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Abstract

The equations which describe the combined E_x E., E? X.E , and curvature
drifts, the magnetic gradient force along magnetic field lines, the
existence of the first adiabatic invariant, and the rapid cyclotron motion
are shown to have a canonical Hamiltonian structure which relates directly
to the local spatial coordinates. The use of Poisson brackets leads
immediately to the drift kinetic equation, expressed in local spatial
coordinates rather than magnetic field coordinates. When the magnetic
field geometry is such as to give rise to mirroring, and the second and
third adiabatic invariants exist, their physical identification follows at
once from the canonical formulation. Consideration of the symplectic two-
form and its exterior derivative in terms of noncanonical local spatial
coordinates leads both to the well-known use of magnetic field coordinates

as canonical variables, and to a compact geometrical formulation of the

drift equations.
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I. INTRODUCTION

There is at present considerable interest in establishing the
Hamiltonian structure of many aspects of plasma physics. Hamiltonian
approaches have been employed in the fields of plasma particle

dynamics and kinetic theory,1-19 nonlinear processes,zo'21 and

22,23 7,9,10,13-16,20,22,23

magnetohydrodynamics. In many of these cases,

. . . 24
and in recent applications to the free-electron laser and to

5,2
25,26 noncanonical coordinates27 and the

radiofrequency plasma heating,
. 28-30
Lie transform have been employed. The success of these advanced
Hamiltonian methods in relatively complex problems suggests that a
simpler, canonical Hamiltonian description may be sufficient in certain
contexts. Northrop and Teller1 and Taylor2 have shown that the drift
motion of a charged particle in a mirror field, for which the second
adiabatic invariant J exists, has canonical Hamiltonian structure when
expressed in terms of the magnetic field coordinates (a,f), where
8,11,17 .
B = Va x VB. Boozer and coworkers have extended the canonical
magnetic field coordinate approach to the theory of kinetic equations, and
the possibility of transforming back to spatial coordinates has been
s o 11 . . 18 ;
indicated. Littlejohn has demonstrated the canonical status of the
coordinates employed by considering the action differential form. In the
case where there exist three adiabatic invariants of the particle motion,
an action-angle formulation of the plasma kinetic equation has recently
. 19 : 5 ;
been obtained. A canonical Hamiltonian approach has also been employed

to deal with high-=-frequency heating of electrons in a mirror machineB'

; ; . . . . . 5,6
and wave=-particle interaction in a uniform magnetic field.™ '



In this paper, we consider the standard equations e of charged

particle motion in curved, inhomogenecus, static and curl-free magnetic
fields with electrostatic fields also present. These equations have a
wide field of application in fusion plasma physics,34 both in mirrors
and in tokamaks where they represent a good approximation insofar as the
curl-free component of the magnetic field considerably exceeds the field
generated by the plasma current. The equations apply also to those
laboratory and astrophysical plasmas where a similar ordering occurs. It
is shown that the drift equations of motion have a simple canonical
Hamiltonian formulation which relates directly to the local spatial
coordinates and the first adiabatic invariant. This Hamiltonian, and the
canonical equations of motion, describe the E_x E', E? x E , and curvature
drifts, the magnetic gradient force along magnetic field lines, the
existence of the first adiabatic invariant, and the rapid cyclotron
motion. This fact leads immediately, through the Poisson brackets, to a
formulation of the drift kinetic equation in terms of the local spatial

N
coordinates. When the magnetic field geometry gives rise to mirroring,
and the second and third adiabatic invariants exist, their physical
indentification follows from the canconical formulation. Finally, we
consider the symplectic two=-form and its exterior derivative in terms of
noncanonical local spatial coordinates, an approach which complements the
original applications of differential geometry in this area by

7,18

Littlejohn. This leads naturally to the well-known use of magnetic

field coordinates as canonical variables, and to a compact geometrical

formulation of the drift egquations.



ITI. CANONICAL HAMILTONIAN FORMULATION OF PARTICLE MOTION

Consider the Hamiltonian

p2
H(PlJQl:PZtger3lga) = PIQ(PZ'Qz'Q3)+ 2 +¢(PZJQQJQ3) (1)

2

It will be shown that the associated canonical equations of motion can be
identified with the drift equations for a magnetised charged particle,
through a simple mapping of (Q,¢,Qi,Pi) to physical coordinates. The

canonical equaticns of motion are

(2)

Applying these to the Hamiltonian (1) we obtain

P, =0 (4)
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(8)

These canonical evolution equations can be identified with the equations

of motion

mass m ,

potential

(Ql ¢I'Qil'P

sz

ap,
-

of a charged particle. Consider an electron of charge -e and

in a magnetic field of strength B with an electrostatic

field V . We define variables (B,V,Y¥, p,x,y¥,s) in terms of

i) as follows:

=dy

Q dQ, = ds

Finally,

combining Egs.{(7) and (15),

(92)

(10)

(11)

(12)

(13)

(14)

(15)



= (186)

Substituting the identifications Egs.(9)-(16) into the canonical evolution

eguations Egs.(3)-(8), we obtain immediately:

d¥ _ eB
* me (7
dp _
E-E'_O (18)
dx 1 0B ds/dt) 2 1
=Bl B (Sedb)c 1B, O g (19)
dt e B dy Q B 0y B ¥
2

.. e SR l?f.-f.gx (20)
dt e B Ox Q B ox B
a,. 4d 2
Sfel)=-EX g &g q. (38 R (21)
dt 4t m 0s m at 0s

where E = - V¢. We can now interpret the canonical evolution equations

and the new variables in physical terms. Eg.{(17) describes how the
azimuthal angle Y of rapid electron gyration increases in time at the
local electron cyclbtron frequency. Eg.(18) describes the existence of
the first adiabatic invariant associated with cyclotron motion. We
interpret ds/dt as the quiding centre velocity along the magnetic field
line. 1In this case, in Egs.(19) and (20), the first term describes the
Eﬁ X.E drift, the second describes the curvature drift, and the third
describes the.E X.E drift. The parallel force equation can be obtained

from Eg.(21) using the further result



(22)
ds oQ , ¢ 0 _c o

S Y (i PN, - s

dt 9s B Yax B xay

The first term on the right-hand side of Eg.(22) is the contribution to

dQ/dt arising from particle motion along the field line. This motion is
in general much more rapid than the E x B drift motion, which contributes
the remaining terms in Eg.(22). Combining Egs.(21) and (22), we have to

leading order

2
d—s=-‘laB — B (23)
dt 2 m ds m

which is the familiar equation for guiding centre motion along the field

line.

The motion of the electron has in principle six degrees of freedom.
However, the constancy of Pl and of H itself reduces this number, as
expected, to four. This observation leads immediately to the condition
for electron trapping by the magnetic field gradient force of Eq.(23). 1In

the absence of an electrostatic field, combining Egs.(1) and (16),

2
s @) =a-rp0 (24)

where both H and P, are constant. We see that PlQ is playing the

role of a potential energy. Let us denote by subscript zero the position



at which (ds/dt)2 takes its maximum and @ its minimum value. Then the
parallel electron velocity is zero at the point where the value of @ has
increased to QT, where by Egs.(1) and (24),

1(ds)2

P1(Q, - Q) = 7lae) (25)

This is the standard expression = since by Egs.(9) and (12) and the usual
- and this formulation lends substance to

1
- 2
Z vlo

the interpretation of the Hamiltonian of Eg.(1) as the total electron

definition of p, P1QO =
energy.

In general, when the motion in a canonical coordinate Qi is
periodic, the quantity fPiin is an édiabatic invariant. From Egs. (15)
and (16), it follows that fPaan = [(ds/dt)ds; this is the standard
c1eJ‘.‘ir1i‘(:ion31-33 of the second adiabatic invariant. The third adiabatic
invariant3 - is proportional to the magnetic flux enclosed by the
perpendicular drift surface. We can see that this corresponds to szdQ2
as follows. For simplicity let Q=Q(Q3)n Then by Egs. (13) and (14),
jPde2 = Q(Q3)fydx. This is indeed proportional to the product of

magnetic field strength with the area mapéed out in the (x,y) plane by

the drift surface, which is the enclosed magnetic flux.

III. DRIFT KINETIC EQUATION.

The drift kinetic equation follows at once, now that the canonical

Hamiltonian structure of the drift equations of motion in these



coordinates has been established. For the distribution function

f(PlJQlaP21Q20P3JQaat)J we have

af _ of
x5t {£.,8} (26)

where the Poisson brackets {} have been defined in Eg.{(22). Then

o o o o 3€
£,H) = @ — + — + Py — =" P
e} = 855 + 02 35, P2 35," 93 55," P3 v,

o R RPN R (27)
ov axl 0s m 0s m av"

Here x = (%,y) denotes the perpendicular guiding centre coordinates, ¥

L
denotes the perpendicular drift whose coordinates are given by Egs.(19)
and (20), v" = ds/dt is the velocity along the field line, and Eg.(23) has
been used in the final term. Combining Egs.(26) and (27) gives the plasma
kinetic equation to first order. For a distribution function which is
independent of the gyroangle V¥ , this is the drift kinetic equation.

Its Liouville structure is a consequence of the fact that the drift
equations of motion, expressed in local spatial coordinates in Egs.(17)-

(20) and (23), reflect the underlying canonical Hamiltonian structure of

Eqs-(1)=(8).

IV. SYMPLECTIC STRUCTURE

-38
It is well-known36 3 that if the transformation (Qi,Pi) > (qi,pi) is



canonical, the two-form

A dp, (28)

>
1
e~
[o"
10

is invariant. That is, E in A dPi = Z dqi A dpi. The geometrical object
i i

I is referred to as the symplectic two-form of the Hamiltonian phase
space. A discussion of some aspects of the geometrical description of the
noncanonical Hamiltonian formulation of charged particle dynamics has been

7,18

given by Littlejohn. Additionally, by considering the action one-

18 i :

form, Littlejohn has demonstrated the canonical status of the variables
8,11,17 . .

employed by Boozer and coworkers. Here, by considering the
symplectic two-form, we can relate the formulation of the particle drift
equations in terms of (x,y) to that in terms of (a,B), where B = Va x VB.
We can derive the conditions under which (a, B) are themselves a pair of
canonical coordinates. Finally, by introducing a drift phase volume four-
form, we arrive at a compact geometrical formulation of the general

noncanonical particle drift equations in the absence of an electrostatic

potential.

Let us use Egs.(13) and (14) to write x in terms of the noncanonical

set of coordinates (Ql,Pl,x,y.Qa.P3)=

~

A=4dQ; MdP) + Qx,y,Q3) dx A dy + dQj; A dP, (29)

It follows that the exterior derivative is given by

=28 a0, nax na (30)
E—; 3 Y



A canonical formulation requires d\ = 0, in which case by Eq.(30),
aQ/aQ3 = 0. We therefore consider first the case Q = Q(x,y) = eB(x,y)/mc.

Suppose that there exist functions a(x,y) and B(x,y) such that

_ _ da d8 _ da OB
B(x,y) = [Ja x YB]Qa = W (31)

In this case we can also construct a two-form

op o

oa oa
= (= —_ i == 8
da A dB (ax & + o dy) A (ax & + o )
= gﬁ Qx,y) dx A dy (32)

Equation (32) indicates that when aQ/aQa = 0, the expressions
Q(x,y) d&x A dy and da A df may be used interchangeably to replace

dQ, A sz in N. Thus, we may write
A =4do, Adp, +da A dB + dQ; A dP, (33)
so that ai = 0 and the set of coordinates (Ql,Pl,a,ﬁ,QB,P3) is canonical.

Now let us consider the more general case, where Q = Q(QZ'Pz'Qa)

= Q(x,y,s). For brevity, we shall write v" for ds/dt. Substituting from

~

Egs.(13)=-(17) in Eq.(28), we can express )\ in terms of the noncanonical

set of coordinates (Ql,Pl,x,y,s,v") as follows:



>
|

ds
= dQ) A AP} + Ax,y,8) Ax N Ay + s A d(v R0x,y,8))

dQ, ANdP; + Qdx Ady - dv, A ds -

With respect to this noncanonical basis, dx is not zero. 1In fact,

~ 30 180 1 20
ax = Adx Ady ~ Adx A ds - A gy A
A = ds dx dy Q'EE'dVH dx ds T dv" dy ds (35)
It follows that
v 1o i1 a0
I _ cpy o _ (CU _ A
-0 - Gam Tam & sty
1o Vi1 om
cu _ A A
o T oy )Y Mas havy
. V1 o0
- C¢ A
+ ( 5= + Q_.Eg) dx M dy A ds (36)

It is appropriate now to concentrate on the four noncanonical drift
coordinates {x,y,s,v"), and to define their associated phase volume four-

form

W=ax Ady Ads Adv, (37)

The basic drift equations, Egs.(19)-(21), describe i, §, and 53, We

therefore define the flow-vector

- 12 =



—'-Ia ua-c o)

VExm T Y% T Piam,

_+d ,e+d _14 d

~rmtiyg - om Milw 38

where we have used Eg.(16) for P3. Operating on this flow vector with the

volume four-form, we obtain the three-form *y = S(G) which is dual to V:

(Qv") dx A dy A ds
(39)

- . . 1 4

*W = x dy Ads A dv - dx Ads A dv + —
€ A Tk 1T g aE

Equating coefficients in Egs.(36) and (39), and comparing Egs.(19)-(21),

we see that the drift equations of motion in the absence of an

electrostatic field can be written in the compact form

(= - 2B) aX = *¥ (40)

We recall that in the canonical case, the exterior derivative d\ of the
symplectic two-form X is zero. In the noncanonical case considered here,
dX is nonzero, but is related to the dual *V of the flow vector V with
respect to the drift phase volume four-form ®in a simple manner. This
relation, Eg.(40), is itself a representation of the standard drift

equations of motion expressed in terms of the noncanonical local spatial

coordinates.



V. CONCLUSIONS

In this paper, it has been shown directly that the standard textbook
formulation30—33 of charged particle motion in a curved, inhomogeneous
static and curl-free magnetic field with an electrostatic field also
.present has canonical Hamiltonian structure which relates directly to the
local spatial coordinates. Such structure has already been established
when magnetic field coordinates are used,8'11'17'18 and the existence of a
sequence of canonical transformations from magnetic field coordinates to
spatial ccordinates has been indicated.“’18 However, the simple and
direct mapping from spatial to canonical coordinates of Egs.(11)-(16),
which together with the Hamiltonian of Eq.(1) immediately demonstrates the
underlying canonical structure of the standard equations of motion, does
not appear to have been noted previously. These facts give rise to a
simple derivation of the drift kinetic equation in terms of local spatial
coordinates. When the magnetic field geometry is such as to give rise to
mirroring, and the second and third adiabatic invariants exist, their
physical identification follows at once from the canonical formulation.
Consideration of the symplectic structure of the drift Hamiltonian phase
space leads firstly to a treatment of the way in which a(x,y) and B(x,y).
where B = Va x VB, may be regarded as canonical variables. Secondly, when
noncanonical local spatial coordinates are used, the drift equations can
be expressed compactly as a relation between the exterior derivative dX of
the symplectic two-form K, and the dual *V with respect to the drift phase
volume four-form g of the flow vector V. The continuing interest in the
structure of the drift equations is justified in part by their wide range

of application to magnetised plasmas for which the small Larmor radius

approach is appropriate. Boozer17 has recently discussed in detail the



simplicity, generality, and power of the canonical Hamiltonian description

in this context.
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