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Abstract

A series of three dimensional reduced MHD simulations has been undertaken
to investigate the nonlinear tearing mode interaction mechanism widely
believed to explain hard disruptions in tokamaks. Validation of the
computations has taken into account both linear and nonlinear numerical
stability. Linear stability and energy conservation are shown to be
necessary for convergence. Many features of simulations of 'hard
disruptions' bear out our theory of a spurious finite time singularity.
Adjusting numerical and/or physical parameters suppresses the nonlinear
instability as predicted, thus allowing calculations to be pursued
indefinitely. The sensitivity of converged calculations to variations of
number of modes, initial and boundary conditions has been studied. Mode
interactions are insensitive to parameter variations; large amplitude
tearing modes lead to transient Alfvén wave bursts, with the persistence

of the bursts being greater for fixed boundary voltage calculations.
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I. INTRODUCTION

-

It is widely believed that resistive magnetohydrodynamic (MHD)
effects, in the form of tearing modes, play a major role in the disruptive
termination of tokamak discharges. This continues to be an active area of
res;taarc‘.:h.1'2 A tearing mode involves a change in the topology of magnetic
field lines which converts parts of the field energy into kineﬁic and
thermal energy. Typically, the magnetic field is little changed outside a
narrow "island region", where the driven fluid motion also tends to be
concentrated. MHD theories of digruptions are of two basic kinds: one
sort relies on the interaction of transport effects with tgaring modes3’4
and the other ;nvokes the interaction of tearing modes of different

helicitie55'6'7.

The first assumes the current density at the centre of the tokamak
plasma to be limited by sawtooth activity or the accumulation éf
impurities. 1In these circumstances, a small increase in total current or
change in the spatial variation of the resistivity may lead to a situation
where the magnetic islands just keep on growing, provided the associated
transport effects are allowed to feed back into the resistivity.
Ultimately the islands become so large that collectively they cover the
effective plasma minor radius, and the associated thermal transport from
the centre to the edge then rapidly cools the discharge.

The second argues that when modes with (poloidal wavenumber, toroidal
wavenumber)= (m,n) = (2,1) and (3,2) grow to sufficiently large amplitudes
that the islands overlap, there is a destabilisation of the (3,2) and
other low (m,n) modes on a timescale of the same order as the (2,1) linear
mode growth rate. Subsequently a large number of high m modes are

destabilised, leading to explosive growth. The final phase of the



calculations show approximate energy equipartition amongst high m modes,
rapid growth rates and the results becoming independent of resistivity.

In this paper we focus our attention on the nonlinear tearing mode
interaction mechanism. In common with other authors, we assume initial
profiles which are strongly unstable to tearing modes.5'6'8 Alphewys Sume
workers think it plausible that such profiles could develop,9 as far as we
are aware, no numerical simulations have been undertaken which demqnstrate
the necessarily rapid profile modification to justify the very unstable
initial conditions. Experimental data does not give conclusive evidence
on this point. Our efforts to fit profiles to experiment showed both
stable and unstable profiles to fit within experimental error bars.
Consequently, we regard the question of how the initial state was arrived
at as subject to further investigation.

The 'disruption' in the three-dimensional numerical simulations is
loosely defined. Experimentally observed characteristics, the negative
loop voltage spike, increased magnetic activity, temperature collapse and
subsequent current loss are only partially reproduced. The majority of
MHD simulations undertaken have used constant voltage boundary conditions,
so any variations in loop voltage have to be inferred from changes in the
self inductance. The concept of thermal shorting through ergodic fields
has led to island overlap being used as prognostic of disruptions7.
Calculations performed at the large values of Lundquist number, 5 = 106-
108, characteristic of present day tokamaks have not continued long enough
to demonstrate temperature collapse and current loss phasess, so they do
not justify the use of the prognostic.

The most notable feature of the simulations is that at sufficiently
high S (~106), explosive mode growth and approximate equipartition of

enerqgy amongst the high m modes follows the nonlinear interaction of



overlapping (m,n) = (2,1) and (3,2) helicity islands. In the 'hard'
disruption cases, the cascade to short wavelengths is such that the
calculations are unable to continue beyond the explosive phase. Several
papers have used the inability to compute further as an indicator of
disruption6’7’10. This we also regard as a possibly misleading
prognostic, and indeed it will be shown that a completely different
interpretation is consistent with the results.

The principal issue tackled in this paper is what happens to the
reduced MHD model beyond the explosive growth phase. 1Is the further
development consistent with experimental observation? Section II contains
a description of the model equations and their discretisation. Sec.III
gives results for the 'hard disruption' case, followed in Sec.IV by
theoretical interpretation and predictions. Sec.V presents (computer)
experimental tests of the predictions. Sec.VI gives results for

stabilised 'disruptions', outlining sensitivity to dissipation, mode

truncation and boundary conditions.
II. THE MODEL
A Differential Equations.

The solely MHD mechanism is studied using the low beta reduced
equations of Strauss11, to which we add a plasma resistivity and

viscosity, so that they become

(3 + v D = m - & - E . (1)
£ Vu = 2 (e .0 x V5 + 3 72
e * VI = =8 (E .N(b i & qé.é.) + B _LU . (2)



¢ is the dimensionless poloidal magnetic flux function, U is the negative
of toroidal vorticity and the other quantities are as defined by Hicks et
al12—except for ﬁhe magnetic Prandtl number p= v/no where v is the plasma
viscosity (assumed uniform) and no is a typical (dimensional) wvalue of
resistivity.

Viscosity is included for numerical reasons, although .= 0(1) can
be justified on physical grounds. P is egqual to the ratio of the viscous
to resistive decay times. Using Braginskii coefficients,13 we may

estimate pm to be

4%0” n1

p = ——s— = BY(m/m) =0(N, (3)
n.mic

where n, mi,cz, c“ and n1 are as defined in ref.13 and B is the usual
plasma B.

Eqns (1) and (2) have the energy conservation law
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This is a statement that the rate of change of total magnetic and kinetic
energy in volume V is given by the Poynting flux of magnetic energy
through the surface 3V of V less the joule and viscous dissipation. In
Eq.(4), it is assumed that boundary conditions are such that there are no
kinetic energy sources or sinks on dV. The VL symbol indicates gradient

operators with the toroidal ({) component absent.



B. Discrete Equations.

The large aspect ratio ordering leading to Egs.(1) and (2) has
reduced the description of the tokamak to a long thin cylinder with axis
parallel to L. 1If the cylindrical polar coordinate system (r,8,C) is
employed, then a natural representation of Egs.(1) and (2), and the
assoclated constitutive (Poisson's) equations relating j to ¢ and ¢ to U
is in terms of the‘fourier series expansions of the periodic coordinates 6

and L. i.e. f(r,0,C) is written as:-

£(r,0,8) = I Fm n(r)exp[i(m6+ %5)] ; (5)
' o

Using the expansion, Eg.(5), for variables appearing in Egs.(1) and (2),
and projecting the resulting equation onto the space spanned by a finite
set of modes {(mi,ni);  § E[1,Nm]} leads to a set of Nm coupled equations
for the harmonic amplitudes. These differential equations (in r and t)

are a spectral approximation to Egs.(1) and (2), and they retain exactly
the conservation law, Eq.(4), provided functions appearing in Eq.(4) are

interpreted as their truncated fourier series approximations.

The spectral equations, which are differential in r and t, are
converted into discrete equations by finite differencing in r and t.
Second order accurate space centred difference approximations to radial
derivatives and two-step time derivative approximations (forward followed
bf backward Euler differencing) are used14. These equations are

12

implemented in the code FORBAK, which was developed from the RSF code .

FORBAK uses the same methods for evaluating convolutions and solving

Poisson's eguation as RSF.



C. Stability and Convergence.

To resolve the possible spectrum of Alfvén modes completely, it may be
argued that ~ S mesh points (or modes) are required for each dimension,
and calculations need to be pursued for a time which scales as some
fractional power of S. If this pessimistic view held, then computer time

required to undertake tokamak simulations would scale as SY

¢ Where y = 6,
and any predictive computations would be impractical. Fortunately, the
scaling with S does not appear in reality to be so severe, although
computer resources still constrain the accessible range of parameters
(s,p ).
m

The question of stability and convergence of the simulation results
can be tackled in three stages; linear stability, convergence to the
spectral approximation and structural stability of the solution of the
spectral equations. These stages respectively determine the
appropriate timestep At, radial mesh spacing Ar and number of helical
modes N .

m
A local stability analysis following the procedure used in ref.15

gives for the eguations used in FORBAK the following timestep criterion

max{¥3S|E.§| e li-gi} At < 2 (6)

14,15 )
(c.f.RSF12' ‘'~ where a nonzero viscosity is required for a bound with At

# 0 to exist). A practical implementation of inequality (6), choosing At

to satisfy at each timelevel
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has been found to maintain linear stability with a = 1. (M*,N*) are the

maxima of mode numbers (m,n), and j is the index labelling radial mesh

points.

16,17 . s . . , ;
! (finite time singularity), arise

The nonlinear instabilities
because of insufficient spatial resolution in the radial coordinate. It
follows from the Ritz-Galerkin (spectral) approximation used to discretise

and © and z coordinates that

In the limit Ar-0, At-20, where Ar and At are such that inequality (6)

is satisfied, energy, as defined by Eg.(4) with functions approximated by

truncated fourier series (Eq.(5)), is conserved.

This theorem holds for any number of helical modes. It is of great
practical importance in that it allows us to separate convergence of the
difference equations to the mode truncated reduced MHD equations from
considerations of structural stability; conservation of total energy as
Ar,At+0 provides a simple scalar measure of convergence for a given number
of modes. The structural stability of the converged mode truncated

solutions can then be investigated by varying the number of modes.

III. THE 'HARD' DISRUPTION

For single helicity calculations, the initial phase of exponential
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growth is followed by the nonlinear Rutherford regime, where islands
grow linearly in time whilst maintaining approximate force balance.

. . 9,1
Saturation is reached”™’ g

when the poynting flux of energy into the island
is balanced by the joule (and if present viscous) dissipation. The same
pattern is followed by islands which saturate with small widths in
multihelicity calculations.

Multihelicity calculations starting from an equilibrium that is
linearly highly unstable to the (m,n) = (2,1) and (3,2) tearing modes are
significantly different. These modes interact in the Rutherford regime,
to increase the groﬁth rate éf the (3,2) mode, by profile
modification3’200r by nonlinear interactions through the (5,3) mode21.

Subsequently, a large number of high m modes are destabilised, leading to

a phase of explosive growth.7

Following the excitation of the large number of modes:7'22

i) there is approximate equipartition of energy among high m modes,

ii) most of the modes grow with similar growth rate and,

1ii) results become independent of resistivity.
Computations which exhibit this explosive growth are commonly described as
'hard disruption' cases. Features i) - iii) appear in the last phase of
the calculation7; Computations are unable to proceed either because
overflow is encountered, or as is the case with FORBAK, the timestep
becomes vanishingly small.

An example of a 'hard disruption' case is shown in Fig.1. The
physical parameters chosen for this case follow those of Ref.6 apart from
the choice of boundary condition. § = 108, pm = 0, uniform density

profile, p(r) = 1, constant current boundary conditions and an initial g

profile given by



r 2hy1/A
alr) = q (1 + (—r—) ) . (89
o
where T - 1.34, r, = 0.567 and A = 3.24. An initial static equilibrium

was obtained by setting n(r,t = 0) Ew/j(r,t = 0). Numerical parameters
used were Ng = 100 radial mesh points, 11 modes (m,n) = {(0,0),(1,0),
(14'1)1(211)r(3(2)((5:3)1(412)((6;3)((6,4);(7,4),(8,4)}- The axisymmetric

initial equilibrium was perturbed by approximations to islands_of widths

w ¢+ where w =w = 0.05,

= 0. i it
. 2,1 3,2 w5’3 01 me;sured in units of the minor

radius a, and wm o 0 otherwise. Figure 1a shows the evolution of
£

energies in the dominant (2,1) mode and the discrepancy, AET, in the total

energy budget:

t

AET=fo'(n&+1?:+P+J+W)dt', (9)

where M and K are respectively total magnetic and kinetic energies, P,J,
and W are total poynting, joule and viscous powers. In FORBAK, Eq.(9) is
numerically evaluated for the finite difference/spectral equations used.
It follows from Sec.II that for sufficiently small Ar and Qt, AET can be
made arbitrarily small. In the latter stages of the calculation (after
island overlap, cf.figure 1b), AET is not negligible. Eventually it
becomes as large as the magnetic energy in the (2,1) mode. This remains
true even if a (Eg.(7)) is reduced, indicating that insufficient spatial
resolution is the limiting factor.

The breakdown of energy conservation is reflected in the plots of the
loop voltage evolution. The curve labelled 'direct measure' in Fig.1c is
the loop voltage measured at the boundary (r = a)

P
= (10)
whereas the 'indirect measure' curve uses the formula:

v = - B+rRx+T+wW . (11)

1
2nl



For converged calculations (AET+0), these two measures become identical.

Figure 1d is a log-log plot of energies versus time. The time to is
the time at which the timestep became zero (to roundoff). Superimposed on
the plot is a line of slope 2; this shows that in the final stage of the
calculation, energy growth closely fits the law E =« (to-t)'Z.

Finite time singularities are observed over the range of parameters
for which 'hard disruptions' are seen. Fig.2 shows results for less
severe parameters than those of figure 1: s = 105, - W 1, constant
voltage boundary conditions, initial profile parameters q, = 1.344, ro =
0.56, A = 3.24. A time independent mass density profile, p(1) = 1 - rl +
r'*/2 was assumed to provide direct comparison with more recent published

0.01 and w =w =

resultszz. Initial perturbed island widths w2’1= 3,2 5,3

0.001. The 57 modes used in the calculation are shown in Table I.
Figure 2a shows that the mode energies behave similarly to
corresponding energies in figure 1a, but energy conservation is, as
expected, considerably better. Even so, the computations are terminated
by a finite time singularity. Fig.2b shows a selection of mode energies

versus time, again exhibiting the I(to - £)—2 asymptotic behaviour.
IV. NONLINEAR THEORY PREDICTIONS
A The Failure Mechanism
One interpretation of the hard disruption results is furnished by a
theory we have developed16. In this theory, it is shown that there is a

nonphysical feedback mechanism which feeds energy from short to long

wavelengths through aliasing23. Aliasing through insufficient radial



resolution in finite difference/spectral reduced MHD equations has been
shown to lead to finite time singularities of the form shown in Figs.1 and
2.

The essence of the theory for a closed system is as follows:
Ignoring finite timestep effects, the finite difference/spectral
equations, after suitable linear transformations, may be written

_ symbolically as

<, = a,., X, X - B, .x, -
xl aljk xj X ﬁljxj = (12)
where the set {xi} represents flux and vorticity function values and the
summation convention is employed. The quadratic term in Eq.(12)
corresponds to the nonlinear advection terms, and ﬁij is a positive
diagonal matrix describing the diffusion terms.

The energy conservation law becomes

a. . x.x,xk - B (13)

ijk i3 ijxixj

In the alias free limit, the symmetry of aijk is such that the cubic terms
sum to zero, giving E < 0. The same result holds (from Eg.(4)) for the
differential system. This implies that in the alias-free limit, finite

time. singularities are impossible provided poynting fluxes remain

bounded.

In the limit of small xi, Eg.(12) yields solutions xi~ exp[—Biit] (no
summation convention). For the large xi asymptote, the linear term
becomes negligible, and equations ii = aijkxjxk admit solutions of the

form
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X, /(tgt) | (14)

= aijkxjxk (15)

To prove that Eg.(14) gives singular solutions, we must demonstrate
that there are real values {Xi} satisfying Eg.(15). Accessibility of the
singular solutions follows by showing that trajectories described by {Xi}
are attracting for t; > 0. We have proved both these points analytically
(with the aid of the computer algebra prOgrém, MACSYMA24) for Alfvén wave
solutions of particular spatial periodicity16. The analytic results have
been verified and extended using standard ordinary differential equation
solvers on solutions with particular spatial periodicities. Most
significant features of the hard disruption results illustrated in Sec.III
are as predicted by our theory:

i) from Eq.(14), amplitudes all grow as {to-t)'l, giving the
appearance of approximate equipartition of energy among the modes.

ii) Mode amplitudes grow with growth rate y ~ }Ei/xi = 1/(t,-t). i.e.
modes have similar growth rates, and these rates become larger as t
approaches tge

iii) Results become independent of resistivity. As t= t,, the ratio of

advective resistive terms tends to infinity: a,. x.x X ~(t -
\' to i n inity 141 k/Blj 3 (tg

t)-1i.
iv) Energy conservation fails.
v) Asymptotically, energies grow as (to-t)‘z. The form of the

quadratic terms in Egq.(1) is such that, more generally, one may

26

expect magnetic energy « (to-t)- i 0<6<1 and kinetic energy =(t -



t)“2, although only cases with &=1 have been observed using

FORBAK.
B. Stability Boundaries

In addition to predicting the consequences of radial aliasing, our
theory shows how to avoid them. For the simple particular periodicities
and model problems that we were able to treat analytically, Lyapunov
functions which give sharp estimates on the stable regions of parameter
space can be constructed; These show that if we include sufficient
dissipation, the unphysical singular behaviour is avoided. The amount of
dissipation required is that which prevents energy cascade to subgrid
scalelengths. Energy flows to shorter wavelengths through phase mixing
and nonlinear coupling. The shortest scale lengths reached are determined
by the balance between advective Ta and diffusive Ta timescales. To
inhibit energy flow to length scales less that the grid spacing, Ar, we
required Ta/Td < 0 (1) at scale length Ar. For Alfvén wave processes,
this implies a mesh Lundgquist number

V_Ar

LlIl = W<0“) ‘ (16)

and for flows, the mesh Reynolds number, Re' and mesh magnetic Reynolds

number, Rm, must also be small

_ Var _ Var
R, = 5= < 0(1), R === <co(n) . (17)

GA and V are measures of variations (e.g. peak-to-peak) of Alfvén and flow

speeds.

- 13 =



Conditions (16) and (17) apply even in the limit At-0. fhey must be
satisfied to guarantee avoiding the finite time singularities. If they
are not avoided, then the 1/(t0-t) growth of velocities will eventually
lead to linear instability (cf.Eg.(7)) or cause At = (ty-t) +0 as t =+ t,;.
The numerical values of the 0(1) constants have not been found

analytically, but can be estimated empirically. All we require here is to

note that:

i) large transients and steep gradients make singular behaviour more
likely,

ii) increasing 7n and/or v stabilises and,

iii) decreasing Ar stabilises.

We verify 1i) and iii) on the hard disruption cases below.
A second way to avoid these finite time singularities is to choose a
numerical scheme which is free from them; one scheme of particular

i P 25
interest is EPIC .

V. NUMERICAL VERIFICATION

A. Increased Dissipation

Using the same initial conditions, radial mesh and number of modes as
the case shown in Fig.1, we find that the singular behaviour disappears
for Pm between 1 and 10. The physical effect of increasing viscosity is
to reduce the growth rate of the large (m,n) islands and to make results
generally smoother. However, apart from a renormalisation of timescales,
evolution of the principal islands closely resembles the inviscid case up

to the point where the inviscid case becomes singular.



Figure 3 shows island widths and loop voltages for a computation with
mode selection and physical parameters identical to the case shown in
Fig.1 apart from a changed magnetic Prandtl number. The direct and
indirect voltage measures are almost indistinguishable for these cases,
indicating improved energy conservation. The negative voltage spike,
which reaches approximately the same magnitude as the equilibrium voltage,
occurs as the islénd widths decay. Note that the peak negative voltage is

larger for the case with larger viscosity.
B. Decreased Mesh-spacing

It may be argued that the cases of Figs.1 and 3 have too few modes.
In addition B is too large in the example shown in Fig.3. Figure 4 shows
results for 57 modes, pm =1, 8§ = 105, where only the number of radial
mesh points is changed. Plotted are energy errors versus time for the
cases with 200 and 400 radial mesh-points. The 200 mesh-point case

terminates at time t; = .00704 as the finite time singularity is

approached. The converged results are discussed further below.

VI.THE STABILISED DISRUPTION

It follows from the results of Secs.IV and V that there exists a
stable region of (S,pm) parameter space which is free from unphysical
singular behaviour, and that that region can be extended by employing
finer radial meshes. Below, we describe what happens beyond the final
phase of hard disruption cases when computations remain stable, and test

the sensitivity of our results to parameter changes. For clarity, in this



_section times are measured in Alfvén units, i.e. they are larger by a
factor S than in the rest of the paper.

B. Structural Stability

For a given number of helical modes, our theory and computations
suggest that once numerical instability is suppressed, the results become
independent of radial mesh spacing. This section examines the structural
stability of such solutions. By structural stability, we mean that a
sufficiently large number of helical modes has been chosen so that the
results of a converged computation do not change qualitatively with the
addition of further modes.

To facilitate direct comparison, we focus our attention on the fixed
voltage boundary condition, S = 105, pm = 1, 57 mode case discussed in
Secs.III and VB. Fig.5 shows the energy spectrum at four times during the
simulation, and Fig.7a shows the corresponding inferred loop voltage VI.
The energy spectrum is dominated by modes with (2,1) helicity until time t
= 630 (fig.5a). There is also a small amount of (3,2) energy which
interacts with (2,1) to yield (1,1). Exponential growth of modes (m,n) =
k(2,1) #(3,2) = (2,1)*1/1 then follows (those with the plus sign being
favoured) and the spectrum rapidly broadens. After t = 630, all available
modes contain significant energy and there is then a period when the
spectrum advances towards equipartition. During this time, oscillations
develop first in the energies of the highest (m,n) modes and then in lower
(m,n) modes. Many of the modes contain almost equal magnetic and kinetic

energy.

For times t = 650 to 685, there is a characteristic blip in the (2,1)

magnetic energy, which jumps by 50% , see Fig.6. Ref.22 attaches great



importance to the blip, regarding it as providing an indicator of
convergence with N ' However, the (2,1) energy has already grown by many
orders of magnitude since the start of the calculation, and in any case 11

mode computations do eventually exhibit it (see below).

The magnetic energy spectrum is at its flattest around t=700-800
(Fig.5b); thereafter modes furthest from the line of helicity (2,1) in
(m,n) space fade, until at time t = 1200 (figure 5c) the spectrum looks as
it did at time t = 600. The sequence repeats (but less energetically);
the spectrum fills upragain by time 1350, and flattens as before. By t =
1590 (the end of the run), it is again fading.

Similar repetitive behaviour is exhibited by the inferred loop

voltage, defined by

d M

¥ T "2"11?‘ = : S
Note that VI is defined consistently with (11), i.e. it is 27 smaller than
VI of ref.22. Fig.7a shows the time dependence of VI for the 57 mode
case. The M and I terms contribute almost equally to the large (= =32)
swing at t = 700. VI then recovers towards zero around t = 750; although
M stays negative, I increases by about five per cent, resulting in an
overshoot to VI = 10. Note that the second negative spike is greatly
reduced, reaching only =6.

It is clear that for lengthy intervals of the computation, the energy
spectrum is not fully represented. Indeed, for our choice of physical
parameters and numerical scheme this is likely to remain so because of

finite computer resources. However, some confidence in the structural

stability is given by comparisons with computations differing only in the



number of modes chosen. Using the 117 (m,n) modes listed in Table I, we
observed broadening and flattening of the spectrum as in the 57 mode case;
there is however, a difference in VI' which now falls only to =27
(cf.Fig.7a). BAll other features agree qualitatively with the 57 mode
result, thus we argue our 57 mode results are as good as if we had used
117. The 117 mode calculation was not pursued beyond t = 709 because of
the prohibitive cost.

More surprising are the results for 11 modes, chosen as in Sec.III.
Even with such drastic truncation, the only significant difference is
timing. The blip in the (2,1) magnetic energy, for example, starts at t =
700, 50 units later than with 117 modes (Fig.6), and the VI minimum is
correspondingly displaced (Fig.7b). The initial negative voltage is
larger (-48) than with more modes, and again there are weaker repetitions
(at £t = 1700 and t = 2440), gualitatively the same as the first.

In addition to structural stability, the mode interactions remain
basically unchanged as S and P, vary. Figs. 1 and 3 differ only in that
there is greater smoothness and slower evolution with larger viscosity.
Decreasing S has similar effects. All cases show oscillatory behaviour,

with bursts of Alfven waves occurring at island overlap.

B. Initial Conditions.

The first phases of the physical problem discussed in Sec.VIA have
Eeen studied previouslyzz. Direct comparison with Figs.6-8 of Ref.22 and
unpublished results (H.R.Hicks et al, Oak Ridge Report ORNL/TM-9127)
suggest that our clock is running differently, so that better agreement is
obtained if 25-30 units are subtracted from our timings. There are

several factors which can account for this small discrepancy, thus we do



not regard it as significant: Firstly, the time integration schemés are
such that RSF underestimates the actual viscosity15, whereas FORBAK
overestimates it14- Secondly, uncertainties in initial conditions can
lead to timing changes of this magnitude. For instance, in the 11 mode, S
= 10° case cited in Sec.VIA, changing q, from 1.344 to 1.34 and r, from
0.560 to 0.567 delayed behaviour by approximately 15 units from time 500
onwards. This change is to be compared, for iﬁstance, with a 20 percent
change in timing introduced by replacing the quartic form by p(r) = 1.

A second, more important, way in which initial conditions affect the
loop voltage is apparent from the discissions of Sec.VIA, where the second
transient is a factor 5 less violent than the first. The spectra in both
instances have the same shape, but the absolute amount of energy in a mode
is an order of magnitude smaller at the latter time. If the transient
interaction of strongly unstable tearing modes is to provide a prognostic
for disruptions, then the question as to how the strongly unstable initial

conditions are prepared must be clearly resolved.

< Boundary Conditions.

Constant current boundary conditions are more appropriate to tokamak
operation than constant voltage conditions. The 11 and 57 mode runs of
Sec.VIA were repeated with fixed current boundary conditions.

The energy spectrum for the 57 mode case develops identically to the
constant voltage case until t = 900; thereafter, it shrinks more rapidly
and by t = 1255 is totally dominated by modes of (2,1) helicity, with only
two other modes (3,2) and (4,3) poésessing significant magnetic energy.
The 11 mode calculation suggests long time behaviour will exhibit further

bursts of Alfvén wave activity. These bursts persist for shorter



time in the constant current case because the driving Poynting flux term
is removed as the voltage goes negative.

Figure 8 compares for the same run the inferred and actual voltage
for the 57 mode case. As expected, VI overestimates V, since M leads to
Lorentz force energy exchange and ohmic dissipation as well as Poynting
flux changes. In addition, V lags VI' If one takes the pessimistic view
that computations should terminate when the spectrum becomes full, then
results would only be acceptable for times before the arrow at t = 667.
One then has to reject the negative voltage spike (V = =8.75 at t = 705).
However, our studies of structural stability, although limited, do suggest

that gross features are correct.
VII. SUMMARY

We have produced what are demonstrablj the best numerical solutions
of the reduced MHD equations at high S( = 10%). calculations at S = 10%
and S = 10° show the same qualitative behaviour, so it is plausible that
our results apply at the higher S = 108 relevant to modern tokamaks.
There is no unambiguous evidence that the reduced MHD equations are by
themselves capable of explaining any of the main features of disruptions.

We have presented results which show that computations supporting the
widely accepted view of 'hard'.disruptions can be understood in terms of
an unphysical alias feedback mechanism. Quantitative predictions of our
theory of this mechanism are confirmed by the numerical simulations. We
believe that hard disruption calculations which terminate in a spurious

singularity at the large S, small pm values must be interpreted
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cautiously. Our theory and computations show how to adjust parameters or
to alter the numerical scheme to ensure that solutions remain physically

well behaved.

We have undertaken computations of tearing mode interactions when

unphysical singularities are absent.. We have investigated the effect of
varying the timestep At, the number of mesh points Ng, number of helical
modes Nm, S, pm, initial conditions and boundary conditions. Results were
insensitive to timestep size under conditions of linear stability and to
radial mesh spacing if nonlinear stability was maintained. The energy
. monitor provided a simple diagnostic for convergence with At and Ng'
There is some dependence on Nm  and on S and pm, although the same gross
behaviour was seen for the wide range of parameters tried: 11- 117 modes,
10% < 5 < 10 and 0.1 < P < 100. Varying initial and boundary conditions
can produce more marked effects.

What we see in our simulations is the response of a system placed in
a very unstable state. The natural result is that the system attempts to
dispose of its excess energy to its most unstable modes. If this is an
inadequate sink, a wide spectrum of modés is forced to grow, the net
effect of which is (via a burst of Alfvén wave transients) to modify the
current profile. Subsequent behaviour is less violent, and it appears
that there is an approach, via further Alfvénic bursts, to a steady
equilibrium. The bursts are of shorter duration and equilibrium is
approached more rapidly for constant current boundary conditions, as in
that instance more of the excess magnetic energy can be deposited in the

external circuit.
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It must be made clear that we cannot be precise as to all details, as
we do not fully represent the spectrum of Alfvén waves that appear in the
transient bursts. Well-resolved MHD calculations in a slightly different

. 26 : .
context support our overall picture” . The major question left unanswered
by the lack of resolution concerns the magnitude of the loop voltage
swing. We find it reduces as the number of helical modes Nm increases, so
will it remain significant as Nm+ © ? This question will be resolved only

by employing numerical methods which do not have costs scaling as N2,

Two features of our calculations may be of imporﬁance in
understanding disruptions: the Alfvén wave bursts and nonlinear
oscillations of low (m,n) (particularly (2,1) and (3,2)) modes. However,
the picture is yet far from complete. The assumption that ergodic
magnetic fields cause loss of confinement relies on fields remaining
ergodic for sufficiently long. We observe transient bursts; brief
interludes of broken magnetic surfaces may have little effect on
confinement. Moreover, we have shown that small changes in initial
conditions (such as produced by the first Alfvén burst) alter guantitative
behaviour by an order of magnitude. The results reported herein indicate
that two key points require clarifying: the nature of the (1,1) and (2,1)
interaction in the preparation of strongly unstable conditions and the

interplay between Alfvén wave bursts and transport.
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TABLE I. The (m,n) modes chosen for the 57 mode calculations are marked
with 'o' and those for the 117 mode calculation marked 'o' or "x'.
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Fig.1 S=105 p,=0, p=1 and total current held constant, using 11 helical modes and 100 radial mesh-
points. Time is measured in units of 7r=a?/ue (a) The deviation from total energy conservation AET,
and the kinetic and magnetic energy of the (2,1) helical mode plotted versus time. Energy conservation
becomes poor well before the final blow up. (b) Time-dependence of island widths w. For clarity not
all w0 are plotted. (c) Loop voltage as a function of time. The indirect measure assumes energy
conservation. (d) Total magnetic energy, Eaac, kinetic energy, Exiv and AET plotted as functions of
time (fo-f¥rg, demonstrating o(¢,-f)~2 behaviour. &, is the time at which the stability criterion, Eq.(7)

forces Af to zero.
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Fig.2 S=10°, pm=1, p(r) and constant voltage boundary conditions, using 57 helical modes and 200
radial mesh-points. (a) AET, and the kinetic and magnetic energy of the (2,1) mode plotted against
time. (b) Magnetic energies, drawn dashed, and kinetic energies, drawn full, for the (2,1), (3,2) and
(5,3) helical modes, demonstrating o(¢,-f)~* behaviour.
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Fig.3 §=10% pm=10 (a and b) or Pm=100 (c and d), p=1 and total current held constant, using 11
helical modes and 100 radial mesh-points. (a) and (c) Time-dependence of island widths w of the three
principal islands. (b) and (d) Loop voltage as a function of time. The indirect measure (drawn dashed)

is virtually indistinguishable from the direct measure.
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Fig.4 As in Fig.2, 8=10°, pm=1, p(r) and constant voltage boundary
conditions, using 57 helical modes. The deviation from total energy
conservation, AET, is plotted for runs with 200 and 400 radial mesh-
points.
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Fig.5 Same case as Fig. 2, but using 400 radial mesh-points. The magnetic (full line) and kinetic (dashed
line) energy spectrum drawn at a sequence of times (a) 601, (b) 730, (c)1202 and (d) 1362.5, in Alfvén
units. Following ref. 22, the linear dimensions of each ellipse are proportional to logo(Earx 10°/max(Ens))
and the (0,0) and very weak modes are omitted.
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Fig.6 Same case as Fig.4: the magnetic energy in
the (2,1) mode plotted versus time in Alfvén units
for calculations with (number of helical modes,
number of radial mesh-points) = (11,200), (57,400),

(117,400).
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Fig.7 Loop voltage plotted versus time in Alfvén units for the computations of Fig. 6.

(a) 57 and 117-mode runs superimposed, (b) 11-mode run.
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Fig.8 S=10°, pm=1, p(r) case, but with constant current boundary
conditions. Ng=400 and 57 helical modes were employed. The inferred
(Eq. 18) and actual loop voltages plotted on the same scale. The arrow

at t=667 indicates the point at which the spectrum becomes full.
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