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ABSTRACT

The finite resistivity instabilities of a sheet pinch
are studied by numerical analysis in terms of normal modes.
Results are obtained for the tearing, ripple and gravita-
tional modes and their dependence on conductivity, wave -
length, the gravitational field, the position of k+B =0
and the position of the walls. Comparison is made with

the results of Furth, Killeen and Rosenbluth(l).
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1. INTRODUCTION

A sheet pinch with zero resistivity and no gravitational field is hydromagnetically
stable, With finite resistivity instabilities are possible and these have been analysed

by Furth, Killeen and Rosenbluth (F.K.R.) [1] . The types of instability found are:—

(i) the tearing instability in which the sheet breaks up into separate pinches
(ii) the rippling instability in which a displacement in the region of a resistivity
gradient changes the current density by changing the local resistivity.
If a gravitational Tield in the opposite direction to the density gradient is present,
then for zero resistivity the pinch is still stable if the magnetic shear is sufficiently

high. If the resistivity is finite the plasma is always unstable,

In the analysis of F.K.R. the problem is treated by dividing the plasma into two
regions, a narrow inner region around the plane for which the wave vector is perpendicular
to the magnetic field (5- B = 0), and an outer region in which the finiteness of the
resistivity was neglected. In the pfesent work the same basic equations are used but they
are solved numerically without any division into separate regions or other approximation.
In the model the conductivity has the form as (1 + (y/a)z)_l about the mid-plane y = o

for the study of the tearing and rippling modes and is constant for the gravitational mode.

The variation of growth rate with conductivity, instability wavelength, position of

k+B =0, position of the walls and with gravitational field has been calculated. The

eigenfunctions have also been cbtained and some are presented here.

2, THE BASIC EQUATIONS

The plasma lies between perfectly conducting walls at y = % Y The magnetic field

B (Bx’ 0, Bz) is a function of y only. The basic equations given below are identical

with those of F.K.R.
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p is the mass density and g the gravitational acceleration, the resistivity m and

the gravitational force density pg are assumed to be convected with the plasma.

Linearising and taking Fourier components of the form exp (wt + i (kxx + kzz)) the

equations written in dimensionless variables reduce to

¥ = (o® + p/n) ¥ + HW cee (7)
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and y has been replaced by a dimenhsionless variable Y = y/a. The constants Bs and
(n;> are measures of the magnetic field and resistivity. o is the unperturbed resist-
ivity and p is the unperturbed density whose gradient is assumed negligible except in
as far as it introduces G. It has been assumed that the velocity is zero in the unper-
turbed state so that V x (nj) = O and therefore (nF')’ = 0. As will be seen below 'a'

is a measure of the thickness of the current layer.

In the present calculation two forms of the conductivity o (= l/ﬁ) and the magnetic

field distribution will be considered,

a+v)™, F

(i) o tan ! Y + F(0) for G =0

Y for finite G,

(ii) o = constant, F (Y)

The problem then is to solve equations (7) and (8) for ¥ and W and the eigenvalue
p subject to the chosen boundary conditions which are V¥ = W=0 at Y =1 Yﬁ. It has

been shown by F.K.R. that p will be real for unstable perturbations,

3, METHOD

A set of fourth order difference equations is formed from equations (7) and (8). The

boundary conditions ¥ =W =0 at Y =~ YW and W=0 at Y =+ Yﬁ are used and Y



is normalized at some point. For the symmetric modes a half range calculation was used
with ¥ =0 and W=0 at Y =0 as the boundary condition. With a trial value P
of p the value of Y (+ YW) is calculated using Gauss' method. Py is then varied to
reduce Y (+ Yﬁ) to a sufficiently small value. The step length is then reduced until

the change in p is negligible., For the resulting value of p, ¥ and W are then cal-

culated.
4, RESULTS
In the study of the tearing and ripple modes the conductivity variation and field con-

figuration of type (i) is used,

SYMMETRIC TEARING MODE

This is the case G =0 and F(0) = 0. In general the growth rate is a function of
o and Yﬁ and a diagram of the results for S = 10® is shown in Fig.1. It should be
noted that the unit in which Yﬁ is measured is the characteristic width of the current
layer. For any position of the walls there is an upper limit to the wavelength for sta-
bility. The limiting yalue can be determined from the equation for neighbouring equilibria,
that is the linearised part of ¥V x (j x B) = O, This amounts to finding the eigenvalue
a of

F*
¥ o= (a® + F) ¥ ees (9)

with ¥ =0 at Y =% Yﬁ. There is also a maximum separation of the walls for stability
given by solving equation (9) for Y ~with a=0. As Y > « the p(a) profile becomes
independent of YW’ the maximum value of p being 14.67, this value occurring at

a = 0,219,

EFFECT OF THE POSITION OF F =0

As the position of F = 0, which will be called YS, moves away from Y = O the
resistivity gradient becomes significant and the unstable mode changes from tearing to

ripple for long wavelengths and for short wavelengths instability is introduced by the

ripple mode.

This is illustrated in Fig.2 which shows the results for G = 0O, Yﬁ =10 and § = 10°,

For the long wavelengths (a = 0,1) p falls monstonically as YS increases, for short
wavelengths (a = 10) the growth rate is zero for Y_ = 0 and reaches a maximum at Y
s

Jjust greater than 1,

The change in the eigenfunctions Y and W is shown in Figs.3 and 4. Fig.3 is for



the symmetric tearing mode and it is seen that V¥ is symmetric and W is antisymmetric.

In Fig.4 YS = - 1 and the displacement is now very non-symmetric.

VARTATION WITH WAVELENGTH

In this section we shall consider the variation of growth rate with wavelength. This

is shown in Fig.5 for the case G = O, Yw =10, § =10 and Ys ==1. At Y =1,
oc(=7" l) = ¢* =Y%. The upper curve corresponds to the first eigenvalue and the lover

to the second. For « « 1 the tearing effect dominates and the displacement extends over
a large part of the plasma as is seen in Fig.4 for o = 0.1. As a lincreases the resist-
ivity gradient effect becomes important and the displacement is more localised. This is

illustrated at Fig.6 for a = 1. For very large o the growth rate approaches a constant

value and the second eigenvalue approaches this value also.

It is interesting at this point to make a comparison with the predictions of F.K.R.

The eigenvalue A arising in their analysis is defined by

AZAJ_-'.A.2
where
er 2 2
Ay = (0')7/16 &% p
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and
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The calculated values of these quantities are shown in Fig.7. For very large a the
quantity A~ % and as 4A,, and A; are much greater than % and increase with o we
2

have Ai/Ay -+ 1. This corresponds to the case a? ? » 1, that is to wavelengths much

less than the decoupled layer thickness. As a is decreased o &® becomes negligible

and A falls to a value much less than %. This is in complete agreement with F.K.R.

theory.

However according to the F.K.R. assumption that the decoupled layer is much smaller
than the thickness of the plasma layer, that is e « 1, A would approach zero as o
approaches zero whereas it is seen that for sufficiently small a, & becomes comparable

with and then greater than 1 and A then rises to a high value.

VARIATION WITH CONDUCTIVITY

A plot of the variation of the dimensionless growth rate p against 8 1is given in



Fig.8 for G =0, Yw = 10, YS =-=1 and a =1. S is proportional to the conduct-

ivity of the plasma. It is seen that p increases with 8, it should be noted however
that p is defined in terms of the conductivity and that the -actual growth rate decreases
with increasing conductivity. The theory of F,K.R. predicts the dependence to be p « 52/5

A line having this dependence is given in the figure and it is seen that the F.K.R. theory

gives the correct form for large S where it is expected to be most accurate,

THE GRAVITATIONAL MODE

For finite G cases the configuration chosen was F = Y, that is ¢ = constant (=1) and
F” = 0. The boundary conditions were either V" =W=0 or ¥Y=W =0 at Y=0 and

¥Y¥=W=0 at Y = Yw. In this case it is possible to remove one parameter by rewriting

equations (7) and (8) in the form

- ~ ~
%=(Q+E)W+QXW
and
dzw G Xy~ X~
=(E-S+Z)W+2V¥
dx® ( ¢ Q " Q

2 1 L. ~ ; ]/ ~
where E = (a3®/5) % , Q= p/(S"E)é, X =(S"'E:)4y, ¥ = (S?E)* ¥ and W = W/p. However the
numerical results obtained are presented in terms of the original variables for clarity
and for consistency with the previous sections. The results may be applied to conditions

other than those stated by use of the above relations.

It was found that the variation of the growth rate with YW was in general small for

Yw > 1 and Yw was put equal to 1 except where otherwise stated.

Fig,9 shows the variation of p with S for the symmetric mode for « = 10 and
G =0.,1 and 1.0. For this model, but with perfect conductivity, the Suydam criterion
2
is G > %. For low G F.K.R. found that p « S/3 and for high G, p « S. The present

results give almost straight lines in the logarithmic plot and the slopes give p « SOJ‘4

for G=0,1and p SO‘BI for G = 1,0. It appears that in the range of values studied

P « s’ is a good approximation where v is some function of G.

The variation of p with G for the symmetric ¥ mode is given by curve 1 in Fig.10

for o = 10 and S = 10°, It is compa ed with the results of F.K.R. which for this case

give

2
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The correct value for A is slightly less than 3/2 and curve 2 is plotted with A = 3/2,

It is seen that there is good agreement in the high and low G limits.

Fig.11 shows the variation of p with o for S =10° and G =0.1 and 1.0 for
both the symmetric and the antisymmetric modes. For these cases Yﬁ was put equal to 20
principally to remove the effect of the walls for high G and low a. The F.K.R. theory

/s

2
gives p « a for low G and p independent of o for large G provided o » 1. The
rates of variation of p for the cases given falls between these as expected, the high
G case having the slower variation with «. For small G the eigenvalues of the sym-

(2)

metric and antisymmetric modes are degenerate as a - O and the approach of the eigen-

values is apparent in the case G = 0.1,

DISCUSSION

From the results described above it is seen that the solution of the fourth order
-equation gives results which overall are in general agreement with the "boundary layer"
calculation of F.K.R. and which are in precise agreement in the appropriate limiting cases.
It is of interest therefore to use the numerical results to discuss the approximations

made by F.K.R.

The basic assumption of F.K.R. is that the plasma may be divided into regions. In the
narrow inner region around k *B =0, nj is not negligible and it is necessary to use
the fourth order equation. In the outer region the inertial term in the equation of motion
is negligible and E + v x B = O so that the perturbations may be obtained by solving a
second order equation (equation 9) which is independent of p. A second assumption which

is used is that ¥ is constant over the region where the nj term is important.

The eigenfunctions for the symmetric case G = 0, Yﬁ =10, S =10%, q = 0.1 are
shown in Fig.3. 1In Fig.12 the inner region is shown with the solution wo of the outer
region equation ¥ x (j x B) = 0, that is equation (9), and also the value of W obtained
using E + ¥ x B =0, that is W =- % ¥ where ¥ has the value obtained using the
fourth order equation. It is seen that the assumption that equation (9) holds in an outer

region is valid and E + v x B = 0 in this region.

Equation (9) has been used to obtain the value of A’ = ('4"/‘1/)2 - (W’/W)] where the
suffices refer to the values on either side of the point F = 0. For the case under con-
4/5
sideration the F.K.R. theory gives p = (V2 aSA’/3) / and for a = 0,1, S = 10° the

value of A’ has been computed to be 8,434 giving p = 19.04, The computed value of p



is 11.99. The reason for this discrepancy is clear from Fig.12 where it is seen that V

varies considerably over the region where the approximation E + v x B =0 is invalid.

The above situation may be contrasted with the case where o = 0.5 but the-other con-—
ditions are unchanged. Fig.13 gives the solution in the inner region. It is seen thét v
varies only slightly in this region where E + Vv x B = 0 ' is invalid. The value of p
using the F.K.R. approximation is now 12,22 and the correct value is 10.55 which is con-

siderably better agreement than in the previous case.
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Symmetric tearing mode. Contours of constant p in the a, Yy plane for S =103
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Fig. 2
Variation of p with Yg
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for ¢=0.1and a=10(G=0, Yy =10, S=103)
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Fig. 3 (CLM-P79)
Graph of ¢ and W for Yg=0(G=0, Yy =10, =103, a=0.1)
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Fig. 4 (CLM-P79)
Graph of ¢ and W for Yg=-1(G=0, Yy =10, §=103, a=0.1)
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Fig.5 (CLM-P79)
Graph of growth rate p against wavelength a for first and
second Eigenmodes (G=0, Yy =10, Yg=-1, S=103)
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Fig. 6 (CLM-P79)

Graph of ¥ and W for a= 1.0 (G=0, Yy =10, Ys=-1, §=109)

Fig.7 (CLM-P 79)
Graphs of Aq, Ay, A and € as function of @ (G=0, Yy=10, §=103, Ys=-1)
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Fig. 8 (CLM-P79)
Graph of p against S (G=0, Yw=10, Yg=-1,a=1)
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Fig.9 (CLM-FP79)
Plot of p against 8 for G=0.1 and G=1.0 with a=10
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I. COMPUTED RESULT
2. EKR. THEORY G<<'s
3. FK.R. THEORY G>>"2 I
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Fig. 10 (CLM-P79)
Graphs of p against G (@ =10, S=103)
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Fig. 11 (CLM-P79)
Graphs of p against a for G=0.1 and G= 1.0 with $=103
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Fig. 12 (CLM-P79)
Graphs of ¢ and W for the inner region (G =0, Yy = 10, S= 103, a=0.1)
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Graphs of 1 and W for the inner region (G=0, Yy = 10, S=103 a= 0.5









