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Abstract

In this paper we describe a finite difference code which has been
developed to simulate two-dimensional multiphase mixing. The code models
the dynamics and inter-component heat transfer of a hot liquid poured into
a pool of cold volatile ligquid. Predictions from the code are found to be
in good agreement with experimental data. In addition, a quantitative
measure of "mixing" has been devised and used to study the effect of
parameters, such as ambient pressure, melt temperature and melt particle

size, on mixing.
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1. Introduction

In this paper we describe a two-dimensional transient multiphase flow
code developed to model buoyancy-driven mixing processes which occur on
relatively slow timescales (~ 1 second). For example, we wish to model
the behaviour of a hot liquid when poured into a pool of cold vaporisable
ligquid. This is a situation which may occur in certain industrial
processes [1], submarine volcanisms [2], and could arise during the
progression of accidents in nuclear reactors if core material melts and

pours into liquid coolant, (i.e. the coarse mixing stage of a steam

explosion) [3].

In earlier papers we described the development of a 1d, 2 component
[4] and a 1d, 3 component [5] finite difference code. In this paper we
use the same approach to develop a 24, 3 component mixing code. As in our
earlier work the code allows the use of very general constitutive

relations for heat transfer and inter-phase momentum exchange.

The paper is organised as follows: 1in Section 2 the full set of
equations solved, together with the initial and boundary cohditions needed
to'completely specify the problem are given. In Section 3 the finite
difference scheme is outlined and in Section 4 the solution procedure is
described. Section 5 is devoted to a description of the form of the
constitutive relations used. In Section 6 we describe resulﬁs obtained

_from the code, including comparison with experimental data. In addition,

we describe a quantitative method for characterising coarse mixtures,



with steam explosion research in mind. Section 7 presents a discussion of

the results obtained and conclusions.

2. Mathematical Formulation

We suppose, as in our earlier work [5], that three components are
present. These are respectively the 'melt' (hot corium, for example), the
'ligquid' phase of the coolant (we take this to be water at its saturation
temperature) and the 'vapour' pha;e of the coolant (in our applications,
steam). The flow velocities in the problems we shall be concerned with
are small enough to allow the incompressible approximation: thus the mass
densities Py’ Py' Pg 2are taken to be constant. The flows take place
under gravity in a circular cylinder of vertical height H and radius R.
In contrast to our earlier papers, we consider variations in r, z and t.

The model is decribed by the following eleven dependent variables:

aM(r,z,t) P aw(r,z,t) ' as(r,z,t) - Volume fractions

UM(r,z,t) ’ Uw(r,z,t) ' Us(r,z,t) - Horizontal velocity components
VM(r,z,t) - VW(r,z,t) ' VS(r,z,t) -~ Vertical velocity components
pl(r,z,t) - Common hydrostatic pressure
HM(r.z,t) - Melt specific enthalpy

For completeness, it should be mentioned that the constitutive



which is related to H

equations involve the melt temperature TM(r,z,t) -

through an appropriate equation of state. Gravity is assumed to act

vertically downwards and, as usual, we denote the acceleration due to

gravity by g . BAs before [5], we introduce a reduced pressure

H
p(r.z,t) - [ glp,a + poog + g.a )dz
zZ

1-:(r.z,t)

= p(r,z,t) = y(r,z,t) (2.1)

It follows that

-

o _ op
= .— + g( pMaM + psas + pwaw)

0z 0z

(2.2)

However, it should be carefully noted that ] is not related to o in a
or —_— or

simple manner.

The eleven dependent variables defined above are governed by the

following equations:

o

__E + 1.9_ (ra.M UM) +.2_ (qM VM) = 0 (2.3)
ot r or dz

3 .

_ii_+_1__a_ (rfxW Uw} +_a...(awvw) = .injﬂ (2.4)
ot r or dz Py
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Bt S S S r or S S8 z S S S S
=-asE.-as_%+F;M+F;w+Fr (2.11)
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> 12 d 2
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ot r or oz

__ . % ;
= - ey — *+gaqlp - pg)
oz .

z z z
+ gasaw(pw - ps) + FSM + st + an.-1 (2.12)



0 19 o}
— G0 ffy) + —— AEd 0B y) + — D0V )
ot r or 0z

= - (2.13)

The following comments relate to the above system and its practical

applications:

(1) As in our previous work we assume that there are no sources or sinks

of the melt in the solution domain (ie ﬁM =0).

(2) We neglect condensation of steam (ie m_ » 0) and assume that

S
ﬁw + ﬁs = 0. Furthermore, &W is taken to be given by
&h=“%%%1““¢) C(2.14)

where the rate function A must be calculated using the melt temperature
TM(r,z.t) and constitutive relations to be specified later. It is enough
to remaFk that A will be non-negative. With these provisos, Equations
(2.3) and (2.4) will be used later to advance aM and aw.- as is then
determined from Equation (2.6). For this procedure to be consistent, it

is necessary (and sufficient!) that the 'elliptic constraint',



19 0
—— (z(qUy + a0, * ogUg) ) + — (qVy + gV + aV)
r Or 0z

(2.15)

is satisfied.

Equation (2.15) is solved (using Newton's method) for the reduced

pressure p.

(3) The role of the reduced pressure and the 'potential' y(r,z,t)
requires explanation. The purpose of the decomposition (2.1) is to
separate out the hydrostatic and the hydrodynamic components of the total
pressure p. The potential ¥ represents the average hydrostatic
pressure felt by the three components. It simplifies the wvertical
mementum equations (2.8), (2.10) and (2.12). The effective buoyancy
forces in these equations have the characteristic property of cancelling
in pairs. This feature was already noted in our 1-d treatment of the
mixing problem [5]. However, in contrast to 1-d, there are new
buoyancy-related radial forces appearing in Equations (2.7), (2.9) and
(2.11), wvia the .g; term. These forces are due in effect to the

variation of the «a's with r.

r
(4) The drag forces FMW etc. have exactly the same general structure as
in our 1-d simulations. The details are given in Section 5 on

constitutive relations. It suffices for the present to note that,
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Dyw (Oqr % Py Py =c ) (U = Ty
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]
o
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) (U, = U
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2
=
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where D DWM etc. (thus ensuring FMH F 0)

)
I

ms = Pus Vg T V!

z zZ

Fsu = Psu Yy = V!
p> = p> t

Ms ~ “sm ¢

. . Z
(5} The evaporation reaction forces F etc., are treated exactly the

.

Sm

same as in our earlier work

ie., P +FZ=0, F = ﬁsvw and
Wm sm Sm
FF +F =0, F = U,
Wm Sm Sm

(6) The boundary conditions needed to solve the above system of equations

consist of the following:

The solution domain is defined by, 0 €< r < R; 0 <z < H.

(a) By symmetry, UM, Uw, US =0 on r=20.



(b) The boundaries at r =R and z = 0 are 'impermeable':

[l

U =U_=0 on r =R

thus U
e Uy = Y% T Ys

(c) The boundary at r = H is 'open'. It is assumed that H is
large enough so that the flow at this boundary is 'developed';
ie., UM = UW = Us =0 on =z = H. Conditions on the V's and

a's cannot be totally arbitrary but must satisfy the following

compatibility condition which follows from Eg.(2.15).

R
2“({ rdr {aMVM+ a V.t eV } . = §
R H ; ;
= 2n | [ rdrdaz {m_(— - —)} (2.16)
0 0 Sty Py

Since &S is always"non—negative, it follows that the volumetric flux out
of the system (the left hand side of Eq.(2.16)) must always be
non-negative. As far as steam and water are concerned, we shall always

treat z = H as an outflow boundary. For water, this results in the

following prescription: VW(r,H,t) is required to be obtained from the

o
condition '3EE (r,H,t) = 0. Typically this condition leads to outflow,

Vw(r,H,t) > 0. If it should turn out that Vw(r,H,t) < 0, we set

0, thus allowing no inflow of water. It is evident from this

a (r,H,t
w(:t)



H R
that the global water occupancy defined by Ew(t) = 2 f f rdrdzaW is a
00
R2H
non-increasing function of time. Thus, 0 < Ew(t) < EW(U) <1 for all

t.

In the case of melt, there are two types of physically relevant
conditions. Firstly, we could consider the pure initial value problem in
which aM(r,z,O) and the melt velocity distributions within the solution

domain are prescribed at t = 0. In this case, z = H is treated as an
WV
g M
0z

exactly the same as water. The global melt occupancy, EM(t) =

outflow boundary and (r,H,t) = 0. Thus, the treatment of melt is

H R
2 [ ] rdrdza, is non-increasing and satisfies 0 < a (t) < EM(O) < 1.
00 "

R%H

Secondly, we could consider Stefan-type problems in which the boundary

z = H is divided into two segments: 0 <r < ain is an inlet region in
which VM(r.H,t) is prescribed and given a negative velocity for certain
time intervals. aﬁ(r,H,t) # 0 (and is specified explicitly) is also
imposed for these intervals in the inlet region. This corresponds to a
meltrinjection. For ain ¢ r £R, the treatment is the same as for an
outlet boundary. In these problems, it is no longer true that EM(t) is
non-increasing. However, the melt injection is compatible with the
incompressibility assumption (ie., Py is independent of space and time

variation) only as long as &M(t) < 1 is satisfied. In practical

problems, this is always the case. Finally, having fixed on the



appropriate boundary conditions on Vw and VM on z = H, VS(r,H,t) is

ov
determined from (2.16) together with the condition E?E =0 on z = H.

(7) The mathematical specification of the problem is completed by

prescribing, wvia suitable constitutive equations, the following quantities

as functions of dependent variable or external parameters:

(i) The rate function A.

(ii) The drag functions D;w etc.

(iii) The melt caloric equation of state relating HM to TM at

constant p,

(iv) The heat transfer functions (radiation, film-boiling etc.)

relating to Qﬁ.

These constitutive relations are discussed in Section 5 which also deals

with certain auxiliary parameters such as length-scales.

Although strict mathematical proof is lacking, the above system is
believed to be well-posed and leads to a unigue solution to the
initial-boundary value problem. Numerical evidence suggests strongly that
for physically relevant parameters, the solution depends smoothly on the

initial data and the parameters for all times.



3. Finite-Difference Formulation

The non-linear equation system Eg.(2.3)-(2.13) which determines the
temporal evolution and spatial variation of the eleven state variables
must be solved numerically. The reformulation of this system as a set of
finite-difference equations on a suitable mesh is the objective of the
present section. The principles of the method have already been
established in our 1-d work [4], [5]- For this reason, the description
here is kept brief and restricted to the changes necesitated by adding an

extra spatial dimension.

Figure 1 shows the cross-section (vertical) of the cylindrical vessel
of radius R and height H. The solution domain in the (r,z) plane
through the central axis EF is the rectangle EDCF. For illustrative
purposes, a 4 x 9 rectangular grid is sketched (we use NR x NZ for the
general case). The radial and vertical mesh sizes (Ar and Az
respectively) are taken uniform. The index i runs from 1 to 4 and

th

labels the i radial interval while Jj runs from 1 to 9 and labels the

jth vertical interval from the bottom upwards.
A typical "continuity cell"™ PQRS is shown with its central point
(i,3) It is evident that r, = (i-1)Ar + s while =z, = (j=1)Az + ol
130 i T q 1 7

The following gquantities are "stored" at (i,j):

The volume fractions: a(ri.zj,nAt)

1"
P
L=
.
—
=
=
0)]

The reduced pressure: E(ri,zj,nAt)

1
o



n

The potential y: x(ri,zj,nAt) = xi,jM
_ ..
The Melt enthalpy: HM(ri,zj,nAt) = (Hi,j)M

The vertical U-velocities corresponding to (i,j) are stored at (i + kbj)
(ie., the mid-point of QR) while the V-velocities are at (i,j + ¥ . It
should be noted carefully that the radial boundaries at r = 0 and

r = R, correspond to U-velocity storage locations (thus enabling these to
be set to zero). The bottom of the vessel, =z = 0, corresponds to V
storage locations. The impermeability condition is simply, V = 0. The
treatment at ED is described later. With these conventions, it is

evident that

m

n
U(ri+%izj’nﬂt) (Ui,j)M,W,S

n
V(egezggnie) = (Vi) u,s

The finite-difference forms of Equations (2.3), (2.4) and (2.13) are
simply derived by multiplying them by the volume element rdrdz and

integrating over PQRS (ie., typical continuity cell).

The fluxes appropriate to the cell walls involve the corresponding
velocity components and "upwind" interpolated a's and HM- It is
convenient in this context to refer to QR as the r+ face of the cell
whilst PS is the r_ face; PQ is the z, face and so on. For
example, the flux of melt out of the r, face at (i,j) corresponding to

t = nAt is



() = ey + 2)e= (] )ylay), (3.1)

More concisely,

n n .
(o), = [ai,j)M o, + (a:i+1'j)M (1-8,) (3.2)
where 6 =1 if ( " ) 0 ‘and zero, otherwise.
i,j’M

In this method, the convective terms are treated explicitly (ie., Eg.(2.3)

n

. , . . n
for example, is forward differenced in time). If (ai,j)M and (Ui,j)M'

n

(vi,j)M are known, (ai,j)M can be calculated. The use of upwinding
; ; g n+1 n .
ensures that the transformation matrix linking @, j's to the a j's is
I I’

G g . . Ar Az n
positive faithful [4] when the Courant conditions % ' I > ¥?§(|Ui,j|'

|V? .l) are satisfied.
i,j

The treatment of Equations (2.4) and (2.13) is exactly the same as far as

the convective terms are concerned. The sink terms are handled as in

(5]

p
Recall that Bﬂ = = aWaM'EE Ae In finite~difference form this is
W W



written as

m P
| raraz 2=-roae m () SN0 (3.3)
PORS QW ] pW ] ]

+1
In Eg.(3.3) recall that (a? ')M will be available in store since the
!

n
-melt equation is solved first. Ai i is calculated purely from values of
I

quantities at t = n At. It is then apparent that the coefficient of

(a2+;)w in the finite-difference form of Eg.(2.4) is simply
’
r.Ar Az { 1+ s A At[an+1) }
i p_W P i,§’M

For accuracy, At must be small enough for the second term in the braces

+
to be a small relative to unity. In this event, (ag ;)W will always
s L

remain non-negative and less than unity.

Qﬁ is always a flux of enthalpy out of the melt due to various

transport processes. In Eg.(2.13) it is finite-differenced as follows:

HJn n

M“i, 3 Hi,j)m‘ [ 2o

n+1 ¥ i AZ(Q

H _
| rdrdz Qy = (Hi,j)M i

PORS

+1
The multiplier of (H’i‘ j)M in the finite-difference form of (2.13) is
r

then

- 15 =



Hyn i ) }

1 + — .
r btz (2 i @ (3-3)
i,3 M

At must satisfy the accuracy requirement

AE T, << 1 : (3.6)

1,7
Cy
where the 'cooling' time is defined by o oz _ 2 " (3.7)
M’i, 5

4. Solution Scheme

The present section is concerned with the iterative technique
developed to solve the equations (2.3)-(2.13). We suppose that at
t = n At, we have in store the eleven dependent variables at the
appropriate grid locations. The velocity fields and the pressure are
required to satisfy the finite-difference form of Eg.(2.15). We assume
this to be the case and are interested in evaluating the fields at
t = (n+1)At. In the previous section, it was shown how the values of the
a's and HM are obtained explicitly at t = (n+1)At and the mesh points

(i,3).

It will be recalled that this calculation does not need any knowledge

(explicit) of the pressure or any other fields at t = (n+1)At. Once this

+
calculation is performed, we have a? ; 's in store. The task is to solve
. .

the finite-difference forms of the six momentum equations (2.7)-(2.12) and

n+1

-n+1 ( n+1
i, j’'M,w,s’

(2.15) to obtain self-consistently p.

. v
i, 5’

i3m0 B

- 16 -



the equations are non=-linear, and since the time-differencing of the
convective terms is implicit (ie., involves quantities like

n+1 n ; ; P
k{Ui 4 + Uy jJ' for example), an iteration scheme is involved. The
’ L

scheme, to be described below, resembles the one described in our
one-dimensional analysis [5]. However, as will be apparent, it is much
more powerful and stable than the earlier one and computationally simpler
and faster. To explain its features, some new notation is needed. If

?2 . represents any property at t = nAt associated with (i,j) we need
’

two more indices:

(Y? jJ; ;, wWhere v = 1,2,4:.
’

is the 'iteration' index while o = M(1), W(2), S(3) is the 'species'

_ +1,2 N +1

index. For example (VE j) means the second approximation to (Vg j)M'
r 1 v

1

5 [Y: .)U for all n, 4i,j and o.

v ]

By convention, (TF+?)
i,3

n+1

Let us consider the iteration schéme for obtaining (Ui de'
’

n+1) - n+1
i,5%¢ " P i,

best after the structure of the scheme has been exposed. Suppose then

) o L)

i,3

(V in outline. The details are described and understood

(an+1J

that we have in store the. following arrays: (a? 3,4
r

'3 g g

v \J v
+1 - n+l,y- +1 +1
(Pz,j)d ' H;i j, H;i j and (p E'j] ' (vz,j]d ' [U;,j)c for some value
’ r
V1
g

v+1
(- n+1)

n+1

i’j] s (Un+1)

of . In order to calculate [V 1,4 '

i, ]

proceed as follows:



Step 1: The V-momentum equations (2.8), (2.10), (2.12) are set up in the
vi1

+
(Vn 1) . The solution does

manner indicated later and solved to give i,
’
not involve either a tridiagonal matrix algorithm or an ADI type inversion

involving the entire i,j mesh. Instead, an implicit treatment of the

drag terms results in the inversion of a three-by-three symmetric,

diagonally dominant matrix at each (i,j) point where the V's are

stored.
Step 2: The U-momentum equations (2.7), (2.9), (2.11) are set up and
n+1 L
solved exactly as in Step 1 above to obtain (Ui j) o
L

Step 3: Equation (2.15) is integrated over r for fixed =z (ie.,

keeping 3j fixed, the finite-difference form of (2.15) is summed over

w1
- n+
i )« The pressure [p : ;) is split into three pieces as follows:
7
vi1 v
= nt+1 = n+1 =V =V
i = i i + .+ dp, . 4.1)
(e ,5) (B y,5) + o5+ o) (
NR v
where Z épi 5 = 0 by definition.
i=1 !

If j runs from 1 to NZ, the above procedure generates N2
v
equations for Apj j =1,..N2. By virtue of Eqg.(2.16), one of these
equations is redundant. Indeed, since pressure in the present context is

v
a 'relative variable', we may set APNZ = 0 and consider the (NZ-1)



equations generated from Eg.(2.15). These will be seen to have a
diagonally dominant tri-diagonal structure and are solved by the

appropriate matrix algorithm to obtain the pressure level corrections

_V
Apj'
_V -
Step 4: In this step, we seek to determine épi 3 by setting up, for
—_— = [
each j , NR finite-difference eguations obtained by integrating
_v

Eg.(2.15) over each continuity cell. The matrix which links 6Pi i is

= ’

tri-diagonal whilst the sources are the continuity errors at each (i,j)

location. Only NR-1 of these equations are linearly independent.

NR v
However, the condition z 6pi . = 0 ensures that all the 6&p's are
i=1 ! '

determinate.

It is apparent that at the conclusion of Step 4, we have calculated

= ey n+1, V1 1V
(o ) v, .) o~ (u,".) , and (hopefully!) reduced the local (and

i3 ! i,] i,3
global) continuity errors in the finite-difference forms of Eg.(2.15).

The iterative procedure is continued until a non-dimensional measure of

these errors is reduced to a pre-assigned level.

Steps 3 and 4 are quite straight-forward extensions to two dimensions
of the one-dimensional pressure correction scheme described in earlier
papers. The really novel element consists of the finite-difference
approach to Steps 1 and 2. It suffices to give an account of the method

for Step 1 as it applies with only trivial modification to Step 2.



Let us integrate Eg.(2.8) over a V momentum cell at (i,j) and

over a small time At. We then get,

n+1 n+1 n n
LGN W LA W T C S P LD V- CH (4.2)
n _ n Il
%, 54k T g+ oy 5.q) et

The term (Si j)M comprises many contributions. Firstly, let us consider
’

the buoyancy terms. These have the following integral forms:

.j. gaMaW[pW - pM] d volume d time / .f. d volume
(1,3) (i,3)

= +
=g(p, - p,)ac [“Maw)z,}a}z (4.3)

n+fy 1 n+1 n n+1 %
mue[%%LJ%—ﬁ[U%Jm+(%JMM%JM+(%JW)
n+1 n n+1 n
A P R LA N (LR R LA )
n+1 #

The integrals are space-time centred. As they do not involve Vd 's,
they are explicit sources.

W

Next, consider the op term. In Step 1, p. . is not known as yet.
Oz 1,]

Thus, we use the following formula:

- 20 -



J %H'gg d volume d time / [ d volume
(1,3) (i,3)

_ At n+}2 i 2 w?
= '('E)(ai,j-l-k)m (Py 541 = Py, 5) (4.4)

This too is an explicit source term in Eg.(4.2). Thirdly, we discuss the

z z z
terms FMW and FMS' For example, the term FMW has the general form,

_ =z
Fio = Dy (Vi = V) (2.5]

%N

where the coefficient Dz

is non-negative and is a function of
MW g Py %

and Uc' Vd. (See Section 5 for the exact formulae used.) In order to

treat this term purely implicitly, we set

/ F;W d volume d time / [ d volume

(i,3) (i,3)
= ae(p” )m}2 [(vn+1) il ) (4.6)
= M’ 1,5+ Vi, 0w i, i'm .
n+¥
In Eq-(4.6) (DMWJi,j+k2 means it is space-time centred (ie., its

arguments are evaluated at these locations and substituted in the assumed
functional form for D;W). The above treatment leads to Eg.(4.2) taking
; n+1
the form of a linear-inhomogeneous egquation involving (Vi ng' The last
L

term to be discussed is the convective momentum transport term in

Eg.(2.8). The integral form of this is given by,

- 21 =



19 ) .
(iJ’j) - {?Ff(rpMaMUMVM) # "65( pManﬁ)} d volume d time

. _ _ At ! -
= f d volume = - —— {(z Flux of VM)+

(i,3) riArAz (z-Flux of VM)-
+(r=-Flux of V )+ -
(r-Flux of V) }

==

(4.7)

The fluxes are evaluated using ubwind differencing. The expression on the

right of Eq.(4.7) takes the general form,

n+1 n+1 n+1

- + v. . + A v, .
Ao(vi,j)M Az+ ( l,j+1)M z-( 1,3-1)M
& & (vn+1 )+ A (Vn+1 )
r+ i+1,3'M r-' i-1,7'M

where the coefficients A, A , A , A , A , are all non-negative
0 z+ z- r= r+

Putting the above results together, Eqg.(4.2) takes the following

form

- 8 =



n+b n+ko

n+1 n+1 z Z
Vi,i'u Urgley, juldm + By g+ 86D, Sy + A

n+1 n+1
(Vi,j)w (ee ) + (Vi,j)s (e )

*
+ At(S, .) (4.8)

*
In equation (4.8) (Si j)M includes 'explicit' terms such as the buoyancy
r

and pressure force terms. It is noteworthy that Eg.(4.8) formally couples

+ + :
(Vn 1) to (Vn 1 ). . In so far as the latter are not boundary values,

i,j'M if,jan’'M
; : n+1 . . .
the convective momentum flux links (Vi j)M with its near neighbours.
’ .
Bearing in mind that (4.8) and its analogues derived by a similar process

from equations (2.10) and (2.12) have to be solved iteratively, we set in

equation (4.8) (and its analogues) all the velocities on the right hand

th
side to be the wvalues at the v iteration. Thus A (V{IH.) (for
i + i+1j'M
n+1
example) becomes A+(vi+1j)M'

It is plain (after a little algebraic re-arrangement) that at each

(i,j) we have the following set of linear, inhomogeneous equations.
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3 9 ot Y T,
Poati ity ) =8 o= 12,3, (4.9)
Sloqy oo ij'o o

This linear system has been constructed to have the following properties:

- v
i,3 +1 +1
1) S(l'J) are functions of (a? ) (a? L) U? ) e ve o ; u '
o i,j' g i,j' ¢ i, 3¢ i,j'g i, j'o
n+1 v -y
v, . o d geometrical factors.
( l'])cf Pl,j and geom
4
2) A(c;?) for o= 1,2,3 are non-negative.
i,7 i,]
3 a™ D _ a3 g for o2 ol
(oo} g c
(i,3) i . ;
4) The A matrix is diagonally dominant.

These properties are consequences of the structure of the inertial and

drag terms (in particular, Newton's third law). It follows that giwven the

; . i +1
values of all fields at nAt at the vth iteration, (V: j)v;1 can be
’

calculated at every point (i,j). The treatment of the U-equations is

similar. Furthermore, there is no special difficulty in handling the

w1 w1
; ; . i +1 +
evaporation reaction forces. The velocity fields (U? i) ' (Vn.1.)
i, 3" @ i,j" @
calculated by this procedure are functions of 5 ; 5" They will not

’

necessarily satisfy the integral form of Eg.(2.15). The pressure

correction equations described in Steps 3 and 4, are derived as in our

1
n+1 vk

) '

one-dimensional treatment by relating Agjv and ap: 3 to (éUi 5! @
I ]

- 24 =



+ : ; ; ; q ;
(SV? ;) & via a linearized, 'diagonal' approximation derived from
’

equation (4.9).

Thus
= (i:j) - -
(ov) " =1 9 [ )+ ), }
sJ'o A(l,j) GPV 3j i,]
oo i,3
-(i,3)
1 s - v - Vv
Pt =y By @y g -1
A op, .
go i,3+1

Expressions such as (4.10) lead to suitable tridiagonal systems for Ap;

and 65:',. Solution of these (as described in Steps 3 and 4) lead to
B, =,

1.3

Although apparently complicated, the above procedﬁre is more

efficient than the scheme used in our one-dimensional simulations. The
great physical importance of the drag forces between the species is fully
taken into account and leads to a remarkable degree of numerical
stability. The code has been run deliberately in a one-dimensional mode.
The results agree to four or five significant figqure accuracy with those
obtained from the quife different 1-d code. The comparison problems
include purely buoyancy driven ones (ﬁs = 0) and those in which there is a
very large steam production. Purely two dimensional buoyancy driven flows
have also been calculated with the 2-d code to check qualitative behaviour
of the solutions for loﬁg times and stability. In all cases tested so

far, the 2-d code has proved to be stable and as accurate as can be
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expected. Grid refinement studies show acceptable convergence behaviour
while realistic simulations demonstrate that even long time behaviour of

global quantities depends smoothly on the initial conditions.

5% Constitutive Relations

In this section the constitutive relations used to model inter-phase
drag and heat transfer will be described. Recall that the drag force on

species 1 by species j 1is denoted by

By g " Di'j(y_j = %] (5.1)

In this work the drag law proposed by Harlow and Amsden [6] has been used,

so that

3 by Dy oy
J
D, . =2 a ap,p.C (—+ —) |v, -V, (5.2)
i 4 i % D, . L.+ p.L, L, L, i
'3 3747370y 5 o Lg¥ el ) Ly Iy 3
where CD is the coefficient between phases i and jJ
i, ]

Li'Lj are the length-scales of phases i and j .

There is little physical justification for the above form of Di 3 other
L

than that it satisfies the necessary symmetry requirements and takes the
correct limiting form as either phase becomes very dilute [5]. In the
present work the length-scales for each phase are assumed to be constant.

Improved modelling in this area is in progress.
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The mass production rate of vapour was expressed in the general form

r%=%%%h (5.3)

and it is required to derive an expression for A. Assuming the melt is
in the form of spherical particles with diameter LM , then there are
aM/1/6 T Lﬁ particles per unit volume and if gq is the Heat flux per
unit area from a particle, the total heat transfer rate per unit volume,

Q, is given by
Q = 6g aM/LM (5.4)

Clearly the production rate A must depend on the value of aw; if there
is no water present Q must be zero. For simplicity-and in the absence
of data to the contrary we have assumed that a fraction aWQ' of the
transferred energy produces steam and that the remainder is transferred
between melt particles (in the present formulation the steam cannot be
superheated and no heat is lost to the vessel walls). Thus the sink term

in the enthalpy equation (2.13) is given by

QS = 6qg %HaW/LM (5.5)
Since the water is saturated and the steam produced is not superheated
(5.6)

. H
mg = Qu/Beg

where h is the latent heat of vaporisation. Comparison of equation

= P w



(5.6) with equation (5.3) shows that

A = 6g/L (5.7)

h
M £gPs
Heat transfer was assumed to be by radiation and f£ilm boiling and g

was expressed as

q= h[TM - Tw) (5.8)

where h is the appropriate heat transfer coefficient. TW is given by
the saturation condition. The melt temperature was obtained from the
enthalpy via the use of a suitable caloric equation. For example, if the
melt freezes at a temperature Tf and the enthalpies of the solid and
liguid at this temperature are denoted by HS and HL respectively,

then

T = H /C + T H < H
M o ¥ Ty M~ s
= T H < H < 5.
£ g < Hy “H faas)
=7_+ (B -4 H
Tf ( )/C L M g HL

where we have assumed H (T )=0 and C and C (the specific heat
MW pL pS
capacities for the liquid and solid melt phases, respectively) are

independent of -TM.

The above description gives the particular forms of the constitutive

relations used for the calculations presented in section 6. However, the
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code is written in a completely general way which can be easily modified

to explore the effect of other possible closure relations.

6. Model Results

In this section we present results obtained from the two-dimensional
mixing code when it was used to model an actual mixing experiment, and to

scope the effect of vapour production on mixing.

6.1. Comparison of Code Results with Experimental Data

The code was used to simulate a 2d mixing experiment (CWTI-9) carried
out at Argonne National Laboratory [7]. In this experiment molten corium
was injectéd into a deep pool of water and the ewvolution of the system was
examined. A detailed description of the experiment is given in reference

7, but the main features will be summarised here for clarity.

(i) The experiments were carried out in a cylindrical vessel 106 mm in
radius and 511 mm high. This was represented by a 10 x 10 finite
difference grid in the simulation. The vessel was initially filled to a
depth of 320 mm with water at 367 K. Except for a melt injection orifice
the vessel was sealed at the top. An expansion pipeway was fitted into
the side of the vessel leading to an expansion tank with a volume of

1.4 m3. The experimental geometry is illustrated in Figure 2. This tank
was used to collect the melt and water "blown out" of the mixing vessel.
The tank was heated above the saturation temperature of the steam so that
the pressure in the expansion vessel could be used as a measure of the

mass of steam produced in the mixing process. In the present simulation
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we assume that the top of the mixing vessel is open, and determine the
mass of steam water and melt ejected from the vessel. Thus the present
simulation can be expected to over-predict the loss of water and melt

compared with the experiment.

(ii) The corium, composed of 60% U02, 16% Zr02, and 24% stainless steel,
was injected into the vessel as a jet with a diameter of 22 mm and an
initial velocity of 3.7 m/s on entry into the water pcol. The melt
injection was in two stages: a well-defined jet with a flow-rate of

9.6 kg/s for the first 0.22s; followed by a 'multi-globule' pour with a
flow-rate of 0.45 kg/s for 0.45s < t € 0.9s5s. For the chosen finite
difference mesh only the cell at the centre of the vessel allowed melt
inflow. For the first pour the melt volume fraction at the top of the
vessel was set to unity and for the second pour it was set to 6%. In both
cases an initial velocity of ~ 3.1 m/s was used. A total corium mass of

2.39 kg was injected.

(iii) The corium was initially in liquid form at a temperature of 3080 K.
The liquidus temperature of the oxidic phase was 1730 K. For the present
calculations it was assumed that freezing took place at 2923 k at which
temperature the latent heat (3.44 X 10° J/kg) was released. A value of
625 J/kg K was used for the corium specific heat, providing a suitable
caloric eguation to relate the melt enthalpy and temperature. Heat
transfer was assumed to be by blackbody radiation and convective film
boiling (the correlation proposed by Witte [8] was used). The steam
production rate was weighted by a factor & to allow for the reduction
in heat transfer when little water is present, for example, due to reduced

absorption of radiation (see section 5 for further details}).
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(iv) All length-scales were assumed to be fixed. The water and steam
length-scales were set equal to the vessel radius. The only justification
for these assumptions is at present heuristic. The melt length-scale was
a parameter of the calculation. At the end of the experiment the median
particle size was 0.78 mm. For the present calculations the most suitable
single length-scale to describe a distribution of pgrticle sizes is the
Sauter mean diameter [9], since this gives the correct value of the volume
to surface area ratio. Assuming the particle size to be Lognormal [10]
the Sauter mean diameter was estimated to be 2.7 mm. Thus we decided to

perform simulations for particle sizes of 1 mm, 2 mm, and 3 mm.

(v) All the drag coefficients were set equal to 0.2 as this value was

found to give the best agreement with experiment in our previcus work

[5]-

(vi) A time-step of 5 X 10~ 6s was used for the simulation with 1 mm
particles and a time-step of 10~ 5s was used for the simulations with 2 mm
and 3 mm particles. Values this small were required to ensure that the
large vapour production rate (cf. Eg. (3.3)) was modelled accurately. The
calculations were carried out to a f;nal time of 1.5 seconds, at which

time most of the melt had settled into the base of the vessel to form a

debris bed.

In the experiment the initial corium pour was observed to enter the
water surface as a well-formed jet and to form a displacement crater and
splash wave. Within 10 ms of the melt entering the water, the water pool

was observed to undergo a dramatic boilup, essentially filling the entire
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available cover gas volume. All these effects were observed in the

simulation.

Figures 3(a) and 3(b) show the calculated volume fractions, for the
case of 2 mm particles, at times of 0.1s and 0.2s, respectively. The
Figures show that the melt jet spreads out very little as it falls through
the steam and water. When the melt jet reaches the vessel bottom melt
spreads out along the vessel base. At t = 0.1s the Figure shows that the
water has been pushed aside by the melt forming a splash wave and crater.
By t = 0.2s the centre of the vessel contains very little water, with
water being located mainly at the outside walls and being thrown out of

the vessel due to the extremely high steam production rate.

At the end of the experiment 36% of the water and 13% of the corium
were estimated to have been expelled from the mixing vessel. Table 1
shows the amount of melt and water lost at the end of the calculations as
a function of melt particle size. The data in Table 1 shows that the
prediction of the mass of melt swept-out by the steam is in very good
agreement with the experimental data for particles with a diameter in the
range 2-3 mm. The mass of water swept-out is too large by a factor of
two, but this difference could easily be accounted for by differences

between the calculational and experimental geometry.-

The calculated integrated mass of steam produced can be used to make
a prediction for the pressure transient in the expansion vessel, which is
available from the experimental data. The measured pressure rise was
small (~ 0.07 MPa) so that the assumption of constant properties, such as

steam density and latent neat of vaporisation will not lead to a
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significant error. Since the expansion vessel was heated to prevent
condensation, the pressuré can be estimated by dividing the calculated
mass of steam produced by the vessel volume and then by using steam tables
to determine the pressure, given the specific volume and temperature. It
‘was assumed that the steam would be rapidly heated to the vessel
temperature (~ 25 K of superheat). Figure 4 shows a comparison of the
calculated pressure with the experimental data for a range of particle
sizes. The Figure shows that the code predictions for particle sizes of

1, 2 and 3 mm span the experimental data.

The calculated transient steaming rate and the prescribed corium
inflow rate are shown in figure 5. The data show that smaller particles
lead to more rapid steam generation initially. As large volumes of steam
are produced the mixture is dispersed and the steaming rate falls. The
second corium inflow causes the steaming rate to increase as more corium
enters the system and mixes with the remaining water. The
experimentalists [7] obtained a plot of the transient steaming rate
against time from the expansion vessel pressurisation data by treating the
steam as an ideal gas and differentiating the pressure-time curve to
relate ﬁs with g% . The present authors believe that this approach is
inappropriate, since steam does not behave as an ideal gas close to its
saturation temperature and numerical differentiation of such data is
notoriously inaccurate. Indeed it seems highly unlikely that the plots
shown in Figure 5 could be recovered from the data given in Figure 4.

Therefore we believe that the only valid comparison with experimental

steam production data is that shown in Figure 4.
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To conclude this section on comparison with experimental data we

summarise the main features of the simulation:

(i) The evolution of the system is qualitatively very similar to the
experimental observations.

(ii) The pressurisation of the expansion vessel can be simulated
accurately using particle sizes close to those found
experimentally.

(iii)Predictions of melt and water 'sweep-out' by steam are in reasonable

agreement with the experimental data.

6.2 Application to the Study of Mixing

The motivation for the present work comes from the need to understand
steam explosions, which are a mechanism by which the thermal energy of the
hot liguid can generate coolant vapour explosively [3]. It is
well-established that a necessary precursor to a large-scale steam
explosion is the establishment of a coarse mixture of the melt and coolant

over a timescale of the order of a second [3].

A key guestion in this area is, "what is a coarse mixture"? This
quéstion can be fully answered only with the help of experimental steam
explosion data and the development of physical models of the triggering
and detonation processes. Pending the development of such models, we have
used physical intuition to construct a quantitative measure of a
. potentially explosive mixture making use of the currently available
information regarding the properties of such mixtures. This is done with

the help of an indicator function with carefully chosen properties.
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In the context of the present application a good mixture consists of
approximately equal volumes of melt and water. In addition, if too much
steam is present progression to latter stages of the explosion process is
not possible. In general it is also necessary to say something about
length-scales of the melt and water but this will be deferred until an
evolution equation for length-scales has been developed. Thus consider

the following function:

e(as,aw,aM) = 16 aM(1-aM)aw(1-aW)f(aS)

1
where f(as) B e (6.1)

1 + x2

X = Max ((as - acrit)/a.ﬂ]

We note that 6 has the following properties:
(1) It is symmetric in aw and aM.
(ii) It takes wvalues in the closed interval zero to one.

(iii) It achieves its maximum value when aM = aw = 0.5 and decreases as

the mixture becomes lean in either component or as steam is formed.

: . £ < .
(iv) The dependence of 8 on as is such that for as acritf(as) is
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unity and for a > a . the chosen form of £f(a ) ensures that 6
S crit s

is damped smoothly to zero.

We have chosen the simplest functional form for 6 satisfying
properties (i) - (iv). The chosen values of the parameters acrit and ¢

are somewhat arbitrary but can be easily modified as better data becomes

available. The spatial average of 06, defined by

8=/ 6av/ [ av ' (6.2)
v v

gives a global measure of the degree of mixing.

A series of simulations have been carried out to illustrate the use
of the 8 function. The same conditions as those described in the
previous section were used except there was only a single pour of melt
(10.5 kg/s lasting for 0.2s). The increased inflow of melt was achieved
by broadening the jet by a factor of three and ensured that there was
sufficient melt present to give a wvisible region of mixture.

Figure 6 shows a plot of 8 against time for various conditions
which affect vapour production. The base case uses 5 mm melt particles
and an ambient pressure of 0.1 MPa. In this situation ® rises to 0.08
at 0.2s and then decreases to 0.05 at 1.0s. Decreasing the particle size
to 3 mm changed the initial behaviour only slightly but resulted in a
poorer mixture for t > 0.2s. Tnis is because smaller particles cause

more vapour generation and hence greater dispersion of the melt.
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Increasing the pressure to 1.0 MPa causes the volumetric vapour
generation to fall allowing better mixing, a phenomenon which has been
observed experimentally over this pressure range [11]. Increasing the
pressure further to 6.0 MPa causes ® to fall. This is because although
only a small volume of vapour is produced a considerable fraction (~ 50%)

of the water is converted to steam, so that there is too little water

available for good mixing.

The final calculation is a repeat of the base case but with vapour
production artificially supressed. This shows very different behaviour;
[ initially increases almost linearly with time for a value of 0.3 at t =
0.6s and then falls as melt and water separate due to buoyancy forces.

Because there is no vapour generation there is virtually no loss of melt

and water from the vessel and a large region of mixture is formed.

Figures 7 and 8 show the difference between the time evolution of 8
for the base case and the isothermal case, respectively. (Contour levels
below © = 0.3 are omitted for clarity.) In the base case steam
production causes the melt to be dispersed rapidly as the melt falls
through the water pool and there is only a small region of good mixture
after the melt reaches the vessel base. In contrast in the isothermal
case a large region of mixture is formed both during the fall phase and as

the melt reaches the vessel base and spreads up the sidewalls of the

vessel.

The above data illustrates the very different behaviour of isothermal

and vapour-producing jets. This work strongly suggests that it is
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erroneous to model hot melt pouring into. water using physical models [12]

or correlations [13] which do not take vapour production into account.

7. Discussion and Conclusions

A 24 finite difference model has been developed to study the
evolution of buoyancy-driven, multiphase systems, including the effect of
a phase change. Although the numerical scheme is similar to that used in
our earlier work [4,5] various modifications and extensions have been
made. For example, the velocities of all phases are now calculated
simultaneously at each grid node, rather than by using an implicit
tridiagonal matrix inversion scheme to relate all the velocities of each
species in turn. This practice ensures that Newton's third law is exactly
satisfied, produces a very stable numerical scheme, and is computationally
cheaper. 1In addition, an enthalpy equation is solved to determine the
melt state (solid or liquid) and temperature, for use in the constitutive

relations.

Model predictions have been compared with experimental data for the
situation of a jet of hot corium injected into a vessel partially filled
with water. The predictions are seen to be in good general agreement with
the data for realistic choices for the 'free parameters', even though
somewhat arbitrary constitutive relations have been used. This suggests
that the empirical relations used to model interphase drag and heat
transfer must be at least of the correct order of magnitude. Work is in
progress to improve the modelling in this area (see below). Many of the
gqualitative features of the numerical simulations faithfully reproduce

experimentally observed phenomena. Furthermore, these features are
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relatively insensitive to the specifics of the constitutive relations.
Simulations have also been carried out to show the difference between the
mixing of an isothermal and a vapour-producing jet injected into a pool of

a different fluid. A quantitative description of a mixture (in the

context of steam explosion research) has been proposed and clearly

demonstrates the different evolution of the two systems.

It is intended to extend the present work By developing evolutionary
equations for the component length-scales so that features such as droplet
break-up and reagglomeration can be modelled. 1In addition, improved
constitutive relations are being sought. Further experimental comparison
will be carried out as suitable data become available and the model will
be used in a predictive capacity to determine the most important

geometrical and external factors affecting mixing.
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Melt particle % of melt % of water

size lost lost
(mm)
1 40 85
2 18 67
3 9 62

Table 1: The effect of particle size on

melt and water 'blow-off'.
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