mean density of trapped particles. These results indicate that the
most significant factors in the non-adiabatic trapping process are the
width of the acceptance cone (i.e. the solid angle in velocity within
which the injected particles have a finite chance of capture) and the
angular spread of the input beam. Optimum trapping requires that these
two quantities be appropriately matched. When this is done the density
approaches a limiting value (which is generally below the usually quoted
'Liouville limit') and the build-up time is a minimum. Providad this
matching can be achieved there appears to be no special merit in using

resonant non-adiabatic traps over any other form.
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I. INTRODUCTION

The adiabatic invariance of the magnetic moment, usually regarded as a sine
qua non for particle confinement in a mirror machine, makes it difficult (in a
stationary field system) to trap particles which have been injected through one
of the mirrors. However the magnetic moment is not a true constant and if it
varies sufficiently during one transit externally injected particles may be tempo-
rarily trapped and significant particle densities may be accumulated; such an

arrangement has been called a 'non-adiabatic trap'.

Most attention has hitherto been given to systems in which particles are
injected parallel to the field and acquire a large magnetic moment on their first
transit by resonant interaction with a spatially-periodic modulation of the cen-
tral field of the machine; the modulation may either be axially symmetric’>’°
or produced by helical windingsd’E’s’T. The lifetime of particles in such a trap

is determined by successive encounters with the modulations which eventually

reduce the magnetic moment sufficiently for escape through the mirrors.

Although there has been considerable theoretical and experimental wofk on
these systems no clear understanding of the factors which lead to optimum contain-
ment in them has emerged, probably because particle behaviour is complicated by the
resonant nature of the non-adiabatic interaction with the field. In this paper
we begin by considering a very simple type of non-adiabatic trap in which the
field perturbation is non-resonant. We examine the trapping and containment
properties of this system, firstly by numerical calculation of particle orbits,
and secondly by the application of statistical mechanics. From the statistical
treatment we are led to conclusions which are applicable to more general systems,
both resonant and non-resonant, and which clarify the basis of 'non-adiabatic
trapping'. These results imply that there is no special advantage in resonant
trapping over any other form of non-adiabatic trapping and that other features,
such as the proper rélationship of the beam and trap parameters, are of much

greater significance than the form of the non-adiabaticity.



II., THE STOCHASTIC TRAP

We consider a mirror machine with a long, uniform central field of magnitude
1-h, where h « 1. At each end there is a small discontinuity in the field
strength, which rises abruptly to value unity, and beyond the discontinuities
there are magnetic mirrors with maximum field values R (Fig.1). The mirrors
are assumed to be adiabatic, that is, they reflect particles without change of
magnetic moment. Passage of a particle through the field discontinuity is non-
adiabatic and changes the magnetic moment, so the combined effect of the mirror
and the field step is similar to that of a slightly non-adiabatic mirror with the
step height h controlling the degree of non-adiabaticity. In this model it is
possible to calculate particle orbits algebraicallya, thus avoiding the accumula-
tion of errors which inevitably occurs when integrating equations of motion over

many transits in 'real’ fields®.

The field is symmetrical about the z-axis so that the particle motion has
two constants: the total velocity v and the canonical angular momentum Pge
At any axial position 1z, only two quantities are needed to define the position
and velocity of the particle: we will take these to be the normalised magnetic

moment g = vi v® and the phase of the particle in its Larmor orbit ¢.

Orbits are calculated as follows: we start in unit field outside one of the
mirrors with a particle having & = go. Provided go < 1/R the particle enters
the trap and arrives at the first field step with £ = Eo but with-a phase ¢
which we assume is by then uncorrelated with its initial phase. This phase is
therefore chosen at random and the change in g at the field step is calculated
in the manner of ref. 3. It is also assumed that the distance L between the
steps is long enough for us to disregard correlations between the phase with which
the particle leaves one step and the phase with which it arrives at the other, so
we again use a random number for ¢ at the second step. If now g < 1/R the
particle will escape through the end mirror; if £ > 1/R it will be reflected,

and again we assume the phase is randomised. We follow a particle in this way

)



through successive reflections until it eventually escapes and by computing the
orbits of a large number of particles we build up a statistical picture of contain-
ment. On account of the use of random phase at each step this system is known as

a stochastic trap: the assumption of phase randomisation by magnetic mirrors has

3,6,9
been discussed by several authors °@

ITI. NUMERICAL CALQULATIONS

Particles injected with go = Em = 1/R will enter the trap, and on their

. : : . I _ -
first transit acquire a spread in g above and below %n' If Eﬁin = %n AE
is the lowest value reached, then, because of the symmetry of the field and the
time-reversal properties of the orbits, &$in must also be the lowest value of

initial g for which a particle can achieve g, on its first transit. Thus by

calculating Ag for a group of particles having Eo Em we find the 'acceptance
band' Emzé g2 g, — OE within which particles have a chance of capture, but out-
side which they will either not enter the trap or will pass straight through.
Within this band the probability of capture p(g) varies from just over 0.5 at
E=E. to zero at g = £, ~ 0g: the calculated capture probability is shown in

Fig.2a for a system with R = 2, h = 0,01, and particles with v = 1, pe = 2 (mass

and charge are taken as unity).

We now take several values of initial E uniformly spaced within the accept-
ance band and for each value obtain a mean containment time t(£) by calculating
the orbits of 5000 particles for each &. Only the time spent in the region
between the field steps is recorded; this makes the calculation independent of the
shape of the mirrors (which are simply introduced as a test on the value of E).
Furthermore, when, as occasionally happens, a particle with large g 1is reflected
from the field step, this is no different from a reflection at a mirror. The con-
tainment times are measured in units of L/v, the 'unit transit' time and t(g)

for the example quoted above is shown in Fig.2b.

The mean time spent in the trap by particles injected uniformly within the



acceptance band is

t(g) dg eee (3.1)

This quantity is found by integrating Fig.2b. Since T includes a contribution
from particles which pass straight through the system without being trapped, each
of which contributes a time (i-—g)_%, the mean time for which particles are actu-
ally trapped (i.e. with g > g"J, again averaged over the acceptance band is

*

_ T_‘—/[l-p (£)] [1-2]"% ae e (3.2)
2

or if Ag 1is small

T =T - (1-1) (1-;;;"1)'lﬁ e (3.3)

Here f 1is the fraction of particles in the band which are reflected at least
once, and can be found by integbating Fig.2a. Because the containment time of
the trapped particles greatly exceeds the 'straight through' transit time

-l *
(1-£)7%, the difference between T and T is normally small.

% : 5 ; -
T is of importance because if I 1is the current of particles being injected

within the band Az, the line density N of particles in the trap is, in the

t
steady state

I %
N =3T eea (3.4)
and therefore
N 1
t * 4
==T (1-g_)* e (3.5)
b
where N, is the line density in the beam. This ratio is a measure of the effec-

b

tiveness of the trap.

In Table 1 we present the results of calculations for R = 2 and values of
h between 0.01 and 0.05. All particles have v =1, p6 = 2 (with these constants,
when g = 1 the particles have unit Larmor radius, and when g = O they travel
along field lines at radius r = 2). The most significant result is that, within

the accuracy of the calculation, i AE 1is a constant independent of h, i.e.



independent of the degreec of non-adiabaticity in the trap. The value of this con-
stant depends on the mirror ratio. 1In Table 2 we summarise the results obtai ned

at different mirror ratios, taking h = 0.01 in each case.

IV. APPLICATION OF STATISTICAL MECHANICS

In order to apply statistical mechanics to the problem of injection into the
stochastic trap, we first consider the equilibrium state which would result if
the trap were part of a closed system (we might, for example, regard the given

mirror machine as one of a large number of identical units spaced end-to-end

around a torus).

Since the particles are assumed to be non-interacting we can regard each as
a member of an ensemble, all members having definite energy U and definite cano-

nical angular momentum pe = P. The appropriate ensemble distribution function
for the equilibrium state of our closed system is then Jjust the micro-canonical

distribution:

F (r, p) = 6[p2+p2 + (32 - A))? - 20] 8[p,~P]. cer (1)

Where the mass and charge of the particles are taken as unity and A 1is the

vector potential of the axisymmetric mirror field. The Hamiltonian is

Pe
_ 1 2 2 = 2
o=k {pr+pz+(P Ag) } vee (4.2)
and
pr:\,’r:r‘ pZ:Vz:Z
oo (4.3)

A) = p2¢
Pg r(ve+ 6) r‘6+r‘A8

In this (hypothetical) equilibrium state of the closed system the fraction
of particles which are in any region of phase space is found by integration of
(4.1) over the appropriate domain, We will, for example, be interested in the
fraction of particles whose velocity vector lies within a cone of semi-angle
about the z-axis. To calculate this it is convenient to carry out the integra-

tion over velocity rather than over momentum. The fraction of particles with



their velocity vector in the cone Y is then

] v
_ . U -
a(y) = K /.r dr dz d6 dv dv, /.dvz 6[vr+ RN 2U] 6[rv6+-rAe P] ere (4.4)
- (2U)%cos¢

where K 1is the normalizing factor obtained by integrating over all ¥, instead

1
of only over the values LI (2U)éCOS Y.

For the stochastic trap considered in Section 2, the field is uniform over
most of the trap so that we can put Ae = rB/2: we shall also consider only par-
ticles with positive P (these are particles whose orbits do not encircle the
axis). The integrations over z and © then merely change the normalization and

the remaining integrations can be carried out as follows: we transform from r

to p= r-+ve/B when

qly) = K/(p-Ve/B)clpdvr dv /dvza[vﬁ+v;+ V;—ZU] 8[Bo?/2- P - v§/2B] ... (4.5)

(20)%cos ¥

The term involving ve/B will vanish by symmetry and the p integration then
yields
2 2
qly) = %K /dvr dve dv,, 6(vf‘ + vV, + Vg - 2U) ee. (4.6)

(2U)%cos

The final integration may be performed by introducing polar co-ordinates in

velocity space and gives, after normalisation:
q(y) = (1-cos V) i ST

We see, therefore, that in the steady state the fraction of particles with
their velocity vectors in a cone of semi-angle 1 is proportional to the solid
angle subtended by this cone, just as for a uniform distribution in velocity space.
It should be emphasized, however, that this result has .cen obtained only after
integration over the volume of the trap; with this micro-canonical ensemble it is

certainly not true that the velocity distribution is uniform at each point in space.

We now return to the steady state in which particles injected from a beam are

captured into a mirror trap by non-adiabatic effects and lost at the same rate by



the inverse of the capture process. We do this by regarding the steady state as

part of the equilibrium described above.

The number of particles in the trapped domain (y} > ¢m) is, by (4.7)

N, = cos y_ cwn (48}

and the number of particles in the region Y > ¥ > ¥, — Ay which we take as the

acceptance cone filled uniformly by the beam, is

m
N = /‘ siny dy ver (4.9)
v - Av

A particle in the acceptance cone has a probability p(y) of being deflected
by non-adiabatic effects into the trapped region in a single transit of the system,
that is in a time L/v,. If T. % is the mean time which particles spend in the

trapped region, then by balancing rate of injection with rate of loss we have

U
y cosy siny p(y) dy = Egi_ﬂﬂ 4 (4.10)
L IIJ lf»‘PlI’ ]l(_ T . L e e .
Y~ AY
and if A} is small this becomes
¥
= 1 1
Tt ﬂllf=g1'm Wheref=,_\—1JI / p(y) dy ses (A 11)
V= AU

and since, with the notation of the previous section

- *
fT=T . (4.12)
we have
* 1
T Ay = oo " ee. (4.13)

or if we work with Ag instead of Ay

T AE = 2(1—-gm)Lj = 2 cos y cen (4.14)

One consequence of equation (4,14) is that the product 1 AE is independent
q

of the degree of non-adiabaticity: it has already been observed in Section 3



that this is borne out by the numerical results. However, equation (4.14) also
predicts the numerical value of ™ AE and its dependence on the mirror ratio.
This is compared with the numerical calculations in Fig.3 where T* Ag  (as found
in Section 3) is plotted as a function of the cosine of the mirror angle; this

shows good agreement with equation (4.14).

V. DISCUSSION

In a simple non-adiabatic trap we have shown that if one assumes phase rando-
misation at mirror reflections then the results of numerical orbit calculations
are identical with those obtained by direct application of statistical mechanics.
It is noteworthy that the randomisation of Larmor phase alone is sufficient to
ensure that the particles sample all the phase-space available to them. The stati-
stical arguments are clearly independent of the exact mechanism of non-adiabatic
trapping and so can be applied directly to any axisymmetric trap, stochastic or

resonant, provided only that the acceptance cone Agt‘ is appropriately defined.

In applying the statistical arguments we have assumed that the spread of the
beam, Agb , is such that it just fills the acceptance cone Agt;. In this case

the containment time is

1

* 2(1—Em)/2
T == eee (5.1)

and from (3.5), the density ratio is

Ne 201 -gp)
R~ eee (5.2)

where Nt and Nb are the line densities in the trap and beam respectively, and

DE = BE, = AE, -

If however the trap has an acceptance cone which is narrower than the beam,
(Agt < AEy ), then only a fraction of the beam is utilized - the remainder passes
straight through the system and may be disregarded. If the beam is uniform in g
then the preceding formulae can be applied to the useful fraction Agt/hglj, which

fills the acceptance cone AE, . The mean containment time of this useful fraction




is thus

(1 )
20U -gy
thT ves (5.3)

while the mean containment time of the whole beam is

2(1- g, )%
T* ( Em)

= i, vwe (Gt
Similarly the density ratio is
Ne 2(1-gp) (5.5)

Nb AER
where Nb is here the total (useful plus wasted) beam density. We see, therefore,
that provided the input beam at least fills the whole acceptance cone (Agtf> Agt)
the trapped density is independent of Agt and so of h, the degree of non-
adiabaticity. The containment time of the captured particles can be increased by
decreasing Agt (equation 5.3) but correspondingly less of the beam is captured

so that N¢ is unaffected; the most economical use of the beam is thus when

Ay = LEp -

If, on the other hand, AEL < Mgy sO that the beam does not fill the accept-
ance cone the density and mean containment time will depend on how AEn  is
disposed within AE ¢ . However, the density reached in the trap will always be
less than that given by (5.5) because all routes by which particles can enter the
system are not being used while all escape routes are still available. This situa-
tion usually occurs in resonant trapping systems where, in addition to the special
resonant entry orbit, there are generally other possible entry orbits, for example
orbits close to the loss cone for which the system acts like a stochastic trap.
Unless these orbits are also used for injection the density ratio given by (5.5)
cannot be achieved. Thus, while resonant trapping is at first sight attractive
because it captures the entire beam on the first transit, it can only attain the
maximum accumulation efficiency if the resonant orbits are the sole entry and
escape routes of the system. This in turn can only be achieved by using very
large mirror ratios so that the acceptance cone coincides with the mirror loss

cone and % = g, = 88 « 1. Then (5.1) reduces to
" = 2R ees (5.6)



which is in good agreement with earlier numerical results® for a five-period reso-

nant trap at large mirror ratios.

In this discussion we have so far compared line densities in the beam and
trap. When all the injected particles have the same Py the input beam has an
annular cross-section of thickness 2v sin ¢m/B, whereas the trapped particles
extend over an annulus of thickness 2v/B. The ratio of the mean volume densities
is therefore less than the ratio of line densities by a factor ~ g“? . However,
if the beam has a large spread in pe and so is many Larmor radii wide, the cross-
sections of beam and trap are more nearly equal and the ratio (5.2) will apply to
the volume densities as well as line densities. If we combine these circumstances
with the condition Eqn = B8 « 1 and in addition make one mirror effectively infi-
nite so that the system is single-ended (this will double T*) we obtain as the

. . . . 16 : . ;
maximum possible density ratio the value i% = TEET@ . This will be recognised

p 10

as the oft—quoted 'Liouville limit which we see can only be attained in very

special circumstances.

VI. CONCLUSIONS

We have shown that the calculation of containment in a non-adiabatic trap by
statistical mechanics and by numerical orbit calculations leads to essentially
the same results: we therefore conclude that non-adiabatic effects enable a beam
of particles to fill a mirror trap to the limit set by conservation of density in

-phase-space. However it is important to observe that this statistical limit can
only be achieved when the input beam completely fills all the acceptance cone(s)
of the trap. Furthermore for the example we have considered, and for most cases
likely to be set up in practice, this limit is lower than the 'Liouville limit'

usually quoted.

In simple, axisymmetric stochastic traps the matching of the trap to the
beam can readily be achieved by controlling the degree of non-adiabaticity h,

and providing one can ensure that Agtié Agb then the trap to beam density ratio

- 10 -



N¢/Np is independent of AZy and so of h. We should therefore expect stochas-
tic trapping. to be possible in any mirror system. The only effect of h is to
determine the time to reach the steady state density; this time increases as h

is decreased in accordance with equation (5.3).

In resonant traps the individual particle orbits are much more complicated,
but the same basic considerations apply; the acceptance cones may occupy several
separate regions in velocity space, and the requirement that they should all be
filled by the beam may be difficult to satisfy in practice. For systems without
axial symmetry, such as those with helical or spiral modulations, pe is no longer
a constant and particles may enter and leave the system in diverse ways, including
radially, and the complete filling of all entry cones is even more difficult.
Consequently there appears to be no special advantage to be gained by using reso-
nant trapping over stochastic trapping. It is more important to obtain a well
collimated beam and then to optimise the trap to match its acceptance cone A&
to the beam spread, AEp s thereby achieving simultaneously the maximum trapped

density and the minimum build-up time.
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Effect of Varying h

TABLE 1

R=2,(gm:05),v:1,pe:2.

h 0.01 0.02 0.03 0.04 0.05
AE 0.0293 0.0585 0.0865 0.1141 0.1406
i 52.7 26.1 18.9 15.0 12.5
i 51,7 25.1 18.0 14.0 %6
T™Az| 1.53 + 0,07 | 1.47 + 0.08 | 1.56 = 0,07 | 1.60 = 0.04 | 1.62 * 0.05
TALLE 2
Effect of Varying Mirror Ratio
h = 0,01, v = I,-pe = 2
R 1.023 1.067 1.140 1.333 2.00 5.00
£ 0.9775 0.9375 0.8775 0.75 0.50 0.20
0E 0.0436 0.0426 0.0409 0.0373 0.0296 0.0180
T 11.9 15.9 21.6 28.4 82.7 101,0
i 7.3 12.9 18.1 27:3 51.7 100.5
T*AE [0.32 * 0.002|0.55 + 0.02|0.78 * 0,03 |1.02 * 0.03|1.53 * 0.07|1.81 = 0.17

- 12 -
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Fig.1 Stochastic trap (CLM-P77)
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Fig.2(b) Mean lifetime as a function of & (CLM-P77)
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