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ABSTRACT

A Fokker-Planck formalism has been developed to
interpret experimental data from high power
electron cyclotron heating of tokamak plasmas in
which the electron distribution function can be
substantially distorted. The Fokker— Planck
equation is solved using a 2-D code which
incorporates electron trapping, a steady ohmic
electric field and a bounce-averaged electron
cyclotron heating term. The quasi-linear RF
diffusion coefficient s calculated using a
single particle model which includes the mildly
relativistic resonance condition and takes into
account localised RF power injection and tokamak
rotational transform effects. Comparisons are
presented of the calculated and observed soft
X-ray spectra from 60 GHz second harmonic
electron cyclotron heating experiments on the
CLEO tokamak. Good agreement between theory and
experiment is found. In addition, predicted RF
current drive efficiencies for the COMPASS
tokamak are presented.

i INTRODUCTION

The use of electron cyclotron waves as a source of additional heating
for tokamak research has now reached the Megawatt power level in the
T10 and Doublet III tokamaks!=2 and experiments at even higher powers
are anticipated in the near future3. Such intense heating is expected
to produce significantly non-thermal electron distributions (eg
enhanced trapped electron populations) which might be beneficial for
confinement, as in lower hybrid heating experiments*, and could improve
B-limits and MHD stabilityS. Distorted distributions will also modify
the interpretation of data from X-ray, Thomson scattering and electron
cyclotron emission diagnostics. Some of these effects have already
been observed. For example, anisotropic electron distributions and
improved confinement times have been produced in low density plasmas



on the TOSCA and CLEO tokamaks by injecting 28 GHz, second harmonic
X-mode radiation from the low field side®-7, Similar distorted
distributions have also been observed on the PDX tokamak8. In
addition, evidence for enhanced particle trapping has been seen on the
TOSCA?-10 T10!! and PDX® machines.

In order to understand these phenomena which depend on details of the
electron distribution function we have developed a Fokker-Planck code
which can treat the strong distortions produced when the RF-induced
diffusion exceeds the collisional diffusion by up to an order of
magnitude. The code is two dimensional in velocity space, calculates
the distribution function on a given flux surface and incorporates
a) trapped particles by solving the bounce-averaged Fokker-Planck
equation and b) the steady toroidal electric field used for ohmic
heating. The electron cyclotron resonance heating (ECRH) is modelled
by a quasi-linear diffusion operator which is averaged over a flux
surface and includes the effects of finite RF beam width, tokamak
rotational transform, and a resonance condition which allows for the
relativistic dependence of the cyclotron frequency on electron speed.
The limitations of the quasi-linear approach are discussed in sections
3.1 and 5.2. Principally in respect of its treatment of trapped
particles and bounce-averaging of the quasi-linear diffusion
coefficient, the code 1is an improvement over previous tokamak
calculations 12-17, Similar considerations have been applied to ECRH
in mirrorsl®-19 and the Livermore bounce-averaged ICRF code is
presently being adapted to ECRH20,

The paper is arranged as follows. In Section 2 the bounce-averaged
Fokker-Planck equation is defined along with the collision and electric
field terms. The form of the ECRH quasi-linear diffusion operator in
toroidal geometry is obtained in the first part of Section 3 by
considering changes in the constants of motion of the unperturbed
electron orbits. Then the diffusion coefficient due to the RF is
calculated using a single particle model and is suitably averaged over
the electron bounce phase. The last part of Section 3 deals with the
possibility of the electrons being heated out of resonance before they
can completely cross the RF beam. This effect plays an important role
for resonant electrons with low parallel velocities, such as trapped
electrons which come into resonance close to the turning points of
their 'banana' orbits. In Section 4 we discuss the boundary conditions
and the method used to solve the Fokker-Planck equation. In Section 5
some results are presented in the form of electron distribution
functions and current drive efficiencies. Predicted soft X-ray spectra
are also compared with data from ECRH experiments on the CLEO tokamak.



2 THE BOUNCE-AVERAGED FOKKER-PLANCK EQUATION

Symbolically we write the Fokker-Planck equation for electrons
on a given flux surface averaged over the particle bounce time as

of af af af
13 = <[bt}c> 4 ‘(Ot)ﬂ:' + <(s-f]E> (1)
where the terms on the r.h.s. are due to collisions, RF wave 1nduced
diffusion and the steady toroidal electric field respectively. The
angular brackets denote the averaqe over particle orbit
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where y is the poloidal angle and v is the electron velocity parallel
to the magnetic field lines.

The collision term is expressed in flux conserving form using the
expression
e“nexnx
2 —— v. {-fvh + ) v.(fvvgl} (3)
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where h and g are the Rosenbluth potential s2' for electron-electron and
electron-ion scattering, n_ is the electron density, amx is the Coulomb
logarithm and m is the efectron mass. In the present calculations we
linearize the electron-electron collision term by taking a drifting
Maxwellian for the field particle distribution in the calculation of h
and g. As shown by Fisch and l(arl'ley22 the drift ameliorates the
approximation of not using the full non-linear collision operator with
the potentials derived from f. With this assumption the collision term
becomes

f 1 2 1 1 »
where x is the electron speed v divided by the thermal speed Vor 8 is
the pitch angle of the electron as it passes through the midplane on
the outside of the tokamak (x=0) and
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In the above equations v, is the drift speed of the field particles
normalised to v_, Z is tge effective charge of the plasma jons, B(y)
and B(o) are the values of the magnetic field at poloidal angle y and
on the outer midplane (x=0) respectively, o is the local electron pitch
angle at poloidal angle y and the thermal velocity v_ 1s related to the
temperature T_ by Vg = (27 /m}”. The integrals around the particle
orbits depend on the class of particle considered and are defined as

1
n

%] A{o,x)dy for co-passing electrons, v,>0
0

0
JA(o,x)dx = < %— A(o,x)dy for counter-passing electrons, v, <0 f (16)
n

X
%5 g tcA(o,x)dx for trapped electrons,
- o

for axisymmetric systems and equilibria in which }BI varies
monotonically around the flux surfaces between x=0 and x=rx.



The angle 1t is the poloidal angle at the upper tip of the 'banana' orbit
(0<y,<x) and o = v|/|vl|. Note that u=¢dy = +1 for co-passing
electrons, u= -1 for counter-passing electrons, and that u=s=Q=S=0 for
trapped electrons. The drift speed v, is determined by the condition
that no force exists between f and the grifting Maxwellian.

The electric field term in eq (1) is given by

el u 1 3 9 -
= . 8 U "50590“}7 3 (x2f) - -%?ﬁ—e: ;To (sin2g,f)} (17)

3. The RF Diffusion Term

In Section 3.1 we determine the form of the quasi-linear diffusion
operator <(-g—t) > for tokamak geg;netry starting from the general
expression given by Laval and Pellat™™ in terms of the constants of the
unperturbed motion. Then, in Section 3.2 we obtain the elements of the
diffusion tensor using a single particle model similar to those used by
Fie’lding“ and by Cairns and Lashmore-Davies?®. This approach enables
us to take into account, in a physically transparent manner,
the finite size of the microwave input beam, the variation of both the
cyclotron frequency and the parallel velocity of the particle as it
moves along the field lines, the attenuation of the wave as it
propagates and the heating out of resonance of electrons before they
can completely cross the RF beam. This last effect is due to the
relativistic mass 1increase as the electrons gain energy and is
particularly important for electrons with a small parallel velocity
component.

3.1 The Quasi-linear Diffusion Operator in Toroidal Geometry

For a uniform magnetic field [g—:]w is given by

af l » af -
(—) - = {v D —} (18)
at’w vl avl 1l 0 avl



in which v 1is the component of the electron velocity perpendicular to
the magnetic field and Do is the quasi-linear diffusion coefficient.
In the single particle model Do is found by calculating the increment
in perpendicular velocity, Av , as an electron passes through the beam.
The diffusion coefficient is then obtained fram the expression

1
% = [ (av 12]/at (19)

where the square brackets denote the average over initial gyrophase
angle and at is the mean time between successive transits through the
beam. Equation (19) is valid provided av, is less than the gradient
scale length of the distribution function in perpendicular velocity26.
Using eq (5.42) of ref 26 and taking the distribution to be Maxwellian
we obtain the criterion

2 Av, v

(34" <1 (20)

e

To some extent eq (20) is too restrictive on v, since the gradient of
the distribution function in the resonance region will be less than
that for a Maxwellian due to the diffusion in Ve

In the case of an inhomogeneous magnetic field the wave particle
interaction is described by the more general expression given by Laval
and Pellat® namely

f 1 AJLAJ. £
dag =2 Byt i) (21)

i J

with summations over repeated indices. The quantities J. are
constants of the unperturbed motion and the products aJ, aJ. are
averaged over the cyclic variables which are canonically conjugate to
the actions J;. We use the set of action-angle variables given by
Taylor27 and by Kaufman2®, namely (u, 6 ; J, ®; a, b) where u = vf/ZB,
eg is the gyrophase, J = § "ldx’ ® is the bounce phase defined by
&= J’B vl'ldx/! v;ldx, and a and b label each field 1ine. In this work
we keep a and b constant so that we do not take into account the finite
radial widths of the banana orbits or differentiate between drift and
flux surfaces for the passing particles. This 1is usually a good
approximation for electrons. For example 10 keV electrons typically

drift ~3mm from the flux surfaces in the CLEO tokamak. Thus eq (21)

becomes
afy , . 2 <[(au)?]> af <IA|52_JP of
<(at)h‘> dp { At dp * t a:]]
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where the square brackets denote the gyrophase averages and the angular



brackets the bounce phase average. This equation is in divergence form
and the terms in curly brackets can be thought of as contravariant
components of a flux §, ie

J
ofy . 258, as
T el v 22

Transforming eq (22) from (,.,J) variables to (v,8,) variables we have

Ef = 1 B ry2sY 1 -} i 9
el = {v2s') + 7V, 3 {s1n9°<vlo/v'>s 0} (24)

0
where the new components of S are given by
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LK av
where V = B and v = = etc. 1n standard notation. From the
J

expressions 90“90
J = wo {1- BWginzg 1, (26)
B(o)
and " ‘EETF} sinZg, (27)
we obtain
L <B(y)>/v (28)
vy = v,ﬂ/(rv) (29)
0, * v-zuneoq::-’:g;—o - B(x)}> (30)
8gy = siney/(rv) (31)

for both the passing and trapped electrons. In deriving the equations
for the trapped particles we have used the fact that the ifntegrands
appearing 1n the bounce averages are zero at the velocity-space
dependent 1imits of the integral.

We now require the components SV and o in eq (25) in terms of:—: and

s f . of af af
b_e'o .ansmg eqs(22, 23 and 25) and expressing m and 37 in terms of 3

and — we obtain
bco
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and DLJ = <[apad]>/(2at) etc. (34)

Equations (24) and (32) thus give <(Q{)H> in a form which is
appropriate for inclusion 1in the Fokker-B]anck equation (eq(l)) in
which the collision and electric field terms are given by eq (4) and eq
(17) respectively. The coefficients D g Can be calculated from the
increment in v, produced by the wave-particle interaction using the
following relationships.

0, = V)2 [BgBlo)}=iDg (35)
cn - el Bl

DuJ DJp vioB(o) el Bgl—)vlldx}no (36)

D,, = v2 BoB(o)=1{g(1 - Bx))y-14,)2p (37)
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where D) = <[(av )2]>/2at and By is the magnetic field at the point
where the electron crosses the radio frequency beam.

3.2 The Calculation of the Diffusion Coefficient Do

The calculation of <[(av )2]> 1is based on the earlier work of
Fieldingz‘ and of Cairns and Lashmore-Davies?® and proceeds by finding
the gyrophase averaged square of the dincrement in perpendicular
velocity for an electron making a single pass through the RF beam. The
equation for the electron motion is

%=-%{'§+1x (B+B)} (38)
where T and B are the oscillating electric and magnetic fields
respectively and B is the steady magnetic field of the tokamak. The
component equations of (38) for the motion perpendicular to B are the
real parts of the equations



X e
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dt y
£ - = & 40
™ = 'Ey iV, (40)

in which V V , are complex variables and g is the gyrofrequency. We
have neg1ected the v x B terms in eqs (39) and (40) for clarity. The
full expression for (av )2 including these terms is given towards the
end of this section. The real velocities v. and v _are related to V_and

X y X
Vy as follows

Vy = V€05 ¢ = ReV, (41)

v, = v sing = Revy (42)

in which ¢ is the gyrophase and is related to the initial gyrophase Yo
by the equation

olt)= [Podt' + g, (43)

We take the wave field to have the form

jrt

= E(r) exp (-iwt + ik.r) (a4)

where k is the wavevector and r is the electron position vector. 1In
general the components of E(;) are complex to describe the various
possible states of polarization. Defining V = Vx - 'i\ry and

E, = Ext iEy we can write eqs(39) and (40) as

dv, &
g5 * foV, = - 5 E, exp (-t + ik.r) (45)

which can be integrated to give

V()€ ele) oy (e)e® V0 4 G, (46)

Ellro

where j E, exp{-iwt + ik.r 3 ig] dt (47)



We now consider the wave to be pure right hand circularly polarised
(E+ = 0) and so

Vala) w el lel=lt0) y () o (48)
The perpendicular velocity squared is given in terms of V_ by
*
vi A RAR (49)
Consequently the increment in vi is given by
a(v2) = % (V_(e WV (e) = V_(-o )V (-=)) (50)
which Teads to the following expression for Avl
* 9 * 5
= '1 2 = - "L — -141
av, = kvl alvZ) = (V. (-=)Ge ™% + V_(-=)G_e 0}/8vl (51)

The evaluation of G. proceeds by writing eq (47) as

@ t k v
.= -5/ E-explif-wt+ k[ vdt' +-Ldsing+ig)jdt (52)
=S QR

sin ¢) in terms of Bessel functions we

k v
1l 1
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Expanding the term exp (i
find

o L] kv t t
e i 1 : ' '
Bu® =y ® 1¢0{0J2_1675i£) E-exp{i{-wt + kllwvldt + x{undt)]dt (53)
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Substituting th1s expression for G. into eq (51), noting that

Vo(=e) = Zvle o and using the small argument expansion of the Bessel
function (kle/Q < 0.5) we obtain the following expression for (Av )2
averaged over the initial qyrophase [

(2-1

[(av)2] = 5 € 1)) 'f (-z—) E-(r) exp {i(-ut + klf_: v, dt’

2

+ 1jtndt')}dt (54)

for heating at harmonic number 2. The contribution to (Av )2 due to an
E+ component is much less than that given by eq(54) since it contains
an extra factor (k.Lvl/Q 4. If we keep the v x B terms in egs (39) and

= 10 =



(40) then the essential modification is that E.(r) in eq(54) is
replaced by E. + (klv /w)Ez.

The next step is to evaluate the single pass [(av )2] given by eq
(54) by specifying the spatial dependence of the wave field E.(r) and
the time dependence of o and the particle velocity. This is done using
the model shown in Fig 1 in which a beam of microwave power is injected
{nto a tokamak in the mid-plane and at an angle o to the magnetic axis.
The injected beam i{s taken to have a Gaussian profile which is
symmetric about the beam axis and each ray is assumed to suffer the
same absorption in propagating to a given value of the major radius R.
Such a profile simulates reasonably wel]l the radiation pattern of the
TE,, mode from a circular antenna2? which is being used on CLEO
experiments. Thus in terms of the coordinate system shown in Fig.l we

can write
E-lr)= EE(R) exp {-y2/L2-225in2q/L2} (55)

where the y axis is out of the p‘laneoof the paper, and L is the width
of the injected beam profile and E_(R) is the electric field on the
beam axis. Taking t=0 to be the time at which the electron crosses the
vertical plane through the beam axis we can write the gyrofrequency as

e(t) =g, + v,e't (56)

for the small time the electron is in the wave field. Equation (56) is
not valid for trapped electrons turning within the beam but in this
situation the heating out of resonance effect (section 3.4) dominates.
The quantity QO is the gyrofrequency at t = 0 and is given by

ao(v) = By Xy (s7)
2c2
where y is the poloidal angle at t = 0, m is the electron rest mass and
we have included relativistic effects to first order in v2/c2,
The inhomogeneous toroidal field and the rotational transform
combine to produce the parallel gyrofrequency gradient, p', which is
given by

o

Q
Z

= GolylosTny (s8)
qR2 (1+ecosy)

Q =

o

where p is the radius of the flux surface and q is the safety factor.
In obtaining eq(58) we have taken the magnetic field of the tokamak to

be of the form B(x) = B, (1 + e cos x)~! where B, =B (x = x/2). Using
eq (56) the phase integral in eq (53) becomes

- 11 -



t
Jodt' = ¢ +t+h V|Q't2 (59)

0
where ¢ = [ edt. Equation (54) for [(av )2] then becomes

2 kv, 2(1-1)|EE|2e-2y2/L2|I |2

[(av)2) = g & o) () (60)

where we have taken v, to be constant during the beam transit time.
The integral I is given by

5722
1=[° exp {_ﬁff— +4(kz - wt + a0t + 5 av ')} dt  (61)

where g = sing. The fintegration variable is now changed from t to z as
follows. First we note that

B(x)
= k
v, = ov {1 - JHprey) * end gl (62)
so that
dv v2 e (l+e)siny
.. (63)
dt 2qR(1+ecosy)?

where e=p/R. Integrating eq(63) twice we obtain

Vi0£(1+5)sinx
z(t) = vt - t2 (64)
4qR(1+ecosy)?

which, along with eq(58), gives

(14}
t w2 +.._.._-—-E iy o (65)

4(1+ccosy) 0, v|3

provided Ivll is sufficiently large to make the second term a
correction term. Electrons with small Ivll are dealt with in section
3.4. Hence to first order in @', I becomes

vt TR e
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. -1 Bz ge- - T
I L vil exp { P 1(—;:—& k 1z + i-zv—' 22} dz (66)
(w-204 ) (14 V2,
where Q-} =g'[l - PR — (67)
250, (1+ecosy )v2
This integral may be evaluated analytically with the resul t°
L 2 w=iRy, 2
= I_ - -
[1] v exp {- gfryr ¢ — k) (68)
1

in which W2 = gh /L4 + (m.'r/ZV )2. Thus the width of the resonance is
determined by the beam width L and the variation of both the
gyrofrequency and the parallel velocity during the electron's transit
of the beam. Combining eqs (68) and (66) gives the value of [ (av )2]
for a single pass through the RF at essentially a constant value of the
poloidal angle y, at which the particle orbit intersects the vertical
plane through the beam axis.

On successive passes, each passing particle on a flux surface with
irrational rotational transform will intersect this plane at different
values of y and will eventually map out the whole flux surface
recording all values between -mn and =; the possibility of generating
localised hot helical bands on rational q surfaces, as discussed by
Dendy3l, is not treated in this paper. Similarly, trapped electrons
will intersect the plane at values of x between - Xy and Xy provided
the ‘'banana' orbit drifts significantly in the toroidal direction.
Thus we need to average [(Avl)z} over the flux surface and the correct
way to do this is to average over the canonical angle & as described in
section 3.1, This leads to the following expression for Do'

D, = <[(M.L )2]> /21

2(2-1)

: fe2]%e 222 1 |?8x/ (g St (69)
1 ]

« L8l gty
T6r "m(Z-T77 22,
where ¢ is the average time between successive passes through the RF.
For the passing particles t {s obtained by noting that the

poloidal component of velocity is v p(qR)~! and so the time to complete
a poloidal circuit is qu”v;ldx. In this time the electron makes q

passes on average through {r?e microwave beam so that

- 13 -



v = RT A (70)
= |

In the case of the trapped electrons the time between transits of the
RF in a given direction is the bounce time

d
Tp=20R[*t & (71)
-xt '

so long as the position of the banana orbit allows only one pass per
bounce. However, if the length of the banana orbit is less than the
toroidal circumference, the toroidal drift of the orbit will take the
orbit out of the RF for a fraction of the time. Conversely, if the
orbit Tength is greater than the circumference the electron will pass
through the RF more than once in a bounce time. On average the number
of passes per bounce in a given direction is qmt/n so that the average
time ¢ for trapped electrons is given by

X
ve 2Rt (72)
!t-xt 1
0f course in using eq(72) to calculate the value of Do for trapped
electrons we must sum contributions from transits of the RF in each
direction.

3.3 Bounce Average of Do

The evaluation of the integral over y 1in eq(69) proceeds by

assuming that, due to the exponential, significant contributions occur
only within a small range of y which is true provided the poloidal

extent of the resonance region is less than the beam width. Thus we
can evaluate several factors at the appropriate value of x and remove
them from the integral. Equation (69) can then be written

2(2-1
(2-1) e_zyz/l_z .

-.n_ (e 1 2.19912,°0°1 K
% = & () (B 650 T xpes F v, 7P
where y is the poloidal angle at which the resonance condition is
satisfied
- - = 0 74
{w =2 2, k' v’}xres (74)
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and K is the integral
-2 -
K = [explolopr(2e - k, )2} dy (75)
!

The 1imits of integration are (—x,x) for passing electrons and (-x,..x,)
for trapped electrons. An analytic expression for this integra ?s
used and is evaluated at each of the points on the mesh used to solve
the Fokker-Planck equation (see section 4). The x dependence of the
integrand enters mainly through Q(x) and @'(x). We ignore the
variation of v _over the small range of x for which the integrand is
large. This is a reasonahle approximation except when resonance takes
place close to the turning point of a banana orbit, but in this
situation the heating out of resonance effect dominates (see section

3.4), Taking Q, to be the cyclotron frequency at x = n/2 we have

g = e, (v)/(1+ ecos x)» (76)

and, to first order in ¢

' Qa : klvio
QT = -‘-TR :S'Inx{l = IZIQa_V-} (77)
'
b 20 €
and 9;323 -k = —;2-(cosx-H) (78)
(1 [
where H = ﬁ (k,v, + 20,0) (79)

Equation (75) now becomes

= -H)2
K = [exp] C(cosx-H) } dy
A+ Sinzx
Ly2q2R2
. 4" vig’R
L“xzngzzbz

C = 2§292R2
L262

k v2

and g I e il (83)
ZIQaV|

(80)

in which (81)

(82)
First we consider the case of |H'<1 which corresponds to an electron

satisfying the resonance condition at some point on the flux surface.
We expand about y = ; to obtain

COSy~Hw =(y=- - - 2

- 15 -



Substituting into eq(80) we find

.
k Assin Xres ]5
Csin?

(85)

Ke ¢
Xres

except when sinxre is sufficiently small to make the second term in
eq(84) dominant. ?his case corresponds to resonance close to the
median plane and K is given by

K« 1.813 [ (86)

where we have used the result

@ oxh
[ e dx = 1.813

-

(87)

In the code we take the smaller of the values given by eq(85) and
eq(86). The case of |H|>l corresponds to electrons that do not
resonate on any part of the flux surface. Electrons which come closest
to resonance will do so on the median plane (Icosx|=1} and these are
treated by writing

(H-cosy)? = (|n]-14x2/2)2 (88)
which leads to

K = xfexp[- SUH|-1)2 A 4k
A c(|n|-1)

(89)

Again, for the purposes of the code, we take the smaller of the values
given by eq (89) and eq (86). From comparisons with calculations in
which K was evaluated numerically we find that the above analytic
approximations introduce inaccuracies of only a few per cent into the
values of current and power absorption predicted by the code. It can
be seen from eq (73) with the above expressions for K that the
diffusion coefficient D_ diverges for low values of vy - In practice,
however, our assumption that the electron speed is constant is not
strictly true since the electron gains or loses energy in each pass
through the RF. For low values of the parallel velocity the electron
can remain in the beam long enough to be heated out of resonance due to
the relativistic dependence of the electron mass on energy. This
effect serves to limit D; to finite values at low parallel velocity and
an estimate of its value is given in the next section,
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3.4 Heating out of Resonance

The weakly relativistic resonance condition is given by

1B vi vi
R S A =) 80}
so that the electron will be heated out of resonance if the increment
Avl satisfies the inequality

av, > =Ly (91)

The spread in kl in our model is due to the finite beam width (Ak;~2/L)
which gives

2

(av )2 = (12 (92)
1

and an average diffusion coefficient

cv

i 2 1
D= ;4[_7_02
& (93)

However <t 1is no longer given by eqs(70) and (72) since it now
represents the average time between resonant interactions at .

rather than the average time between transits of the RF irrespective o?
poloidal angle. Consider first the passing electrons whick have a
toroidal rirculation time given by eq(70). During each transit of the
RF beam these electrons sweep out a fraction L/(2rRq) of the flux
surface poloidal circumference. Thus the average time between transits
of the beam at y is given by

_ 2R2q n dy
il —_E_ﬂ_ hin v, (94)

In the case of trapped electrons, the time between successive passes
through Yous irrespective of toroidal angle, is the bounce time <
(eq.71). However, for each electron, only a fraction L/(2xR) of these
occur within the RF beam providing the banana orbit drifts through the
beam. Thus the average time between resonant interactions is

" Xpes
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- 2nR
TE T % (95)

The code uses the smaller of D, and D_ given by eq(73) on the grounds
that the value of av_corresponding to Do’ for Do > DH’ would be more
than sufficient to hedt the electron out of resonance. The resulting
diffusion coefficient is a complex function of the velocity space
varfables as shown by the velocity space contour plots of Do in Figs.
2(a) and 2(b). In order to simplify these con&og—ﬂ_@ots and clarify
their interpretation we have set the factor e y equal to unity.
Adjacent contours represent a factor of two change in the diffusion
coefficient and the contour with the largest value of the coefficient
has the largest label number. Both figures refer to the perpendicular
injection (ie a = 0) of 60 GHz second harmonic, X-mode electron
cyclotron waves into the CLEN tokamak (major radius 90 cm, minor radius
13 om, Ba = 10,7 kG) with the resonance on the magnetic axis. Only the
positive Vio segment is shown since the contours are symmetric about
v = 0 for perpendicular injection. The calculations compare
very weak (Fig 2(a), optical depth = 0) and strong absorption (Fig
2(b), optical depth = 3) and are for a flux surface radius of 3 cm and
a beam width L = 5 cm which was taken from a measured TE antenna
1:Jat1:ern!.z For the strong absorption case, the X-mode power profile (and
hence the radial dependence of E° in eq (55)) was obtained from a ray
tracing code33 which incorporates the weakly relativistic expression
for the dielectric tensor given by Shkarofsky3“4. Detailed methods of
calculating the dielectric tensor elements and the absorption have been
given by Owen35. In the present calculation we used temperature and
density profiles of the form Te(p) = Te(l’)) {1 - (p/pl)z} and n, (p) =
N (0) {1 - (p/p,)?} where p, is the limiter radius. The central
values were Te(O = 1 keV and ne(O) = 1019m-3 which gave 95% single
pass absorption. The wave power, normalised to the injected power, is
shown in the inset to Fig. 2 as a function of major radius.

For perpendicular injection, electrons with a given speed all come
fnto resonance at the same value of major radius (see eq.90).
Furthermore the fastest electrons come into resonance on the inside of
the flux surface. In the particular case above this corresponds to
electrons with v/v_=4.13. Note that the maximum diffusion
coefficients in Figs.2({a) and 2(b) occur for this value of v/v_ and
also for large values of v _, as a result of the (k,v )2 and (Vl)'3
factors in eq(73). The decrease of the diffusion coe*filcient. towards
the trapped/passing boundary is due to the influence of D, as the local
value of v. tends to zero. In the strong absorption case (Fig.2(b)) a
valley appears in the contours for v/v_ ~ 3.5. This corresponds to
electrons in resonance at R=88cm and arises due to competition between
the power profile, which tends to make D large at low velocities, and
the vi factor in eq(73) which tends to maximise D, at large
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velocities.

4. NUMERICAL SOLUTION OF THE FOKKER-PLANCK EQUATION

Numerical solutions of the Fokker-Planck equation are obtained
using implicit, centred finite differencing to discretise eq(l) on a
(v,6_) grid> The grid is uniform in both co-ordinates with up to
Nv = 300 points in velocity and N, = 100 points in pitch angle. The
maximum value of the velocity depends on the problem being solved but
is typically Vmax/ve ~ 8, The boundary conditions are as follows:

f(vmax’ n)y =0 (96)

af -

TR 1] (97)
0

af -

v | vo0, o,=/2 = ° (98)

af

= _~ =0 (99)

690 90-0.1:

We also ensure that f(v,e ) = f(v,n-6 ) in the trapped electron region
and that the particles leaving the passing region enter the trapped
region (or vice versa).

The resulting equations are solved directly using a Harwell
subroutine37 which efficiently inverts sparse non-symmetric matrices by
means of a Gaussian elimination method. The implicit method allows
steady-state solutions to be found quickly but only coarse time steps
are practical if a time dependent solution is required. In the
following sections the distribution function obtained is used to
calculate the current density J and the density of power absorbed from
the electron cyclotron waves, Pd’ by numerically evaluating the
integrals

J = efvII f d3v (100)

and P, =

o

m [ v2 (%{Jw d3v (101)

Where possible the code has been tested against known results. For
example, with only ohmic heating present and no trapped electrons, we
obtain conductivities within 15% of the classical Spitzer-Ham?®
values. The discrepancy arises because the collision operator is not
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exactly equal to the linearisation of the full non-linear operator. In
addition we find that the ratio of the conductivity with trapped
electrons present to that without trapping agrees with the expression
(1 - 1.95 €® + 0.95 €) obtained by Hazeltine et al39 to within 10% for
e € 0.1, With ECRH in the weak RF field 1imit we find driven currents
and absorbed power densities in agreement with perturbation theory‘o’41

to better than 5% for resonant velocities greater than 3v_ . However at
lTow resonant velocities the code underestimates the current drive

efficiencies by, typicaily, 25% at v ~ 0.5v .
fres e

5. RESULTS

In the first part of this section we present ECRH current drive
efficiency calculations for the COMPASS tokamak’ In the second part
preliminary calculations of soft X-ray energy spectra are compared with
a spectrum recorded during second harmonic ECRH experiments in the CLEO
tokamak"’

5.1 Current Drive

In Fig.3 the calculated current density, J, the absorbed power
density, P,, and the current drive efficiency, J/P,, are shown as a
function of injected power, Pin" for 60 GHz, second harmonic X-mode
electron cyclotron waves injected into the COMPASS tokamak. The ohmic
electric field is set to zero so that the effect of the RF can be seen
clearly. The values of J/Pd are normalised as in ref 41, The
calculations were made for an incidence angle of 70° to the field
lines, a beam width, L = 5 cm, a plasma density of 1x10!9 m=3 and a
temperature of 1.5 keV. For each Watt of power absorbed bhetween
adjacent flux surfaces a value J/Pd = 1 corresponds to a current of
0.23A flowing between these flux surfaces. The wave absorption was
calculated using the ray tracing code referred to in section 3.4 and
the resulting wave power along the RF beam axis is shown as a function
of major radius in the inset to Fig. 3. The electron cyclotron
resonance was placed at R = 52 cm so that the cut off due to the
relativistic mass shift occurred at the plasma centre, R = 55 cm.

The solid curves in Fig.3 refer to a flux surface with an inverse
aspect ratio ¢=0.08 (p=4.4 cm) and the dashed curve to a flux surface
with £¢=0.015 (p=0.8 cam). The most striking feature is the increase in
current drive efficiency for £=0.08 as the input power is raised. This
arises because the heated passing electrons, which tend to be detuned
from resonance by the relativistic mass shift, continually return to
resonance at points progressively towards the inside of the flux
surface (high field side) as their energy increases. This spreading of
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the resonance throughout velocity space is shown by the contour plots
of Do in Fig.4(a). Thus, as the beam power is raised, larger numbers of
electrons diffuse towards higher velocities thereby reducing the
collisionality of the current carriers and enhancing the efficiency.
This increase in efficiency contrasts with the results of preliminary
calculations” which did not take into account the return to resonance
effect.

The saturation of J, Pd and J/P, which begins to oc_cur a.t Pin' . MW s
due to the heating out of resonance effect described in secCtion 3.4.
We use the smaller of D (which increases with Pinj) and D, (which is

independent of Pini ) so that the influence of D, increases as the
injected power is raised. Since our calculation of D, is only
approximate we expect there to be some uncertainty in the present value
of the power which produces saturation. However this appears to be in
excess of the maximum power of ~ 1.8 MW into the plasma envisaged for
COMPASS, Contours of the electron distribution function for
P1. . = 1,5 MW are shown in Fig. 5 and are plotted at intervals such
that a Maxwellian distribution gives equally spaced semi-circles
centred at the origin. Note that near the origin the distribution is
indeed Maxwellian due to the small diffusion coefficient (see Fig. 4)
and the Tlarge collision frequency in this region. For velocities
between 4v_ and 8v_ there is a strong distortion which gives rise to
the increased efficiency at high power shown in Fig. 3. For velocities
greater than 8ve the distortion diminishes since such energetic
electrons cannot resonate on this particular flux surface of radius

p = 4.4 cm,

The efficiency curve for the smaller flux surface, £=0.015,
p=0.8cm shows much less of an increase in J/P_ at high power. In this
case the perpendicular velocity, Vio® required to resonate on the
inside of the flux surface is genera?]y much less than the parallel
velocity, v, , as shown by the contours of DD in Fig.4(b). Thus the
collisionality of the electrons in this case is much less affected by

the high power induced diffusion than in the case of ¢=0.08.

The reduced efficiency on the outer flux surface is partly due to
the influence of trapping and partly due to the fact that significant
numbers of low energy electrons, and even electrons with negative
values of v. , can come into resonance as ¢ is increased (see
Fig.4(a)). These effects combined with the finite beam width restrict

the current to flux surfaces of radii less than 5 cm. In fact the
driven current profile is hollow in this particular example because the

cut-off passes through the plasma centre. Before leaving this section
we note that the power absorption profile (Fig.3) given by the ray
tracing could be significantly modified by both the heating out of
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resonance effect and the strong distortion of the electron distrihution
function at high power Tlevels. A self-consistent treatment of the
power absorption is clearly desirable but requires the calculation of
the distribution function, and the associated power density Pd, on each
flux surface followed by diteration to find the consistent spatial
variation of the wave field E.(r). A more accurate calculation of ﬂH
than our present estimate would also be heneficial. These problems are
being investigated hut are beyond the scope of the present paper,

5.2 Soft X-ray Emission

The energy spectrum, I(hv), of soft x-rays emitted from a
non-isotropic electron distribution function is given by 3

1
) = 5ot 7] 105 + 6 - costolp, 2))
v

4 1
+ Iy{j = (5 -cos?n)P, (£)} fvidedv (102)

In eq(102) hv is the photon energy, v, ® (2hv/m)l’2, n; is the density
of ions with atomic number 21., n is the angle at which the photon is
emitted with respect to the magnetic field, E is the cosine of the
electron pitch angle and ; is the solid angle subtended by the
detector. Algebraic expressions are given in ref.43 for the individual
polarisation intensities Ix and I . The predicted X-ray spectra are
obtained by numerically integrating eq (102) with the distribution
function f generated by the Fokker-Planck code.

A spectrum observed at 90° to the field lines during 60 GHz,
second harmonic ECRH experiments in the CLEO tokamak is shown in Fig.5.
The experiments were made using 140kW of ECRH power and a line average
density of 6 x 1018 m3. The value Z g5 = 1.6 was estimated''from the
measured loop voltage and current using the Spitzer-Harm3 theory of
conductivity. During the RF heating period the density profile wes

deduced to be of the form oy ne(O) {1-(p/p£)2}2-5 from a
self-consistent analysis involving the measurements of loop voltage,

plasma current, line average density, central electron temperature,
poloidal beta and soft X-ray emission profiles**. A best fit to the
data in Fig., 6 was obtained for a temperature of 1.1 keV for the
thermal background electrons and a flux surface radius of 2 cm which is
consistent with the expectation that the X-ray emission is strongly
weighted towards the plasma core, and with the power deposition profile
predicted by ray tracing studies. Because of the distortion of the
electron distribution function this best fit temperature of 1.1 keV is
s1ightly less than the value of 1.25 keV obtained in ref 42 by fitting
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the data up to 5 keV using a Maxwellian distribution. The calculated
curve normalised to the data at 1.8 keV is shown in Fig., 6 and
reproduces the observed spectrum. In this experiment the criterion for
quasi-linear theory to hold, eq (20), is reasonably satisfied. For
example we find that (ZAVLVL/Vé)z = 0,2 for v, = v» 2 Voo This
preliminary analysis will be improved presently by integrating the
emission along the T1ine of sight of the detector and by representing
the experimental TE,, radiation pattern (a hollow cone) more accurately
than the Gaussian profile used so far. The spectrum observed during
the ohmic heating phase is also shown in Fig. 6. The code predicts
almost no distortion from Maxwellian in this case and fits the data up
to the energy of the Tika line.

6 Summary

A Fokker-Planck code has been developed in order to simulate and
gain understanding of high power electron cyclotron heating experiments
in tokamaks. The principal new features of the code are the inclusion
of electron trapping and a bounce-averaged treatment of the
quasi-linear diffusion operator which incorporates many of the
geometrical and physics features encountered in experiments. The code
has been validated against perturbation calculations, wused to
jnvestigate the efficiency of ECRH current drive for the  COMPASS
tokamak and appears to successfully reproduce the soft X-ray energy
spectrum recorded during second harmonic ECRH experiments on the CLEO
tokamak.
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Fig.1 Plan view of the RF injection geometry used
in the present calculations. The y axis is perpen-
dicular to the plane of the paper and the z axis lies
in the median plane perpendicular to the major
radius of the tokamak. The intensity of the RF beam
is Gaussian in profile as given by eq. (55).
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Bg=107kG , f =60GHz
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Fig.2 Contours of the bounce averaged quasilinar diffusion coefficient D, for weak
absorption (a) and strong absorption (b) of 60GHz, second harmonic, X-mode radia-
tion with &£,=0 in the CLEO tokamak. The radius of the flux surface is 3cm and
the magnetic axis lies in the resonance surface (ie. B,=10.7kG). The inset shows the
X-mode power in the beam as a function of major radius. For the strong absorption
case (b) parabolic density and temperature profiles were used with central values
ne(0)=10"°m~? and T,(0)=1keV. The contours are labelled in order of increasing values
of D,.
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Fig.3 Non inductive current density J, absorbed power density Ps and efficiency JPa
plotted against injected power Pi,; for 60GHz, second harmonic, X-mode waves in-
jected into the COMPASS tokamak for the parameters shown in the diagram. The
cyclotron resonance is placed at R=52cm so that the relativistic resonance cut-off
occurs on the magnetic axis, R=55cm. The inset shows X-mode power as a function
of major radius. The solid lines are for an inverse aspect ratio ¢=0.08. Note the in-
crease in efficiency leading to eventual saturation as Pi,; increases. The dashed curve
shows the efficiency for e=0.015 for which the efficiency increase is less pronounced.

The ohmic heating electric field was taken to be zero for these calculations.
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Fig.4 Contours of D, in velocity space corresponding to the current drive

calculations shown in Fig.3. Adjacent contours represent a factor of two
change in D,.
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Fig.5 Contours of the electron distribution function for the parameters pertaining
to Fig.3 and for Pi,;=1.5MW and ¢=0.08. The spacing of the contours is such that
a Maxwellian gives equi-spaced semicircles centred on the origin. The dashed lines

show the boundaries between trapped and passing electrons.
CLMP-783



°r
2 , Ae = 6x10°m3
le
N t l a Z = 16
i X FECRH= 140kW
J R EcRH  Ba = 1077
6 § I, =175kA
i \ f
i N {‘ + umerical
Inl | * N Simu{ation
& |— | \
_Ohmic |1 \\
Heating \
425eV ] \\
, \
- \
! \
21— N
- ‘ \ Maxwellian
0 1 | 1 | | ! 1 ! l |
0 5 10
hv (keV)

Fig.6 Comparison of calculated and experimental soft X-ray spectra from
60GHz, second harmonic ECRH experiments on the CLEO tokamak. The
calculated curve, which corresponds to a flux surface radius of 2cm, is nor-
malised to the data at 1.8keV. The ohmic heating data taken just prior to
the ECRH pulse is also shown.
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