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Abstract

In the absence of particle discretisation effects (quadrature errors)
EPIC algorithms give accurate and unconditiohally stable schemes for
integrating kinematic fluid and mhd equations. If particle discretisation
is introduced as a consistently applied trapezium rule quadrature, then
unconditional stability is retained. However, it is shown that not all

quadratures lead to stable schemes.

General results on linear stability are given. An analysis of
dispersive and dissipative effects of finite particle number is Presented,
and the efficacy of the algorithms is illustrated by kinematic and dynamic
test problems. The kinematic test with discrete particles showed

unexpected stability and accuracy for large Courant numbers.

(Submitted for publication in Computer Physics Communications)






1. Introduction.

EPIC algorithms [1,2,3] arise from optimal particle-mesh methods
originally developed for collisionless phase fluids. In high dimensional
phase space and shocked fluid flows, the Lagrangian sample points
(particles) are the natural principal information carriers. However, in
low (< 3) dimensional smooth flows, the mesh can become a more cost
effective alternative. Here, we concentrate on the latter case, where
particles are treated either as conceptual devices or as quadrature points
in evaluating difficult integrals. Which alternative is appropriate
depends on the choice of integration method.

In this paper, we show that Galerkin EPIC schemes remain stable if
uniform quadrature is applied consistently to the projection equation. If
the quadrature points are shifted with respect to the mesh, then unstable
schemes can be found. Unstable schemes may be interpreted as applying too
much ‘'antidiffusion' through the mass matrix. The discussions presented
are given for the one dimensional case. Generalisation to higher

dimensions is straightforward.

2. Zero gquadrature errors.

Let
of of
® Vw L

The Galerkin EPIC scheme advances the discrete approximation f = Wp(x)fp

at each timestep, At, according to the prescription

t+it t :
[jwq(x)wp(x)dx] £ = [qu(x)wp(xo)dx]fp (2)

where sums are implied over repeated indices and we treat x as a

Lagrangian coordinate;
X = x(x ,t) = x + E.
| ( - ) 5 £

We restrict our attention to uniform unit node spacing and uniform

advection. The basis functions W then have the displacement invariance

property



W(x - p) (3)

ﬂp(x) = Wo(x - p)

and Eg.(2) reduces to

t+ At
I(g - p,0) fp

I(q - p/ &) f; (4)

where the sum over p is implied and

I(g - p,&) = [W(x) W(x - (p-q+ §) a (5)
setting fP = = elUJt and Fourier transforming Eg.(4) gives the dispersion
relation

‘ I(k
euuAt = i( .t‘i) (6)
I(k,0)

and the linear stability condition

I B)) ¢ g (7)
T(k,0)

If we let
H(X) = IJ_':W(x) Wix - X) dx (8)

then its Fourier transform is
Hik) = |W(k)|?2 (9)

The set of nodal values {I(p,g)} can be represented by the generalised

function

T (x) = ITI(x - E)H(x) D I(k,E) = m(%) e ke Hix) (10)

where the transform, ITI and convolution (*) definitions follow those used



in reference [4]. Evaluating the convolution on the r.h.s. of Eq.(6)

yields

- .E W(k )| 2 12nn§
I(k,E); _ nf-= l I ' < 1 (11)

T(k,0) ,W(k [ 2

n—-cn

thus demonstrating unconditional stability for all choices of W. - kn is
the aliased wavenumber, kn =k - 2m.

The integrals appearing in Eg.(2) are only easy to evaluate in one
dimension. However, if a uniform mesh is employed in two or more ‘
dimensions, then fractional timestepping can be employed. A displacement
g o= (§ 5 ) may be represented by a sequence (E » 0), (0,§y) or to second
order by a similar time symmetrised sequence of x, y, y, x displacements,

etc. A general element connectivity is best tackled using quadrature.

3. Uniform Quadrature.

The simplest example of quadrature, which is readily generalised to
higher dimensions, is obtained when integrals in Eq.(2) are replaced by

sums (trapezoidal rule):-
t+At £
[z Wq(xi)wp(xi)é]fp = [f Wq(xi)wp(xoijé]fp (12)

There are M = 1/§ uniformly spaced points in each element ("particles per
cell") where positions xi = (i + €)b and offset ¢ 5[0,1].

Following the procedure used for the integral case, we may write

- Eg.(12) as

s(q - p.O)f;+At = S(q.p.an; (13)

yielding the stability criterion

BBl ¢ o (14)
S(k,0)



where S DO S.

Theorem: The projection scheme, Eg.(12) is stable for piecewise linear
functions Wp(x) if € = 0 is used in evaluating the mass matrix appearing

on the l.h.s.

Proof :
Let
H(X) = | _ITI (Mx - &) W(x) W(x-X) ax
SH(k) = W) T _ Wk - 2mu)e e (15)

where ITI and transform definition follow the notation of [4}. Then we

may represent the set {S(p,g)} by the generalised function

+
S (x) = TIIL(x - &) H(x)
S8k, = 3 Hk - 2m)e e (16)
For piecewise linear functions, W(x) (= if |x| < 1 then 1 - lx‘ else 0)>D

ﬁ(k) = sinz(kIZn), so g > 0 for all k, and therefore

(k=2mm) e*iZﬂng

<1 g.e.d.
I

~

~ > H
|S(k:5) _|n

P H(k-2Tmn)
Corollary:- If the mass matrix on the l.h.s of (12) is lumped, then

scheme remains stable.

Proof

t+ At s
Lumping the l.h.s. of Eg.(12) reduces it to fq and the stability

condition to |§(k,§)| < 1. But

2 = R2
2+6 & [1 o)

)cosk < 1
3 3

S(k,0) =




* |8k, 8)| < S(k,0) <1 q.e.d.

If lumping is used, or if € % 0 on the r.h.s. of Eq.(12), then we
have schemes which will diffuse f, even in the limit At + 0 (c.f. the Lax
finite difference scheme [5] ). For example, setting £=0, € =0 on the

l.h.s. and € = 1/2 on the r.h.s. of Eq.(12) gives

-§2 2
£ (28 (7 -2t 4 gt )= £+ (¢

- +
p’ B Vpy T H rE ) = e 173, Y )

pt P p-1

showing quadrature errors introduce an effective diffusion coefficient «
52/At. wWhilst this may be of value in shocked flows, it is undesirable in
low dissipation smooth flows. The symmetry of this example shows that if
€ ¥+ 0 on the l.h.s. of Eq.(12), then unstable schemes can result. In
particular, € = 1/2 on the l.h.s. and € =0 on the r.h.s. gives a negative
diffusion coefficient « §2/At as At » 0.

We conclude from the results of this section that if quadrature is
used, then uniformly setting € = 0 in Eq.(12) is good choice: It gives a
stable scheme whose numerical dissipation tends to zero as At tends to
zero. 1In practical terms, this implies that one uniformly distributes the

ephemeral particles at the new timelevel, and computes where they came

from.
4. Linear Dispersion.

The linear dispersion relation for the EPIC scheme is given by the

Fourier-Laplace transform of Eg.{13) with E = constant:-

U ik, £)/5(x, 0) (17)

where

Stc,8) = Is(ge) TP (18)

We restrict our attention here to those cases where the same set of

quadrature points are used to evaluate both sides of Eg.(13).



4.1 One

and for

It

lumping

point per element.

we take one quadrature point per element, located at the nodes

€ = 0) then
- |x| |xl <1
Bix) = {D otherwise
0 <E<1
S(k,E) = 1 - E(1 - cosk) + if sink (19)

follows from Eg.(19) that this crude guadrature is egquivalent to

the l.h.s. of Eq.(2). If this guadrature were only applied to the

l.h.s. of Eq.(2), we find the dispersion relation

1-E(1-cosk) +iEsink
1 - 2/3 sin%k/2

elwﬂt _ S(k,8) _

T(x,0)

. . iwht ; . § 3 ‘5
which gives Ie lz > 1 for all E, implying unconditional instability.

Placing

(6=1,

which again is unstable since 'e

section,

schemes:

the one guadrature point per element at the centre of the element

€ = 1/2) gives
elmAt _ i(k,g) w iiiﬁ:;k
S(k,0) °

2 1.

LwAt . :
| BAs noted in the previous

lumping or using quadrature points with offset € = 0 gives stable

For the case, with lumping we find

|eimt|2 = |§(k,E)|2 =-;-[(1+cosk)2 * ag%in%k] <1

4.2 Two points per element.

Taking quadrature points, &

1/2, € = 1/2 in each element gives



§(k,§) Piecewise linear in £, with minima at E =0 and 1/2 and maxima at £
= 1/4 and 3/4. It therefore follows from Eg.(17) that this scheme is
unconditionally unstable. Lumping the mass matrix (giving dispersion

iwAt ~ . o~ -
relation e = S(k,E)) stabilises, since max|S(k,g)| = 1. Similarly,
(E,K)
taking gquadrature points at 0,1/2 to evaluate the mass matrix yields

scheme stable for all §. Both of these stabilised schemes are strongly

dissipative: 1In the limit At + 0, we find that for fixed element sizes,

w, = £(k)/At.
i

Taking quadrature points at 0 and 1/2 (6=1/2, & 0) gives lower

dissipation unconditionally stable scheme. For this case, we find
1 . .
S(k, E) ='z[3'25 + (142E)cosk + idEsink] 0 < E < 1/2

and hence

[-2 + idcot(k/2)
1 + 2 cot?(k/2)

implying that ]elmAtl <1, and in the limit At =+ 0

Wit =8 2 (20)
. 1+2cot 2(k/2)

i.e. mi + f£f(k), since § « At. This example is an instance of the

trapezium rule applied with two points per element.

A more general § = 1/2, € = 0 two point quadrature is given by the
linear combination of the node centred (SO) and element centred (S1) one

point schemes

S =VaSO + (1 - a S1 (21)

@ = 0 and 1 recovers respectively the unstable and stable one point

schemes, and a = 1/2 gives the two point trapezium rule discussed above.



Theorem
For the set of schemes defined by Eg.(20)
i) a » 1/2 gives unconditional stability

ii) ~ the least dissipative unconditionally stable scheme has a = 1/2,

(i.e. the trapezoidal rule)

iii) the least dissipative scheme stable for Courant number £ < gmax < 1/2

h o= o
as gmax

Proof

By symmetry and periodicity, we need only consider the case 0 € & <

1/2. 1In this case, we find

S(1-8) = [1+ 28+ a(2E - 1) )/4
S(&) = [1-a(Eg-1n)02
S(1+E) = [1 - 28+ a(2g - 1) J/4
S(ptf) = 0 p is integer % 0, * 1
Hence
Jrust i(k,g) C 1 s a[-2a + 2icot(k/2)] —
S(k,0) a + cot 4(k/2)

Rearranging the stability condition

a2 = |22 <o
S(k,0)

gives

cot 2(k/2) (E - a) € a?(1 - E)



This inequality is satisfied for all k 5[—n,n] and 5[0,1/2] provided
@ * 1/2, thus establishing (i). If « < 1/2, then the scheme is stable for

Courant numbers E < Emax = .

2 =1, and lAlz becomes

In the absence of numerical dissipation IA
smaller as dissipation increases. Damping increases with wavenumber;

blAI?/ak €0 if a < 1. The displacement (or Courant number) Eox 2t which

dissipation is maximum is

al a+cot 29)

ex 2(a2+cot26)

and at that £ = § .
ex

o] 2 e

1+a2tan 26

Thus, the least dissipative scheme has the smallest « compatible with
stability: For unconditional stability, this is a = 1/2, and for

i g < s _ .
stability when £ Emax' it is « gmax
Setting a = £ in Eq.(22) shows that the conditionally stable scheme

recovers the property of the zero quadrature error case in that w + 0 as

At > 0.
4.3 Trapezium Rule Schemes.

Results of evaluating Eq.(17) numerically for different quadrature
point spacings & = 1/M and offsets e are shown in figures 1-5. Plotted
are the real and imaginary parts of the frequency, u% and W, , versus
wavenumber k, for wavenumbers in the principal zone [41. The differential
problem (Eg.(1)) has a dispersion relation

w At w, At
r 1

k
e E A



The deviation of the curves shown in the figures from these lines for w
and mi give measures respectively of the phase errors and numerical
damping. Good numerical schemes generally have small damping for
wavenumbers with small phase errors, and large damping where phase errors
are large [2]. Economy of storage in multidimensional calculations favour
schemes with small phase errors up to large wavenumbers, say k = w2

(which corresponds to a wavelength of four node spacings) .

Figure 1 shows the dependence of the dispersion curves on the number,
M, of gquadrature points per element. Figure 1la shows that once M exceeds
1, phase errors closely follow those of the integral evaluation limit (M =

)., Figure 1b shows dissipation decreasing as M increases.

Figure 2 compares dissipation for different M = 2 cases. Curve 4
the curve is the integral limit (labelled <« in Fig.1). Curve 1
evaluates both sides of Eg.(12) with € = 1/2, M = 2, confirming that this
choice of quadrature is numerically unstable (ua ¢ 0 ). This may be
interpreted as applying too much 'antidiffusion' by inverting the mass
matrix. Curve 2 shows that using € = 0, M = 2 on the l.h.s. and M = 2, €
= 1/2 on the r.h.s. of eg.(12) gives stable antidiffusion, but with
slightly larger dissipation than obtains when M = 2, e =0 is used
consistently (c.f. figure 1). Curve 3 is for no antidiffusion. The mass
matrix on the l.h.s. of Eg.(12) is lumped to give a unit matrix, and the

result, as expected, is strong numerical dissipation.

Figures 3-5 illustrate the change in dissipation with timestep.
Figure 3 shows «.oi ‘+ 0 as At + 0 in the absence of quadrature errors. The
numbers labelling the curves are Courant numbers, E. Figures 4 and 5 show
the same cases using M = 4 and € = 0 for mass matrix evaluation and
respectively M = 4, € = 0 and M = 4, € = 1/2 for evaluation of the r.h.s.
Figure 4 shows Wy » constant as At + 0 and figure 5 shows wy + o as
M + 0. In all three cases, the scaling of wi is for fixed node spacing;
If A +0 and A + 0, then the differential limit can be recovered. The
real parts of the frequency corresponding to curves in Figs.2 - 5 differ

little from those given in figure 1la.



5. Kinematic test problem.

We extend here the kinematic test problem used to compare the
integral form of EPIC (Egq.(2)) with conventional finite difference schemes
[1-3]. A Gaussian hump is transported through a unit length periodic box
by a velocity field u(x) that provides both compression and expansion. We
take u = 2 - sin 2m, N = 100 nodes in a spatial period and a Gaussian
density hump placed initially at x = - 0.2 near the velocity maximum (p(x,
t=10) = exp[ - [x + 1/5]2/02], g = 0.1). The evolutionary equation being

modelled is the continuity equation

op

6]

We consider three approximations to Eg.(23). The integral EPIC scheme

using linear trial and basis functions
W (x)p(x,t+At) dx = [W (x) p(x ,t)dx (24)
q g o o

where x = xo+§. The r.h.s. of Eg.(24) is a piecewise cubic, and the
l.h.s. becomes a tridiagonal matrix of stencil, [1,4,1]/6 multiplying
nodal values of p. Given §, each timestep comprises i) evaluating the

r.h.s. of Eg.(24), and then inverting the mass matrix to obtain new nodal

t+ At

values, {RP /i P 5(1,N)}.

The second case assumes uniform guadrature at the new timelevel.

Setting yx(x) = E(xo), we approximate Eg.(24) by

ox
_ _ (o}
E Wq(xi)p(xi,t+At)6 | E Wq(xi)p(xi xi't)ﬁﬁ- o] (25)

where Wq(xi) are 'triangle' functions [4], p and ¥ are pilecewise linear,
=1 - dy/ox, x, = i8,i integer and & = 1/M.

The third alternative is to use the trapezium rule on the r.h.s. of

Eg.(24) at the old timelevel, and treat the l.h.s. as in Eq.(25), giving



W (x,)p(x,,t+06)8 = I W (x +&x . )plx_,,t)6 (26)
1L g 1 1 i g o1 oi oL

where £ is assume linear in xo over each element.

Figures 6 - 8 give results of the test problem. Figure 6 shows the
remarkably low dispersion and numerical dissipation achieved by EPIC with
integral evaluation. In the absence of numerical errors, the two curves
would be identical. After the ~2000 steps in this test, the errors are

smaller than are achieved by state-of-the-art finite difference schemes

[2.3]s

Figure 7 illustrates the effect of gquadrature errors. As expected,
dispersion remains small but dissipation increases as the number of

quadrature points per cell is reduced.

Figures 6 and 7 are for a Courant number & = 0.25 at the position of
maximum velocity. This value was chosen to afford direct comparison with
results for other schemes presented in [2]. However, EPIC schemes with &
= 0 are unconditionally stable, so we are free to choose larger timesteps-
Increasing At reduces the number of steps to complete the three periods,
so reduces computational costs and numerical dissipation. Figure 8
illustrates this for M = 4, € = 0 and three different Courant numbers.
Note that these results are for non-uniform velocity u(x). For uniform
advection and integer Courant number, numerical dissipation would be

zZero.
6. Dynamical Test Problem.

We have applied three variations of the linear basis function EPIC

scheme to Burgers' Equation

ov ov -1 8%
—_+ W = R _ (27)
ot ox axz

on the unit period interval with initial conditions v = -sin 27mx. The

three cases are i) nonconservative, ii) conservative and iii)

nonconservative with quadrature in space (ie with discrete particle



effects). 1In each case the diffusion term on the r.h.s. of Eg.(27) is

treated fully implicitly.

Integrating the nonconservative form, Eq.(27) over a small time

interval At gives

v - R A — = ¥ (28)

where v = v(x,t+At), v0 = v(xo,t), X = xo + £ and E = voﬂt. The EPIC

projection equation for Eq.(28) is

1 GWk bwl

{Jww, + R s 5 ) A} v

L = jwk(x)vodx (29)

where v(x) = f Wl(x)vl, etc.
The algorithm for advancing v by one timestep using Eg.(29) is

a) predict x = xo + g
b) findM = fwk(x)vo dx

c) solve av = M

If required, a correction for £ could be applied, although we find
the simple prediction E = voAt is sufficient. Elements of matrix A are
given by evaluating the integral on the l.h.s. of Eg.(29). A is

tridiagonal with stencil

1

E.[1—a,4+2<x,1-u.]; @ = 6rR At

The conservative EPIC scheme is obtained by writing vov/dx as

d/0x(v2/2) and following the above discretisation steps. In this instance

E = v At/2
o

- 13 =



and

BWk 6Wl

-1
W +R t - = |V
{J (w3, b e &__)dx b, = W (v ax (30)
Case iii) differs from case i) in that integrals in Eg.(29) are
replaced by sums with € = 0 (cf Eq.(12)). The discretisation may be
interpreted as using particles which are uniformly distributed at the new

timelevel.

Case i) and ii) give almost identical results. For large Reynolds
number, R, the sinusoid rapidly becomes a "sawtooth', then decays on the
resistive timescale. Figure 9 shows results for case i). At R = 100, v
are accurately resolved and smooth. At higher R wiggles develop, but
unlike many finite difference schemes, which are nonlinearly unstable at
such R due to aliasing errors [6,7,8], EPIC remains stable. Finite time
singularities are not possible in the limit At »> 0 for the EPIC schemes
discussed here, since in that limit it follows from the projection
equation that d/dtfvzdx < 0. The appearance of wiggles is the Gibbs
phenomenon, caused by insufficient resolution. Appropriate sub-grid-scale
physics models can be used with EPIC (as with other schemes) to remove

these wiggles.

The extra dissipation (cf.Fig.1) in case iii) suppresses some of the
wigagles. More interestingly, the robustness of the particle advection
allows much larger timesteps to be used. Figure 10 shows the solution for
the test problem remains accurate as well as stable for Courant numbers up

to four !
7. Final Remarks.

The Ephemeral Particle-in-Cell(EPIC) method gives stable, low dissi-
pation and dispersion schemes for integrating the hyperbolic and nearly
hyperbolic equations arising, for example, in fluid and mhd simulations.
This paper has addressed the question of stability and accuracy of EPIC
algorithms. The discussion has been presented in one spatial dimension but

the results apply egually well in two and three dimensions.



In Section 2, the stability of EPIC algorithms for any choice of
basis/trial function W was established in the integral limit. Quadrature
(which may be interpreted as discrete particle effects) can in certain
circumstances destroy the stability. However, in section 3 it was shown
that unconditionally stable schemes can be constructed for any W and

number of particles (quadrature points) per element.

Specific cases considered in Section 4 identify the unstable cases as
those with too much antidiffusion. The least diffusive schemes with
uniformly placed particles are those where at least one particle per
element coincided with the element nodes. The kinematic and dynamic test
problems confirm this, and show that choosing particle positions uniform

at the new timelevel is the most effective option.

Unconditional stability allows much larger timesteps for kinematic
equations than is possible with conventional finite differencing in time.
One surprising feature of the dynamical test problem was that it also
also remained stable. Whether this is generally true or is a special

property of the test cases has not yet been established.
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Fig.1 Dispersion curves, a) real part and b) imaginary part of frequency versus wavenumber for the .
linear basis function EPIC scheme using trapezium rule integration with ¢=0. Numbers labelling curves
are values of M. Wavenumber &= = corresponds to a wavelength of two elements. The curve labelled

o is the integral case.
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Fig.2 Numerical dissipation for M=2, e=1/2
evaluation of assignment (r.h.s. of Eq.(12)) and
evaluation of mass matrix (L.h.s. of Eq. (12)) 1) with
M=2, e=1/2 2) with M=2, ¢=0 and 3) lumped.
Curve 4 is the integral case.
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- Fig.3 Scaling of numerical dissipation with At for
linear EPIC using exact integration (Eq.(2)),
showing w; —0 as At —0. The number labelling
curves are Courant number, £.
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Fig.4 Scaling of numerical dissipation for linear Fig.5 Scaling of dissipation with A¢, showing w;
EPIC using trapezium rule integration with =0, increasing as Af decreases if different quadrature is
M=4, showing w; — constant as Af —0. _ used on each side of Eq.(12) [M=4, ¢e=0on l.h.s,
- M=4, e=1/2 on r.hs.].
==
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Fig.6 Initial and final profiles of a Gaussian Fig.7 As figure 6, but using uniform quadrature at
convected three times round a unit period by a the new timelevel, with e=0 and M as labelling the
sinusoidal velocity profile using the integral linear curves.
basis function EPIC scheme, Eq.(2). A Courant CLM-P789

number of 0.25 was used.
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Fig.8 The same problem as fig 7, but with e=0,
M=4 and Courant numbers as labelling the curves.

R = 100 R = 1,000
r
R = 10,000 R = 100,000

i

Fig.9 Sequences showing reduction in amplitude as
time increases of solutions to Burgers’ Equation,
Courant number=0.5, N=100 nodes and output
every 100Af were used. Reynolds numbers, R, are
as indicated,

e

—
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¥
S

Fig. 10 Sequence showing evolution of solutions to
Burgers’ Equaiton using case iii) of Sec. 6, with M=4
particle per element predictor x=vAf, R= 10%,
N=100 and Courant numbers as shown. Curves are

drawn at intervals of 40/CA¢.
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