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Abstract

A new algorithm for the solution of two-phase fluid flow problems is
presented. The algorithm consistently ensures that the evolved volume
fractions are all positive and sum to unity, even in the presence of
large spatial and temporal gradients of volume fraction. The momentum
equations are then solved using an iterative pressure correction method.
Example calculations for buoyancy driven flows, with and without phase

changes, are presented.
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1. INTRODUCTION

The numerical calculation of multiphase fluid flow is now of
considerable importance in the process and nuclear industries [1]. The
presence of more than one phase neccessitates the treatment of inter—
phase transfers of momentum and energy. A change of phase may also

occur, as in the case of the flow of water and steam.

The present work is motivated by the need to understand the
behaviour of a hot fluid which mixes with a volatile cold fluid; a
situation which occurs in certain industrial processes, submarine
volcanisms and which could arise in a hypothetical reactor accident when
molten core material pours into liquid coolant. It is of interest to be
able to predict the evolution of the vapour volume fraction, together
with the transient velocities of the hot liquid and the liquid and vapour
phases of the volatile liquid [2]. We have decided to develop a code to
model this situation in several stages; accordingly in this paper we
describe a numerical algorithm developed for calculating transient one-

dimensional} two-phase flow with a prescribed rate of phase change.

In the problem of interest all the flow velocities are small
compared to the sound speeds, so it is a good approximation to assume
that all the fluids are incompressible. This avoids the need to specify
an equation of state for each material and is computationally cheaper.
This approach leads to the problem of determining the dynamic pressure
and consistently ensuring that the evolved volume fractions are all
positive and sum to unity. An algorithm has been developed to allow the
governing equations to be advanced in time in such a manner that the

above requirements are satisfied, even in the presence of large source

terms.

The code has been used to examine two test problems. The first is
the settling of an initially homogeneous mixture of water and steam

(without phase change) in a closed vessel, due to the action of buoyancy.



In the second, the behaviour of a pool of water, which is transformed

into steam at a specified rate in an open vessel, is examined.

In section 2 we describe the mathematical formulation of the problem and
in section 3 the solution algorithm is described. In section 4 we
describe the results obtained from the test problems and in section 5 we

make some concluding remarks.

2. MATHEMATICAL FORMULATION

For definiteness we consider a liquid-vapour system contained within
a circular cylindrical vessel of radius R and height H. All liquid phase
properties (density, volume fraction etc) will be denoted by the suffix L
while the suffix V will designate the vapour phase properties. The
vertical acceleration due to gravity is denoted by g. SI units are used
throughout. Of the many forms of two-phase flow equations given in the
literature [3,4], we choose the following set. Considering only the
variation in the vertical direction (y) and the time (t), the dependent
variables are: aL(y,t), av(y,t) (volume fractions of liquid and
vapour respectively), Vi(y,t), Vv(y,t} (vertical liquid and vapour
velocities) and p(y,t) (the common pressure field). The densities pL and
Py are taken as specified constants (incompressibility approximation).
This is reasonable provided VL and Vvare small compared to the acoustic
velocities. The dynamics of the above system are assumed to be governed

by the following system of nonlinear equations.

%E(pLaL) ki %y-(pLaLVL) =m Vi 1
%—;-(pvav) + 'g;(pvavvv) = r'nv (2.2)
—g—g( oLa V) * %(pLaLvE) = - aq %YE - P89t Fot Foa (2.3)
%E (P& Vyy) + %y—cpvavvg) = 5w -g-yE - Py%g t Fo+ Foe  (2.4)



a + = 1 (2.5)

The above eguations must be solved given initial data on aL, a_, V

v L
and Vv and the endpoint conditions: VL(D,t) = VV(O,t) = VL(H,t) =
VV(H,t) = 0 (impermeable boundaries). The inter-phase drag forces FLV'

i ' i F + = 0. i
FVL satisfy Newton's third law LV FVL 0 They are in general very

complicated functions of « a_and V_ - V.. For example, F has the
e L' ¥ L v Ples Fpy 78S

form,

P
v T Sw 3 Vg = V) (2:8)
LV

where the non-dimensional coefficient CLv and the momentum relaxation
time TLV have no generally valid forms but have to be determined either
from experimental correlations or from theoretical considerations
involving 'micro physics' of the inter-facial forces. The evaporation
reaction forces F_., F_. are taken to have the forms F.. = m_. V. and

Lm Vm Lm L L

Fvﬁ = m, VL. The mass sources m s mvdepend on the physical situations of

interest. For example, if L and V are different substances which do not

chemically react and cannot be transformed into each other, ﬁL and ﬁv

are equal to zero in the absence of external mass sources. If L and V

refer to water and steam respectively, ﬁL + &V = 0 and ﬁL depends on the

thermodynamic properties of the fluid. To calculate aL, an enthalpy
equation is required together with appropriate phase-transformation
relations (e.g. the Clausius-Clapeyron equation). In general, the
specification of the sources LY FL and FVL is a problem of

Vv
constitutive relations. It has little to do with the numerical

algorithms involved in solving Egqns. (2.1) to (2.5). We shall

concentrate on the latter aspect in this paper.

It is important to note that Eq.(2.5) is different in character from
the others. It is not an evolution equation for p, but a constraint.

The equation for p is of elliptic type (unlike the others which are



hyperbolic). It can be derived from (2.1), (2.2) and (2.5) and takes the

form,
m m
d L v
Py (@ Vv, + aV,) = (—-—pL + —-—pv) ; (2.7)

It will be seen that (2.7) effectively determines p, in (2.3) and (2.4).

The a's calculated using (2.1), (2.2) (2.3), (2.4) and (2.7) are non-

negative and satisfy (2.5) for properly defined sources. Thus the
condition VL = Vv =0 aty =H 1is appropriate if ﬁL’ﬁV satisfy
g Ty

j (~— + —)dy =0 . Otherwise, the flow rates at y=H must be

o P P
consistently prescribed. We give an example of this later.

Turbulent stresses are not explicitly accounted for in equations
(2.3) and (2.4). Provided the drag-terms are obtained from experimental
correlations they will include turbulent effects. It would thus be
double counting to include two-phase analogues of the Reynolds

stresses.

3. NUMERICAL ANALYSIS OF THE MODEL

Before we proceed to a description of the numerical methods employed
in this study, we state our guiding principles; we adopt a practical,
engineering approach to the computations as opposed to a mathematically
rigorous error/stability analysis. The cardinal requirement of the
algorithm is that it should produce physically consistent and meaningful
solutions to physically well-posed problems. Thus high order accuracy
(for given mesh sizes) is less relevant than numerical stability,
qualitative consistency and acceptable convergence properties of the
algorithm. This standpoint is motivated by the fact that there are large
uncertainties in the physical specification of the momentum sources and
there is little value in obtaining highly accurate solutions of
approximate equations. A second, and no less important, requirement of

the code is flexibility. By this we mean that the same scheme with no



modifications other than the obvicus changes of parameters must be able

to handle a wide variety of flow and source specifications. In view of
; ; ; . . A

these a priori criteria, we formulate below a first order (in Ei' At),

semi-implicit, iterative finite-difference scheme to solve the problem

posed in Section 2.

Figure 1 shows a typical equally spaced grid arrangement of 5
"continuity cells". The 'nodal points' are located at yj =jly - %X,
where j = 1,5. (5Ay = H). The quantities aL, av and p are 'stored' at
these points and are denoted aL(j,nAt) or simply azj. nAt (n =0, ..)
denotes the time from t = 0. We also need to have an index for

iterations at a particular time nAt at a point yj. We use v for this

purpose. The velocities VL and Vv are stored at the 'staggered'
; o . n _ .n TS, PR . | _
locations yj = jhAy,] 0,5. DNote that VLO = V1j=5— Vo~ ij=5—

not explicitly calculated by virtue of the boundary conditions.

O,and are

In Figure 1 ABCD represents a typical continuity cell at j = 3.
Quantities pertaining to the adjacent cell j = 4 will be denoted by '+!'
(also in reference to the cell boundary AB). Analogously,quantities
éertaining to CD are denoted by '-'. It is useful to observe that sz is
not stored at yj} but at y;. If &y = %, there are N continuity cells and

P. is a N-vector while there are only N-1 solved velocities.

Suppose we have in store a_(j,n), «_(j,n) V_(3j,n), V_(j,n) and m
L v L v L,
ﬁv at (j,n). The following explicit scheme is used to calculate
aL(j,n+1), av(j,n+1). The scheme is first order accurate and is
specially designed to ensure that aL(j,n+1), av(j,n+1) satisfy (2.5).
Furthermore, it ensures that 0<aL(j,n+1)<1, and 0<av(j,n+1)<1.
We integrate equation (2.2) over a continuity cell such as ABCD

(treating Py to be constant).



- _ . Wy

=m __ - (3.1)
VJPV

; . i +
{‘IV(J:I'H'U' av(J,n)}—.&% + [avvv] —[avvv]

Since the scheme is explicit,

+ ; . .
[avvv] = {o,a (3,m) + (1 6,)a (3+1,n) }V (3,n)
[av,]” = {6_o,(5-1/n) + (1-6_)a (3 m) [V (3=1,n)
bearing in mind that Vv(j,n) is located on the boundary AB. The

interpolation factors B+, ©_ are chosen to imply "upwind" or "donor-cell"

differencing.

Thus O, 1 if V. (3m) >0
(3.2)

= 0 if Vv(j (n) <0

With these definitions (3.1) can be rearranged and put in the following

general form:

@?+1 =K O + A B+ At 8 .+ s, (3.3)
b i3 j 3-1 j im j
s. = m, X
j ™3 o,
_ ) . At . . At
Aj = = 81D vv(j,n)ny + (1-8_(3)) v (3-1,n) iy
+ ) . At
Aj = - (1-6+(3))VV (3,n) 5
- _ _ At
AJ = 6_(]) Vv(j-1,n) &
n i
@] = (Iv(j,ﬂﬁt)a

+
We observe that the upwind differencing rule ensures that Aj’ Aj are

always non-negative. Observe also that by definition 8+(j) = 0 (j+1).



From this we obtain the identity

+
I I (3.4)

In oxder to find conditions which ensure the physical consistency of the

scheme,we consider the important special case Sj = 0. We shall call an

arbitrary column vector {xi}(i=1,N) admissible,if 0 < xi and
N

Lx = X,where X is a fixed constant. Clearly 3" and @n+1 have to be
i=1 1
admissible vectors if Sj = 0, for all j and n, with the same X. Consider

an arbitrary linear transformation I on the set of admissible vectors,

defined by the square matrix {Lij } We seek general necessary and

sufficient conditions on L such that Ix will be an admissible vector

given that x is. The elements of the column vector y = Ix are given by,

Now, 0 < yi for all i given that x is admissible is clearly true if 0 <
. N N N
L for all i and j. Furthermore, Ly, = L x , if I L, = 1 for
;L ’ i : j . ij

13 : ‘ 1i=1 i=1 i=1

all j. If the matrix elements L,  satisfy the conditions 0 < Li‘

1] J

N

LL,, =1 for all i,j respectively, we shall call L a positive,

. ij > B

i=1

faithful transformation, defined on the set of admissible vectors. It

r

1s not difficult to show that the conditions enumerated are both

necessary and sufficient for L to map the set of admissible vectors into

itself. Evidently a sufficient condition for the tridiagonal matrix
+ -
defined by Aj ’ Aj + A, to be a positive, faithful transformtion is the
"Courant" condition,
) [y (5.m)
= 3.5
it > 2‘Max Vv(j,n) ( )
j=1,N

. n+1
If this is satisfied, the Aj are all positive and (3.4) implies that &

is admissible. Physically, the Courant condition means that the
'numerical domain of dependence' of Eg.(3.1) includes the 'analytic
domain of dependence' of the hyperbolic equation (2.1). We have ;hown
above that this automatically ensures that (Aj, A-ji-, A;) is positive,

faithful. Consequently it is plain that Eq.(3.1) and Eq.(2.1) share the



same conservation properties in the absence of sources. Clearly, we also
require the a's to be less than or equal to unity. This can only be
achieved if the velocities satisfy the constraint (2.7), which in turn
implies equation (2.5). Provided the V's uéed in equations (3.1) and
(3.3) are consistent in this sense, the a's implied by equation (3.3)

will always be less than or equal to unity.

If the mass source is non zero, At is further restricted by
accuracy requirements. For many purposes it i1s convenient to replace Aj,
+ - + - Do , :
A,., A, by C., Cj' Cj which define a positive faithful matrix

]
independently of the sizes of Ay and At relative to Vv(j,n)(i.e. even if

the Courant condition (3.5) is not satisfied).

+ + + -
Thus we put, cj_ Aj__1/(1+Aj_ By )

1 17 B349
Co. . = Al ./(1+A, . + AL .) (3.6
i+1 T T3+ j-1 j+1 G
C =1 -c c.
§ = 5-1 3+1

Clearly, in the limit At =+ 0 for fixed Ay (or more generally for At, Ay -

At
numerical consistency with the differential equation. However, by

Fi\
0 with X >> Max 'VVI)’ the C's tend to the A's and one obtains usual

construction the C's always define a positive faithful transformation,

regardless of Ay, At and V_. Having advanced the a'vs using (3.3) (or
n+1

equivalent) we calculate an from (2.5).

It remains to obtain VL, Vv and p by solving finite-difference
forms of (2.3), (2.4) and (2.7). Finite-differencing these equations is
straight forward provided we recall that 'velocity cells' are staggered
and all convective terms must be upwind differenced. It is also
important to treat the inter-phase drag forces FLV' FVL and the buoyancy
terms carefully. We first define a 'reduced pressure' p by the

equation,



H
pP=7p +j gla p, + ap)dy (3.7)

In terms of E we have

- - 22:— a-+ 2 P +
9%, PL T % %y O 3y T 9% P T 9%, P T 9% Py O
= = a-— (04 GE = ) (38)
L3y 9% %' T Fy :
-ga_ p -a B aa;’+aa(p ) 3.9)
v T Yy T T Ve T NP TR , k3
Since FLV = CLv pL aL(Vv - VL)/TLV, this term is treated implicitly in

finite-differencing (2.3), (2.4). It is easy to verify that these

equations can be written in the form

+ + -
ol gt vt Lpm LY
V3 j vi+1 j vi-1 3
vn+1 _ D+ Vn+1 i D— vn+1 " SL (3.10)
Ly 3 L+ i Lj-1 3 )

* + v L
The tridiagonal matrix elements Bj etc. and sources Sj’ Sj involve

a's, V's (at n), p's (at n+1) and are given in Appendix 1. These must

, . n+1 n+1 n+1 . .
be solved iteratively to obtain VLj r ij x pj consistent with the

finite~-difference form of (2.7).

This solution procedure uses a form of Newton's method. Suppose that we

th | n+1,v n+1,v n+1,v . s
know the v iterate VLj ’ pj ij . We obtain the v+1

iterate as follows:

1,v n+1,v n+1,v
: V.

+
(1) Using p;,’ in the right hand side of (3.10) and Vi =



v L
in evaluating Bj's,Dj's and Sj's, Sj's we obtain a system of

+1,vF1 _n+1, v+1
linear algebraic equations for V.. EVEL g L ‘
L3 ¥
(ii) We solve these linear algebraic equations by the tridiagonal

matrix algorithm. Owing to upwind differencing and a proper

treatment of the inter-phase drag we have,

+ + - -
0 < Bj <1, 0 ¢ Dj <1, 0 < Bj €1, 0 ¢ Dj £ 1. Furthermore,
+ -
Bj + Bj € 1. Thus these matrices are non-singular, since they

are positive and diagonally dominant.

+1, v+1
(iii) We chtain po TV by writing
n+1, v+1 n+1,v
) = p, + Sp.
5 B 5

Substitution in (3.10) gives (assuming 6pj is 'small') in a

'diagonal' approximation,

n+1 asj ( )
&v = —= dp, - &p
\'a n+l,v j j+1
. . : n+1, v+1 n+1 ) o .
(iv) Substituting ij + évvj etc. in the finite difference form

of (2.7) gives a tridiagonal matrix system of the same form as
(3.10) for the vector {6pj}. The sources s? are simply the

continuity 'errors'

p +n+1
s, = [e (v, + &) + a (v, + 6vv)]j

-n+1 my,
- V. o+ + vV _+ &V - by (=~ + — .
[aL( LF V) e (V8 V)] 3 y[p - )' (3.11)
L vV 3]
' i ; : ; n+1, v+1
The solution gives 6pj, in turn leading to an estimate for pa .



The iteration is carried out until the continuity errors Sj are
sufficiently reduced and the 5pj are negligible in comparison with
p;lﬂ'\f This completes the solution at t = nAt. The procedure is
continued for as long as desired. This 'relaxation method' for obtaining
the solution of the momentum equations together with a self-consistent
pressure was originated for incompressible hydrodynamics by Spalding and
co-workers (e.g. [5]) and used by one of us [6] for transonic turbomac-
hinery calculations. The experience with the present algorithm indicates
it to be a feasible technique for solving multiphase flow problems
provided the a's are obtained using the method of positive faithful

transformations described earlier.

4. TEST CASES

We briefly describe two model problems/test cases which have been

solved.

Consider a cylindrical vessel of height H (3m) and radius R (1m)
with impermeable walls, resting on one of its flat faces. We assume
Qravity to act vertically downwards. At t = 0, the vessel is filled

with a mixture of liquid (density p, = 980 kg/m3) and a vapour (p, = 0.6

1
kg/m3). The initial conditions are: aL = av = 3, 0 <y < H.
VL = Vv = 0. The pressure distribution is hydrostatic. It is assumed in
the first test case that ﬁL = ﬁv = 0, implying that there is no phase

transformation or mass sources. Thus the total mass of the liquid and

the vapour must be separately conserved. The interphase drag force FVL

is assumed to be given by the following law:
a
. (4.1)

P
(V -V )f
VL TVL L \

a + ble-vV,' a =1.0, b = 150. (4.2)

- 11 =



FLV of course equals = FVL' This law is an ansatz, adopted for this
example, which may be appropriate to certain types of liquid-vapour
mixtures. The evolution of the system is easy to understand physically.
It is a strongly damped, nonlinear settling problem as the heavier liquid

falls to the bottom of the vessel while expelling the lighter vapour to

—

: 2H
the top. A typical time scale for this is provided by ¥ E— = 0.8 sec,

though of course the drag slows down the actual process.

Figure 2 shows the profiles of the liguid volume fraction aL as a
function of y at several times t. In this simulation, Ay = %E m.
while At =5 x 10~% sec. Typical liquid velocities are ~ /EE. The
profiles are produced at 0.2 sec intervals. After 1 second, the final
steady state is nearly attained. The conservation of total mass (of
liquid and vapour) is accurate to within the roundoff error. Typically 3
to 5 iterations per time step are needed to solve the momentum and

ressure equations to reduce a meansquare, nondimensional estimate of
p

local continuity error to less than 1%.

In the second test case, we consider a vessel initially filled with
liquid up to y=H/2, the rest of the plenum being filled with vapour. At
t=0, the velocities everywhere are assumed to be zero. We now consider
r

- _ . ) . .
m pvaLh(t), m m, where the vapour production rate A(t) is of the

form
-t/7T
Alt) = KO(1—e / ). (4.3)
As an example, we take ho = 30.0sec™! and T = 1072 sec. At y=H, we

set VL(H,t) = VV(H,t), which is equivalent to full momentum

equilibration and cbtain VL(H,t) from the relation,

H P
v (HE) = [ e (y,e) (1—2) dy A(L) (4.4)
o] pL

in its appropriate finite-difference form.

w 48 e



The results are shown in Figure 3. It is interesting to note that as the
liquid turns into vapour, it is dragged upwards and a more or less
homogeneous (in y) mixture forms which transforms in about 0.5 sec almost
entirely into vapour. There is a little ligquid left at the bottom of the
vessel which becomes vapour more slowly. As before, the continuity
errors are very small and the solution appears to be physically

reasonable.

5. CONCLUSICNS

A numerical scheme has been developed for the calculation of one
dimensional transient two phase flow. An algorithm has been developed to
allow the governing equations to be advanced in time in such a manner
that the volume fraction of each component is accurately calculated even
in the presence of large spatial and temporal gradients of volume
fraction. The momentum equations are solved using a pressure correction
method based on Newton's method. Example calculations are presented to

illustrate the application of the procedure to realistic problems.

- 13 -
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Appendix 1: The coefficients in the finite differenced momentum equations

In this Appendix we give the coefficients for the finite differenced
momentum equations. For the steam momentum equation we define

= A i i «3 :
T TLV/CLV and as in equation 4 so that

+ n+1/2 n+1/2 o
Bj = 1/2 At(1 e+) Py avj+1 vi+1/2 / Bj (A1)
n+1/2_ n+1/2 / BO
Bj = 1/2 At ©_ Py an Vi-1/2 (A2)
v n n - n
Sy = {AYpVan+1/2 Yoy T By Tvi41
5 v +8 v ® +E vyl
341V §-1 OV G+1 3 vy-1
n+1 n+1 .
n+1/2 - =
vi+12 BBy T By ) A
n+1/2 n+1/2
P T PP Oy iqyn (17 Gyypgy) by Ot
n+1/2 n+1/2 n
Ay bRy By g Yy 7 Tie1/2
n+1 n+1 _n+1 o
+ Ay At pv(1-avj+l/2) VL 3 A }/BJ
o n+1 - +
(nr4)

1/2
n+ n
+ P,y At Spialis d T yul2

- 15 =



The coefficients for the finite differenced momentum equation for the
water phase can be obtained by permuting the suffices V and L in the
above equations and modifying the term due to vaporisation. The final
term in equation (A3) should be removed and the term

n+1/2 .n+1

pvQyAta A should be added to the central coefficient B?.

Lyj+1/2

The form of the evaporation reaction force term is not symmetric because
we only consider the situation where water transforms into steam. Thus
since the evaporation reaction force is proportional to VL this term is
treated implicitly in the water phase momentum equation and explicitly in
the vapour phase momentum equation. The extension of the scheme to
incorporate other forms for this force, as well as the inter-phase drag

law, is straightforward.
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