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Abstract

We investigate ﬁhe stability to aliasing errors of numerical schemes
for hydrodynamics, taking the viscous Buréers' equation as a model for
systems with a term quadratic in the wvelocity. Considering wavelengths
equal to three times the mesh-spacing and arbitrary mean flow, we are able
to demonstrate explicitly for common schemes (a) a sufficient criterion
for stability and (b) blow-up of solutions in a finite time when (a) is
violated. For these schemes, singular behaviour is shown to persist at
all wavelengths: studies of wavelengths up to thirty times mesh-spacing
make it clear that a profile with a single region of strong convergent
flow is most conducive to instability. In contrast, spectral (Galerkin)

and upwind schemes are shown to be stable for all flows and periods.
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1. Introduction

It has long been recognised that aliasing errors can cause blow-up of
numerically computed solutions of in particular the 2-D vorticity equation
(Phillips, 1959). The precise mechanism is best understood by thinking in
terms of the Fourier traﬁsformed fluid equations and variables. Suppose
the shortest wavelength that can be represented on the necessarily
discrete computational mesh has wavenumber kc « If the velocity spectrum
is filled for k wup to kc , then the nonlinear advection term attempts
to generate flows with wavenumbers up to 2kc « Those in the range kc +
1 to 2kC are aliased, ie misidentified with flows of wavenumber less
than kc (eg Hockney and Eastwood, 1981, Chap 5). Energy which should
have been transferred to short wavelengths reappears instead af long
wavelengths. When the physical process being modelled is a cascade of
energy to small scales, clearly a feedback instability is possible. Our
study is motivated by the need to understand simulations of experiments
that may exhibit sudden, violent behaviour, eg disruptions in tokamaks
(Eastwood and Arter, 1986a). Under these circumstances it may be
difficult to distinguish physical from numerical effects. This paper is

part of an attempt to understand what happens when the latter predominate.

Finite difference as well as pseudospectral calculations are prone to
instability caused by aliasing error which may operate even when linear
stability criteria such as Courant-Friedrichs-Lewy are satisfied. One way
.around the problem has been to design finite difference schemes which
conserve quadratic invariants such as the total enérgy in a flow (Arakawa,
1966). These, loosely speaking, turn out to be an example of Galerkin
methods (fully spectral schemes are another) which in general lead to

bounded results



(Morton, 1977, pp731-740). However, other finite difference schemes
remain popular, and pseudospectral methods (which allow aliasing and are
not generically energy conserving) are more efficient than fully spectral

ones (Orszag and Israeli, 1974).

Thus an as general as possible study of aliasing instability seems
desirable, and we choose Burgers' equation as the simplest model of fluid
dynamics capable of exhibiting the effect. (It is apparent that our
results should also apply to indompressible flows.) Fornberg (1973) has
already shown there is a growing short wavelength solution for the
inviscid case, unless difference schemes of Arakawa type are employed.
We shall include the viscous term, and in addition ensure that our
solutions satisfy linear stability criteria by looking at the limit of
schemes when timestep At + 0 (the semi-discrete limit). D.F.Griffiths
(private communication) has carried out a wide-ranging study of the
inviscid Burgers' equation on similar lines. For a recent work discussing
nonlinear stability criteria in the semi-discrete limit for the Burgers'
equation see Griffiths (1982, after eg Pen-Yu and Sanz- Serna, 1981) -
again the construction of nonincreasing energy-like quantities is

crucial.

Here we consider the time-dependent behaviour of solutions of
Burgers' equation which have a wavelength egual to N mesh-points, ie the
flow u(x) is represented by {uj} , where j = 0,1,....,N is the label
corresponding to position x . A systematic treatment of N > 3 is hard,
because as At + 0 the numerical schemes reduce to a system of nonlinear
ordinary differential equations, with aﬁ N-dimensional phase space

spanned by the uj . Sanz-Serna (1985) has discussed the stability of



leapfrog schemes for the inviscid Burgers' equation using a semi-discrete

method that entails considering a 2Nth order system.

Section 2 shows that is possible to establish stability at general N
for spectral and upwinding schemes, where by stability we shall mean that
as M + 0, each u. can be shown to remain bounded for all time. Section
3 considers a variety of other schemes for N=3 only, which all turn out to
exhibit instability. Section 4 specialises to one of these conditionally
unstable schemes and looks at the effect of increasing N to 4 and 5. 1In
an independent investigation, Aref and Daripa (1984) have briefly
considered N = 3 and 4 for this scheme. Section 5 advances to the limit

of large N. Lastly, Section 6 provides a summary and a discussion.

2. General Results.

Burgers' equation (Bateman, 1915; Burgers, 1948) models the 1-D time-

dependent flow wu(x,t) of compressible fluid with viscosity v :

Eu.+ E = vE_Z.E. . (1a)
ot ax ax 2

The eguation is made dimensionless by scaling u by Vv/L and t by td'
where t_ = L2/v is the diffusive time-scale and L is a naturally

occurring length-scale. This gives

d%
Bx 2

L . (1b)
ot e

It is instructive to multiply (1b) by un-1 and integrate over a distance

equal to the wavelength of u (assumed periodic) giving



2 p-
J uldx = .- (n - 1) / Lg;) u” 2 dx (2)

We see that the mean flow u is conserved, and the square integral of u

u -«

decays until u

However, the nonlinearity of (1b) may be removed using the Cole-Hopf

transformation u = -2 0(1ln6)/0x . For the particular initial conditions
u = -Rsinx , this gives the subsequent time development
[=-]
2 2 nanexp(~n2t)sin(nx)
n=1
ulx,t) = F (3)

(-]

z a exp(-nzt)cos(nx)
n
n=0

where an(R) cnIn([R/2]) with c45 =1, c = 2(—1)n otherwise, and I
is the exponentially increasing Bessel function of the second kind. Note
that the initial conditions imply u(2m) = u(0) - this helps to keep (3)
simple, elsewhere in the paper we have imposed u(1) = u(0). R plays the
role of Reynolds number, so it follows that when R >> 1 , for times
shorter than the diffusive time-scale, steep gradients of u develop in
regions of converging flow (Cole, 1951; Lighthill, 1956, Section 10.4).

It is there that aliasing errors arise. Note that (3) is non-singular

because the initial u maps to a positive definite 6: such a 0 remains

positive for finite times (and its gradient 36/0x also decreases).

To compute solutions to (1) we introduce a representation for u in
terms of a finite set of values {uj} + J=0,.4.,N - 1 and usually

advance {uj} explicitly in time with a step limited by At < max(alh/um,



azhz/v) where a is the maximum ,uil . h 1is the mesh spacing and o)

and a, are 0(1) constants depending on the numerical scheme. Taking the

limit At + 0 gives a set of equations

u, = N.[uo,...uN_1) + Lj(uo,.-.uN_1) . J = 0,¢0.,N-1 (4)

where (N.)L. is a (non-)linear operator. Note that we do not move into

the reference frame where u = 0 because the operators Nj and Lj may

not be invariant under this transformation.

For the spectral method, {uj} are the finite Fourier transform

(FFT) of the real function u and thus are complex numbers with

ug = uN j! where the star denotes complex conjugate. We use the

conventions for normalising FFTs given by Hockney and Eastwood (1981,

Appendix). It is then convenient to make (1a) dimensionless by scaling

time with respect to (Nh) 2/(4n2v) and uj with respect to 2mv. We find

d _ v .2 2
- ) ’ujl = 3 (Nju; + N;uj) -2 ) j Iujl . (5)
where
- - 1
Nyo= (=) D LI A (6)
0<j=3j" <W-1

and the other sums are over 0 to N=-1 . The first term of (5) may be

written, apart from a multiplicative factor, as



) (j'uj'uj-j'uN—j - j'uN_.,u., - O (7
0<j=5" <N=1

Exchanging labels of the second term gives

ZX (3" = 3) uj'uj-j'uN—j (8)

= = J) 3 LIV L (9)

’ [

where we have written j for j-j . If we set T = ZNju# + (9) shows
T+ T =~-T , ie T =0 . The second term of (5) leads to decay of all
uj s J 0 .

Next we show the upwind schemes yield bounded, decaying solutions.
Here, and for the other finite difference schemes (unless otherwise

stated) we rescale u by v/h , time by h2/v and set

L =

3 [uj+1 - 2uj + uj_1) . (10)

If all uj > 0 , then upwinding gives

N, = —-u.(u, —u. ) . (11)
] i3 3=1
We see
2 Xu = -2 u? + zuu - = R . ' (12)
Ci j 3 3-1 j



Maximising the right hand side with respect to uj gives at each 3j ,
u, . - 2u. +u, = 0 , (13)
J J

or uj = constant. Rj < 0 otherwise, hence Zuj decays until
u, = constant . If some of the uj are negative, we consider d4/dt z

]
(lujl) to derive an expression analogous to (12) which contains -Zu§

and other terms all of the form ujuj 1" The argument proving stability
goes through as above unless there is duplication among the latter terms.

This only occurs when uj and u, are of opposite sign (in fact uj <0
j= -

1 1

and u, > 0), ie such terms are negative and therefore can only cause

z,u_| to decrease. The Lj terms further contribute to the reduction,
J

until eventually all the uj have the same sign.

Another upwinding scheme sets Nj = - (u?—u§_1)/2 when all uj>0. It
follows that, provided the uj have the same sign, Iuj is conserved,
thereby ensuring solutions remain bounded. If the uj change sign, there
is no conservation law and the reader is directed to Engquist and Osher
(1980) for a proof of stability for general N . The case N=3 is further

discussed in Section 3.3.

3. Period Three Results

3.1 Pseudospectral Method

The pseudospectral method requires two representations of u . Let

{uj}, j =0,1,2 be the values of u at equally spaced points x = xj
and introduce the finite Fourier transform for dimensionless variables



G} = ¥ ug. exp(-i27jj’'/N) . (14)
The model equations may be developed as for the spectral method with ES
taking the role of uj , but the nonlinear term (6) is formed without

r

restricting k = j-j to {0,1,...,N-1} , identifying wavenumbers k < 0
or k > N-1 with k' = mN + k where the integer m is chosen so that
0 < k' < N-1. Note that this prevents the relabelling of (8) to give (9),

and hence solutions can no longer be proved to stay bounded. BAdopting the

units of the spectral problem, (4) becomes
u, = 0 , (15a)

a; = i (-u,2+ugu;)-u; - (15b)

Writing ug=c (= up + u) + uy = 3u where u is the conserved mean

flow), then setting El = x + iy = rel'e gives the equations

X = =2Xy - cy =X , (16a)

2

y = -x2+cx+y%-y ., (16Db)

or equivalently

-r(rsin3® + 1) , (17a)

K
I

e
]

¢ - rcos36 . (17b)



Note the threefold symmetry caused by the invariance of the problem under
cyclic relabelling of the points and the presence of fixed points with

r= (1 +cH% sin36 = -1/z.

A set of equations such as (16) cannot in general be solved
analytically, and although when ¢ = v =0, Im(u;) =y may be found as
function of x since (16) is then homogeneous of degree 2, it is more
revealing to produce a phase-plane portrait (figure 1). This is made
easier when a simple (r,0) representation such as (17) is available.
(17a) shows at once that r < 0 when r < 1, equality being achieved
only at the origin. r = 0 corresponds to the uniform equilibrium u =
constant, to which the pseudo-spectral method has thus been shown to

asymptote, provided r < 1. If ¢ = 0 , there is a fixed point when

r=1, 6 = w2 , which is unstable. For r(0) > 1 , setting ¢ =0 ,

e m/2 enables us to construct solutions which become infinite in a
finite time. (17) becomes r = r2-r , 6 =0, which may be trivially

integrated to give .

(1 = )=l + (r(o) - -1 = aE (18)

Wwriting p = (r(0) - 1)=1 > 0 if x(0) > 1, yields

£ -1
r = 1+ (p-e t) (19)

which becomes infinite at a time t = 0(1) .

These results become easier to understand if we return to dimensional

u_ -space variables. We use Parseval's theorem for a finite Fourier
]



transform vj > vj i

o Lo 2 .
) ,vjf = h?-N}_v]? ; (20)
with v, = udj - Gd, to show
_ 1 v .2 172 _ 2mv2 1/ 2
" * L7 = TR (21)

Suffix d denotes a dimensioned quantity. Note the factor of 2
resulting from the Hermitian symmetry of the FFT. We see that r < 1

corresponds to

Re = < = 2,96 , (22)

where Rem is the root-mean-square mesh Reynolds number. The line 6 =
7/2 corresponds to {uj} antisymmetric, ie u; =0, u, = -u, [coinciding
with the {uj} studied by Fornberg (1973) ) and blow-up occurs on the
mesh diffusion time-scale tdm = h2/v . Contrast this behaviour with that

of the analytic solution (3).

The role of nonzero (without loss of generality positive) mean flow
is not quite as simple as (17) at first suggests. Although r < 1
obviously remains a sufficient condition for stability for all c > 0 ,
it is possible that the critical Rem increases with ¢ since the

unstable fixed point moves out to a radius rc = (1 + c2)1f2 .

= A0 =



Numerically computing the solutions of (16) suggests that in the limit of
large c¢ , the domain of attraction of the origin approaches the triangle

which has the unstable fixed points as vertices, see Figure 2.

This is confirmed by introducing co-ordinates E = (31/2x - y)/2 7
n= (x + 31/2y)/2 , and considering a triangle T which has the above
properties, viz that with vertices (x,y) = (rc,O] ' [-rc/2, * 31/2rc/2] .
The side lying in 0 < 8 < 21/3 is mapped to 17 = rc/2 : elementary
manipulation shows that on thiétline ﬁ = (c - rc]E - rc/2 . The greatest

. .
value of 7 is Nax — rc(31/2[rc - c] —1)/2 at the vertex E = _31/2rc/2
and more algebra shows ;hax < 0 provided c > 3-1/2 By symmetry, the
phase space flow is everywhere into T . The inscribed circle of T has
radius r = rc/2 , thus we have shown the critical r =c¢/2 for ¢ >> 1 .
If we introduce the mesh Reynolds number for the mean flow Re = h Ed/v B

we find Re = 2mc/3 and thus the critical Rem »>2-1/2Rg . The most

unstable flow has two equal Wy

3.2 Finite Difference Methods

We consider schemes with a conservative and a non-conservative

representation of the non-linear term, respectively setting

(23)

N, = uj(u, -u ) (24)

where to yield these Nj we have non-dimensionalised uj with respect to

w Y e



the factor 4v/h (23) and 2v/h (24). Thus, eg.(24) yields a set of

equations
GU = ugluy = up) + (u) = 2uy + uy)
4, = ujlug - uy) + (u, - 2u; + ug) (25)
!12 = uj(u; = ug) + (uy -..2u2 +u) .

Analysis of (25) and its analogues is helped by introducing variables

e

{3}} , the finite Fourier transform of vj = uj -

(24) conserve Euj [(23) also has Zu? as an invariant when v = 0 ] the

. Since both (23) and

dimension of the system is reduced by one in symmetric fashion, and the

~ i6
diffusion operator is also simplified. Writing v; = re , the

conservative scheme gives

r = -3-l/2% (rsin3@ + 337/2)
(26)
§ = -371/2 (rcos3@ + 2c) ,
whereas (25) becomes,
r = 3=1/2p (rsin3e - 33/2)
(27)
é = 371/2 (rcos30 - ¢) .

(26) and (27) may be brought into the form of (17) by rescaling t by a

factor of 3, r by 3‘3’2, redefining ¢ , and for (27) additionally



making the transformation @ + =06 . Using Parseval's theorem as in

Section 3.1 shows that (26) and (27) have critical Rem of 4+/6 = 9.80
and 2v6 =~ 4.90 respectively, when ¢ =0 . In the limit of large ¢ ,
the critical Rem = 21/2Re for tﬁe conservative scheme and = 2°1/2 Re

for the non-conservative one. The properties of the {uj} that are the

likeliest to blow up are the same as for the pseudospectral method.

3.3 A Second Upwinding Scheme

This upwinding scheme, discussed briefly in Section 2, is known to be
stable for all N. If when N=3 one of the uj has a different sign to the

others, say u0<0, uj, uy20, it leads to the dimensionless equations

ug = uf - uf* u, - 2ug + uy,
;] = uf - uf + ug - 2u;+ uy, (28)
ﬁ2=u%—u5+ul-2u2+u0.

However, it seems (28) can still be misleading, for unlike the other
schemes studied, when v=0 it possesses stable fixed points with u of
differing signs. This follows by studying small amplitude perturbations

St

about the point 2ui=(-a,a,a),a>0: if a time dependence a e is

assumed, S satisfies

- 13 -



S(s+a)(s+2a)=0. (29)

The root S=0 corresponds to translations along the line L in phase space
generated as a varies, the others are negative, implying L 1is
attracting. For v#0, (28) possesses no equilibria with u0<0, u;,u>0,
but solutions still rapidly approach the neighbourhood of L when v is
small, and we discover that.soop 2uj= (-b,b,b) where b =0(-v). Thus if
(28) is integrated numerically for times short compared to the diffusion
time it appears that solutions reach an equilibrium on L. Only at much
later times is a solution with equal ujreached, and' Zuj may have
meanwhile been reduced by orders of magnitude. Taking Rem<o(1) will

diminish these spurious effects.

4. Nonconservative Difference Scheme

4.1 Period 4 Results

If a solution of the Burgers' equation is initially antisymmetric
about some point, it remains so. Similarly, antisymmetry is preserved by
the discrete equations. Aref and Daripa (1984) have used this property to
reduce (24) with N=4 to a 2nd order system. (Note that antisymmetry
implies zero mean flow, u = 0.) The phase space plot that results is
similar to Figure 1, but containing only two (because of the projection)
unstable fixed points u; = -uj; = (1 + y2), u; = -u, = (-1 + /2).

It is natural to enquire whether the distance Remp from the origin of
the closest unstable fixed point does indeed give the critical

Re for stability when c=0, and what is the c-dependence of Remp. The



solution of the nonlinear fixed point equations for general ¢ is aided
by use of MACSYMA (Bogen et al, 1983). It transpires that there is a

unique set of fixed points, given parametrically as

(uge uy, uy ug) = (S, -(;;;), = éq g;;), (30)
where S 1is related to ¢ by

c=(s"*-682+ 1)/(s(s2 - 1)]. (31)
Rem for the points given by (30) satisfies

L

- 2
Re2 =2V (u, -w2=20%87) (32)
Loy 5 1 4s2(s2 - 1)2

Eliminating S Dbetween (31) and (32) we see Re;p = 12 + 302/4. Thus the
2
least Rem occurs when ¢ = 0, s2 = (1 £ Y2) . Direct substitution shows

that such S correspond to antisymmetric {uj}.

The fixed points are unstable for any c¢. We linearise the period 4
equations about the point (30). If solutions varying as exp(ot) are
sought, straightforward manipulation gives

o(cd + 802 + B(S)a + y(S)) = 0. (33)

It is at once evident that (30) is always unstable, since



k4

2
yisy e ME * W . (34)

s2(s?2 - 1)

and the Routh-Hurwitz criterion requires y > 0.

There is one significant contrast with the results for N=3 with c=0;
stability is no longer guaranteed for points with Rem < Remp. To see this
it suffices to determine the separatrices at the unstable fixed points in
the antisymmetric system. This enables us to sketch the phase space
behaviour near eg the point (30) given by § = 1 + V2 . Figure 3 makes it
clear how flows with Rem < Remp may be attracted to the fixed point and

thereafter expelled towards infinity (see also below).

To determine a bound on Rem which guarantees stability, we must
transform the wu., rather like we did in Sections 3.1 and 3.2. First we
introduce the co-ordinates suggested by inspection of the four-point

Fourier transform, viz.



C=u0+ul+uZ+u3'

z=uU-ul+u2-u3.

This reduces the order of system to be studied to three.

(35)

Next we

introduce spherical polars (r, ©, @) so that r is proportional to Rem,

ie,

(x, v, z) = [r/2](cosOsinf, cosOcos@, sinb/v2)
We find r satisfies

r=-r(1 + sin2@) - 2/2 r2(sinb - sin3p) sin2g .

The r? term in (37) is most destabilising when sin2f =

to antisymmetric {uj}. Setting r = 0, we have

(1 + sin29)

r = A
Y2 sinb(1 - sin<g)

(36)

(37)

* 1 corresponding

(38)

which is least when sinf = % /(/5 - 2), r = (V5 = 1)/[V2(3 - /5)/{/5 -

2}]- This r provides a bound Remr {independent of <¢) upon Rem which

ensures that solutions have non-increasing kinetic energy. Remr = 3.330

191 is only 4% smaller than Remp = y12 =~ 3.46, so RemP is still a good

estimate for the critical Rem, which satisfies Remr <

< Re_ .
m

np



The asymptotic behaviour of the divergent solutions is obtained by
neglecting the linear (diffusive) terms in the governing ODEs, and seeking

solutions
uj = BJ/(tO -t), 3 =0, 1, 2, 3. (39)

Straightforward manipulation shows that ﬁj = (1, -1,0, 0) and cyclic

permutations thereof are the sole solutions of form (39) for N = 4. We

go on to show these solutions are attracting in the large u, (inviscid)
]

limit.

Suppose we have two trajectories, differing slightly in starting
point, one initially at Bj/t0 on the singular trajectory and the other
described by [ﬁj + ej(t)]/[t0 - t). At time t , the difference in rate

of travel along the two trajectories (labelled 1 and 2) is given by

€,

. . _ da j
(4, uz)j = 3 (t—o-*:?]
+ -
L, ' (40)
PR gk g = 132
. . 1 .

where we have introduced ajkl such that uj == ajklpkui (using the
summation convention). Since ajkl is symmetric in its last two indices,
(40) yields

(tg = t)z-:j = (ajklﬁl = Bjk)ek . (41)

- 18 -



Assuming that th ist co-ordinat h that a, = AL 6., (41
ssuming tha ere exist co-or lna‘es suc a ajklﬁl K(J)ij, {(41)

1=-A,
has solutions a(t;, - t) J.  Thus the trajectories 1 and 2 converge

provided A. < 1 for each eigenvector perpendicular to the singular one.
There is always one Rj = 2, corresponding to differential motion parallel
to (39). For the N = 4 Burgers' equation, hj = (-1, -1, 0, 2), hence the

asymptotic solution of form (39) is attracting.

4.2 Period 5 Results

We now repeat the analysis of the previous section for the 5th order

problem. The fixed points are calculated parametrically as

LT.U = S;
- -[S2 + 3(1 + V5)8 + V5]
l - r
S24+ (-3 + V/5)S + 2 + V5

2 _ -
u, = (2 + ¥5)s 2(2 + ¥5)8 Y5 i (42)
s2 + 2/5 8 + 1
. V5)S2 + 2(3 + ¥5)S + V5]
3 — ’
s2-4s8-1

s2 + (-7 + ¥5)S - V5

'lJ.|+ = -

S2+ (-1 + /5)8 -2+ 5

The relation between ¢ and S is not very revealing, nor is the analogue
of equation (32). However, we are again able to eliminate § , yielding-
Re? = 80 - 32/5 + 16c2/25. Thus the least Remp is again when ¢ = 0, for

mp
which it follows that S = 0, and the uj are antisymmetric. Sketching the



phase space for N = 5, assuming antisymmetric {uj} (Figure 4) shows that

the fixed points are again unstable, and solutions started in their

neighbourhood may diverge to infinity.

To estimate the critical Rem, we introduce the co=-ordinates suggested

by the five=-point Fourier transform, viz,

Here

Next

ug + (2y2 = 1)(u; +uy) - ylu, +uy) ,

%17 Yo
Xy = ug - ylu) +u9,) + (2y2 = 1)(uy + uy) , (43)
Y1 = 20"{(111 - uq) + 0(u2 - u3) '

Y2 = C‘(ul = U.H) - 20"\((112 - ua) o

Y = cos(n/5), o= sin(®/5), so that o2 + y2 =1 and 4y2 - 2y - 1 = 0.

we convert to hyperspherical co-ordinates (r, 0, 4, ¢) given by:

(x1, X1 ¥qs Yo = 5r(2a)-1(cosesinﬂ, sin@sin¢, cosfOcosd,

sinBcos¢) .« (44)

Setting & = 2y, we find r satisfies

- 20 -



£=-r[2+ 6+ (1-28)cos?6] + [r?/2]sin26 x

[(1 - 28)cosfcos(2@-¢) + (2+8)sin6cos(2¢+d) |. (45)

The most unstable r occurs when cos(2f-¢) = 1, cos(2¢+f) = *cos(28-¢).
It is not immediately apparent as how the sign should be taken. Moreover,
if we equate r to zero and seek to minimise r over cosB, we find the
extremal cos® satisfy a quintiélequation. Thus it is more efficient to
proceed numerically, plotting (45) as a function of 0 for cos(2¢+f) = =
1. By inspection cos(2¢+@) = 1 gives the least r for which ¥ = 0.

Such values of ¢ and @ correspond to antisymmetric {uj}. The
corresponding © satisfies cos0 = 0.801, yielding Remr = 2.77. This is
to be compared with RemP = 2.91: thus we have determined the critical

Re to within 5%, since it must lie between Re and Re .
m mr mp

We finish the section by showing that there are attracting solutions
which asymptotically diverge as (t; - t)'l, just as for N = 4. There are
now two families of soluticons, with Bj = (1, -1, 0, 0, 0) and ﬁj = (2, -
1, 1, - 2, 0). (General solutions may be constructed for any N and also
for the pseudo-spectral scheme.) Performing the stability analysis, the
addition of another zero component to the first Bj simply results in an
extra A, = 0 , hence the corresponding solution remains stable. For the
new family, however, we find hj = (-1, 0, 0, 2, 3), thus it is not

attracting. Ultimately all solutions must join the first family.

- 21 =



5. Nonconservative Difference Scheme - Longer Periods

It becomes increasingly difficult to establish rigorous results as N
increases, because of the complexity of the algebra. Although using
MACSYMA it is possible to establish some exact results for 10 > N > 5, we
do not reproduce them. Moreover, the partial results that are available
serve only to bear out the pattern established with N < 5. They cannot
address the problem of great interest, viz. what happens for N » 0(10),
i.e. for periods equal to the mesh-sizes that might be used in typical,
realistic simulations. Progress can be made numerically, but at the

expense of making this section more heuristic than the others.

The problem of finding the fixed points of the Nth order system can

N-1
be formulated as the minimisation of ) 1.2 subject to the constraint
j=0
N-1
that E u, = c. (The analytic expression for the {uj} given by Crocco
j=o

(1965) diverges when periodic boundary conditions are imposed.) The
optimisation problem is carried out numerically with the aid of the NAG
routine EO4UAF, which employs a quasi-Newton method. The principal
difficulty is the tendency for the trivial solution uj = ¢/N to be found:
in part this can be prevented by setting the variable STEPMX »> 10%. For N
< 5 the results obtained analytically were reproduced as a test to an
accuracy of 5 decimal places. At these N, the choice of starting point,
provided it is distant from u=0, is not critical. However, as N 1is
increased it is necessary to commence with a good estimate of the final
solution. There is evidencé from the residuals that the accuracy is

little changed at high N.
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The values of NReriP for the fixed points when c = 0 are tabulated in
Table I. These are all achieved for antisymmetric solutions of full
period: with the nérmalisation employed here, the period 3 fixed point
has NRe? = 144 if used to construct a period 6 point, compared to 40 for
the point of full period. There is also evidence that NReﬁp increases

« ¢2 at each N, just as for N < 5.

The problem of determining'Remr may be formulated as a constrained
minimisation of E'u.ﬁj similar to that for Remp' and indeed the remarks
on the numerics made above also apply here. The sole difference is that

the calculation of Remr does not depend on ¢, for consider

Y = Yl - \ - 2
) u, g = ) uj(uj_1 uj+1) + L(uj Ui 2uj + dy uj_1) (46)

Writing uj = wj + u, ij = 0, we find

9 2. q?) = o2 - - o -
;: Z(Wj uj) =u Z(uj_1 uj+1) ZuE uj[uj_1 uj+1]
- u Z(uj+1 - Zuj + uj_1) ' (47)

and all the sums on the right hand side vanish because the uj are

periodic. Hence it suffices to calculate Remr with ¢ = Nu = 0, and these
are listed in Table I. As expected Rem = Remr occurs for antisymmetric
{uj}, and except for N = 3, Remr is always slightly (less than about 10%)

smaller than Re . NRe? =+ 35.00 as N increases.
mp - mr
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Further insight is obtained by plotting the uj corresponding to the
critical point closest to the origin as a function of j at RemP and Remr
for the largest N ‘computed (Figure 5). We compare with the limit h =+
0, Nh = 1 of the difference equations for these {uj}, viz, Burgers'
equation in the case of RemP. For RemI (N finite),

u + A+ [u,,, - uj_1]/2)(u +u, - 2uj) =0, j=0,..., N-1, (48)

+1 j+1 -1

where

2
e L

) u.(u, -u.)
) j i 3

. (49)

Writing u(x) €for {uj}, x = jh, where h 1is the mesh=-spacing, and taking
the differential limit gives A = - th'z, where Ab = quzdx/fu'zdx, and

hence (48) becomes
u - Ao(1 + hu'/2 Ju" = 0, (50)

prime denoting differentiation with respect to x.

1/2

Unless u' is very large, (50) has solutions «= exp(ko_ X)
Replotting Figure 5b on a log-log scale (Figure 5c) shows that apart from
where u is nearly discontinuous, it is indeed exponential with the
theoretically predicted coefficient. Similarly Figure 5a shows that {uj}

for Rempis approximating the exact steady state u = 2rntanmn(x - xo) of

the Burgers' equation. This implies that the increase of NRelﬁP with N
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will not become significant, because for N even (there is a similar

expression for odd N), it implies we have as N =+ «,

1

N-=1 2 . s
+
NRe? ~ ] ™ an2 ™I Y 2 ) 4p2(q - 1 (51)
13 j=o N2 N N

The right-hand-side of (51) has the value 38.16 for N = 30 and thereafter
it changes very little, NReép + 39.48 as N »+ « The correspondence
between the analytic and numerical results implies that we have in each
case exhausted the likely forms for the extremal {uj} as N » =,

Further the c2 dependence of . RerﬁP also follows, as Figure 5d makes
plain: a solution u = 2ntann(x - xo) is again approached, but a
mesh-point m‘ lies closer to xo so that u, =G Assuming that the
limiting function is always the tangent, it is not apparent that the
constraint Euj = ¢ can be more economically met. Lastly, it becomes
reasonable that there should be solutions in the vicinity of the {uj}
plotted in Figure 5 that ultimately exhibit (to - t)'l behaviour,

remembering that at any N there is an attracting asymptotic solution of

sharply discontinuous form
uj = (0,---, 0, 1, -1, 0,..0-, 0)/(1:0 - t)- (52)

Hence Re and Re bound the critical Re in the large N limit
mr mp m

also.

6. Summary and Discussion

We can classify numerical schemes for the Burgers' equation in terms

of their nonlinear stability in the limit At -+ 0. The schemes divide
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into two classes: those which may be shown to be stable for any mesh size
and flow, and other; for which solutions become unbounded if the Reynolds
number is too large - equivalent to the existence of a critical viscosity
- (Sadourny, 1975). For the conditionally stable schemes we have shown

solutions may become infinite in a finite time of order the mesh diffusion

time=-scale tdm' if the critical Reynolds number is exceeded.

As to the norm in which tolmeasure the critical Reynolds number,
attention has been focussed on the root-mean-square, since this relates
simply to the total kinetic energy in a calculation, and we have used the
mesh-spacing h as scale-length. The scaling of the critical Reynolds
number so defined, Rem « N-1/2 as the period N increases, implies
that the maximum total energy scales as N in the limit with Nh=1. For
non-zero mean flow u # 0, stability is improved; aithough the energ§ may
initially (unphysically) increase, the bound is now set in order of
magnitude solely by the existence of a second, unstable solution to
Burgers' equation. In this case the maximum energy scales as N2, Kellogg
et al (1980) and Stephens and Shubin (1981) have derived bounds ensuring
uniqueness of steady solutions of the conservative formulation of Burgers'
equation for general N and u = 0; however, the case u=0 is exactly

when uniqueness and stability need not be equivalent, as demonstrated in

Sections 4 and 5 for a nonconservative scheme.

We believe that the schemes studied should exhibit similar properties
when applied to the equations of incompressible hydrodynamics. It is
reasonable that, at large N, the most unstable flow profile should again
be one with a single region of strong convergence. Just how strong this

needs to be is suggested by the Burgers' equation result: the unstable
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W = 0 velocity profile swings by 4 units in one mesh-interval. Taking into
account the normalisation employed, this gives tu < stdm for stability,
where tu is the local turnover time, defined as the inverse velocity
derivative and tdm is the mesh diffusion time. For the unstable schemes
with N = 3, wvariations in the critical Rem are apparently due to
damping arising from the discretion of the spatial derivative - the
p;eudospectral scheme, for which this is least, has the severest
criterion. This relation betwe;n the schemes' critical Rem may therefore
also hold very generally; further, it should be reflected in the
coefficient appearing in the stability criterion tu < O(tdm). There is
some uncertainty, in view of Phillips' discovery (1959) of an
exponentially diverging solution, as to whether (tO - t)-1 blow-up does
occur for the conditionally stable schemes applied to incompressible
flows. The addition of a dynamically active magnetic field can, however,

lead to this super-exponential kind of failure (Arter and Eastwood, 1986;

Eastwood and Arter, 1986a).

The spectral scheme is stable for all mesh sizes and (periodic) flows
because like all members of the class of Galerkin schemes, it has in the
inviscid limit a positive definite quadratic invariant (Morton, 1977).
Stability of upwinding is achieved at the expense of considerable damping,
which leads in particular to the non-conservation of total momentum (if
non-zero). Of the stable schemes we recommend EPIC (Eastwood and Arter,
1986b), which gives optimally accurate results for both periodic and more

general flows.

We caution however that we are discussing stability only in the limit

of vanishing At. When the time integration is discretised, the quantity

T



conserved for a simple explicit scheme is Z uj(n)uj(n + 1) where (n)
denotes time level, .thus nonlinear instability is not excluded (Kreiss and
Oliger, 1972; Sadourny, 1975; Sanz-Serna, 1985). For long wavelengths,
Briggs et al (1983) have also discovered a focussing instability (although
their work was in the inviscid limit). Such instabilities, concerned

more with the temporal than the spatial discretisation, are outside the
scope of the present paper, although the focussing instability may well be
related to our discovery that the critical energy for instability

decreases with increasing wavelength.
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Table I

(a) NResz (a measure of the norm of the most dangerous unstable fixed
point) and (b) NRezmr (bound ensuring solutions have non-increasing
kinetic energy) tabulated as functions of N, the number of mesh-points

per period.

(a) (b)

N NRe? (c = 0) NRe 2
mp mr

3 i 72

4 48 44.36
5 42.23 38.32
6 40 36.29
7 38.96 35.52
8 38.43 35.20
9 38.15 35.08
10 38.01 35.03
12 37.91 35.00
15 37.95 35.00
17 38.02 35.00
20 38.13 35.00
25 38.30 : 35.00

30 38.44 35.00
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0

Fig.1 Phase-planed portrait of the system (16} when ¢=0, for 0 < 8 <
27/3 (remainder of plane follows by symmetry). The dashed line is r=1.
Note that for r > 1 some solutions go off to infinity, while others enter
the region of attraction of the origin; the boundary between the two regions
is drawn with a chained line.
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Fig.2 Phase-plane portrait of the system (16) when c=10.
Crosses mark the fixed point. The chain line bounds the
region of attraction of the origin.
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Fig.3 Separatrices at the unstable fixed point P: (y, z)=(2v2,2) for
antisymmetric solutions of the non-conservative scheme with N=4, co-
ordinates defined by (35). The dashed line is tangent to the circle which
corresponds to flows with Ren=2+/3.
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Fig.4 Phase-plane portrait for antisymmetric solutions
of the non-conservative scheme with N=5. A second
fixed point, (42, u1)=(~/5, —5 —2+/5) is not shown.
Conventions as Fig.2; the dashed line bounds the
region where the total energy always decreases.
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Fig.5 {u;] plotted as a function of x=(/j+ %2 )/N for the non-conservative difference scheme with N=30,
(a) corresponding to Remp when ¢=0, (b) to Remr, (d) to Remp when ¢=10. The solid line in (a)
joins points (w/N)tan[w(j+ ¥2)/N 1. (c) is (b) replotted on a log scale. N.B. for the unit interval

drawn, note that the normalisation reduces # by a factor O(N) relative to that employed in (1b).
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