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Abstract

Details are given of a numerical study of finite-g tearing modes
in the Tokamak. The linear compressible resistive MHD equations are
solved in full toroidal geometry with no ordering assumptions. The
results show a strong stabilising effect as g is increased, arising
from the average curvature within the resistive layer. This
stabilising effect is particularly pronounced for high conductivity

temperatures and small aspect ratios.
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1 Introduction

The effects of plasma pressure on tearing modes in toroidal
geometry were studied analytically by Glasser et al [1]. They found a
strong stabilising effect at finite beta, resulting from the influence
of the average curvature on the tearing mode within the resistive
layer. At g=0 in the cylindrical limit the stabi]ity criterion for the

tearing mode [2] is

m[— L2715 =a"<0 (1)

where br is the perturbed radial magnetic field and e is the resonant
surface radius. In the large aspect ratio 1imit the results of Ref [1]

yield the modified tearing mode stability criterion
] 5,6 = ]

where expressions for Dp and V /X, are given in Ref. [1] (and also in
Section 3 of this paper). It is assumed that the average curvature is
stabilising (DR<O) in deriving Eq. (2); for DR>0 (as in the RFP)
pressure driven interchange instabilities occur. In general in the
Tokamak DR<0 and thus the region of stability to tearing modes
improves. To understand the regimes where this stabilising effect on
the tearing mode are important it is useful to examine the scaling of
A'_ with minor radius (é), major radius (Ro), conductivity temperature

c
(T), and central beta (BO)
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thus Towering the aspect ratio (at constant a or Ro) raises A'C and
similarly raising T or Bo increases A'C. So in small aspect ratio,
high temperature Tokamaks (eg JET) the stabilising effects of the
favourable average curvature will be particularly pronounced. Several
authors have used cylindrical estimates for A' to examine these
improved tearing mode stability boundaries for a range of Tokamaks

[3,4].

In this paper we present numerical studies of the effects of
finite beta and aspect ratio on the linear tearing mode. We solve the
compressible or incompressible resistive magneto-hydrodynamic (MHD)
equations in full toroidal geometry with no ordering assumptions, using.
a modified version of the FAR code [5]. The studies presented here
will focus on parameters broadly consistent with the JET device,
although various other aspect ratios are examined. The results
presented confirm the stabilising effect on the tearing mode resulting

from the favourable average curvature.

The analytic treatment of Ref. [1] assumes that ao' is a given
quantity. In practice A' is a function of B and aspect ratio, and when
there are several rational surfaces with the same toroidal mode number
(n) and different poloidal mode numbers (m) present in the plasma, a
coupled system of ordinary differential equations must be solved for
the A' at each rational surface. Since in general the g-profiles in
Tokamaks do encompass several rational surfaces, so also will most of

the cases studies in this paper. We will however examine one large



aspect ratio case with a central q value of 1.1 and an edge value of
2.9. For this case we make a detailed comparison with the analytic
theory. The effects of toroidicity and pressure for situations with
toroidal couplings have been studied using the finite beta reduced
Tokamak equations [6] in Refs. [7,8]. The o(e3) reduced Tokamak
equations however preclude any curvature stabilisation because the
pressure perturbation is advanced by fluid convection alone and
compressibility effects are ignored. By expanding to higher order
[o(e3)] the curvature stabilisation effects are incorporated whilst the

fast magneto-sonic waves are still precluded [9].

In Section 2, the form of the resistive MHD equations which we
solve numerically are discussed and also very brief details of the
numerics are given. The large aspect ratio analytic theory is
described in Section 3, the numerical results are presented in Section

4, and finally a summary and conclusions are given in Section 5.

2 Resistive MHD Equations and Numerics

In this section details will be given of the resistive MHD
equations which are solved and the numerical methods used. The code
used is a version of the FAR code [5] which has been modified to solve
the compressible resistive MHD equations. Only brief details of the

numerics will be given here.

The MHD equations are solved in a system of flux coordinates
(p, 8, &) [10]. Here p is a flux surface label, 6 is a generalised
poloidal angle determined from a straight field line condition and ¢ is

the toroidal angle. A generalised minor radius which is used to
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normalise all lengths is defined by a=J(R0fR“2dV/(2n)2]. These flux
coordinates are generated numerically from Grad-Shafranov equilibrium

solutions [11] and thus no orderings are used in their evaluation.

We start from the linear resistive MHD equations

> > >
88 - o x (VxB - qvxB) (4)

at

2—) >
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> >
P - V.vP - PV (6)

at

and

v.B =0 (7)

Here y is the ratio of specific heats. We assume that Pp=Pp(e) and for
the calculations presented here pp Will be a constant. In eqns (4)-(7)
all Tengths are normalised to a, the resistivity, pressure and density

are normalised to their values at the magnetic axis ”o’Po’ Py
respectively; time is normalised to TR=a2/n0; the magnetic field to B0

its vacuum value at RO;S=1R/¢Hp is the ratio of the resistive time to

the poloidal Alfven transit time (z,,=Rvp /B ).

From egn. (7) we may write



+ >
B=vxA=vexv (px) + Vg x V¢ (8)

where we have adopted the gauge Ap=0. We adopt a similar form for the

velocity

> .
V=v0xV (ppr) + vE X Vo + T (9)

which separates the incompressible and compressible parts of the
perturbation. From Eqn. (4) we determine equations for the poloidal

and toroidal flux functions, ¢ and y, respectively

a_x=F_(9__—.l_ a—]A"‘FVp.VI -E_.@_._(l_) [%-q,]
at R2 3¢ q o6 p 30 R2" q
ia_“+nae (10)
p 00 _
%:.F_.(g_-la_)q,+ivp,vl-a_a+ndg (11)
dt R2 a& q 26 q dE

where F is the equilibrium toroidal magnetic field (BE) and o is the
electrostatic potential. An equation for ¢ is determined from the
gauge constraint Asz

2
-2 (Fy -2 (Fyon-Fromn +ng -2 20 (19

dp dp RZ2 % q R2 P qR2p

here e=(a/Ro) is the inverse aspect ratio. Explicit expressions in

terms of ¢ and y for the perturbed currents (Jp’de’Jg)’ occurring in



Eqns (10)-(12) are given in Ref. [5]. To obtain equations for the
poloidal and toroidal velocity stream functions, ¢ and A, we take the
curl of Eq. (5) which annihilates the compressible terms (y1).

Defining the vorticity U=vxV we find

0 B
1 aU” _ o) 1 3¢y @ 1agp a 1 apy @ J
-~ Bep - s 2P0 S BRDBY =
$° at 0 p 08 dp p Op 00 p dp DE P

- RZpd.y (—— 2% (13)
R2p  3p

and

23U _ 0 13 13 1 3px d
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%
+d.y (— deny (14)
pR? 3p

An equation for the compressible velocity potential (1) is found by

applying the divergence operator to Eq. (5)

B
1__EL_(V21) = v.(J x B) - % vy2p (15)
S2 »t 2e2

Numerically we solve the linearised version of Egs. (13) to (15).

Finally the equation for the perturbed pressure (P) is

3P 1 an 1 a9 dPeq
= . | — - — +Vp.V1]—"yP V2, (16)
e
at RZ "3s p a6 do q



Equations (10)-(16) are equivalent to the primitive compressible
MHD equations [Egqs. (4)-(7)] and contain no ordering assumptions. By
setting 1=0 in these equations we obtain the incompressible MHD
equations. The ability to solve either the fully compressible or

incompressible equations is retained in our numerical implementation.

Equations (10)-(16) are solved using a modified version of the
FAR code, of which full numerical details are given in Ref. [5]. A
Fourier decomposition is used in the angular variables (6,g) and finite
differences in p. An implicit time centred scheme is used which gives
very rapid convergence of the solution [5,12]. The boundary conditions
at the origin are determined by regularity. At the wall we require the
normal components of V and B are zero. The boundary condition on the
velocity may be split because of a gauge invariance into separate

requirements on the incompressible

aa - 13¢ (17)
of p 006
and compressible
po
g 2+ 3. (18)
op p 06

parts of the velocity. Full details of the remaining boundary
conditions and their numerical implementation are given in Ref. [5].
The majority of ca]cu]afions presented in this paper are repeated with
varying spatial resolutions to check for convergence. Some details of

this are given in Section 4.



3 Large Aspect Ratio Analytic Theory

In this section we examine the stability to n=l1 modes of a

circular boundary case with an aspect ratio of 20 and

0=1.1(1+(p/0.617)8)1/%  and compare the results with analytic theory.

For this case q varies between 1.1 and 2.9 and thus only the m=2 mode

is resonant. In the large aspect ratio 1imit the dispersion relation

derived in Ref. [1], which is appropriate to this case, is

v D
A' = 2,12 Bk 5 [1-L R 3/2]
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(19)

(20)

(21)

Inherent in the derivation of Eq. (19) is the assumption that the

. _ 1 :
sound speed w >>w. Since w =(yg,P/292)* [normalised to Typ) We see

that it is appropriate to compare the incompressible numerical results

(y==) with the dispersion relation. Figure 1 compares the n=1 growth

rate (w) as a function of g, between the dispersion relation [Eq. (19) ]



and the numerical incompressible results. There is good agreement
between the dispersion relation and numerical results. In this case
Pag2 is assumed, S=5x106, n=1, and the cylindrical value for A' is used
in the dispersion relation. The numerical calculations retain the
poloidal harmonics m=0 to 4, with 450 mesh points. The small
discrepancy between the dispersion relation and numerical results at Bo

= 0.1% in Fig. 1 may in part be due to the fact that a' is actually

changing with g.

Examining the dispersion relation [Eq. (19)], the first term

5/
(aw ) represents the g=0 tearing mode while the second term

(aDRm_llu) is responsible for the stabilisation effect from the
favourable average curvature in the Tokamak (DR<0). As S increases
(and w decreases) so the relative importance of the average curvature
term increases. Figure 2 sﬁows the trajectory of the growth rate in
the complex w-plane as S is increased for the same case as Fig. 1 at
By, = 0.25%. Results are shown for the dispersion relation (a) and the
incompressible code (b); the numbering on the curves is the S value.
The trajectory for the numerical incompressible results can not be
followed into the stable region (mI<O) because the initial value method
requires a growing solution. This type of overstable behaviour is
characteristic of the 4th order differential equations which occur when
sound waves interact with the resistive instability; such behaviour
also occurs for the resistive ballooning mode [13,14]. The growth
rates when the solution becomes overstable are usually very low

(typically w~TR/10 for the cases examined in this paper) and their

experiment relevance is guestionable.



Finally, it is worth remarking that this single rational surface
case is somewhat pathological. The constraints on the g-profile mean
that o' is relatively small (~2) and so we are forced to low g, in
order to avoid being stabilised by the curvature terms (DR). This in
turn means that the sound speed is Tow and there is a marked difference
between the incompressible and compressible (low y) cases. In fact in
the regime W it is difficult to achieve converged numerical results
with the compressible code and we have not made an extensive survey of
the effects of compressibility in this case. Apart from the effects of
compressibility however the multiple rational surface cases at tight
aspect ratio, have exactly the same qualitative behaviour as this large

aspect ratio case.
4 JET Results

We shall now examine the stabilising effect of By ON tearing
modes, for parameters consistent with JET equilibria. For these cases
we take the inverse aspect ratio (relative to the horizontal minor
radius) to be 0.39. At such tight aspect ratios and with multiple
rational surfaces in the plasma there is strong coupling between the
poloidal harmonics. Figure 3 shows a convergence study of the poloidal
spectrum for a JET circular boundary equilibrium with
q=1,1(1+(p/o_505)8)l/“, By=0.5%, S$=105, n=1, and n=<1/JE> (where <>
denotes a flux surface average). The pressure profile is Peqa¢2 and
will be so throughout this paper. The poloidal magnetic energy

spectrum

(1] 1 o
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and the growth rates, shown in Fig. 3, can be seen to be converged by 7
harmonics. Typfca]]y for n=1 calculations for JET, we include the
poloidal modes m=-1 to 7 and use 200 radial mesh points. This radial
resolution is quite adequate for S~105 (assuming n = 1/<JS>) but for
$>108 we perform calculations for several meshes and use a quadratic

extrapolation to zero mesh size.

Figure 4 shows the n=1 growth rate as a function of g, in the
incompressible and compressible (y=5/3) regimes. The flow in the g=0
plane is shown in Fig. 5 for this case at 5052%. The circular boundary
equilibria in this case have q=1.34(1+(p/0.558)3)1/q and ¢=0.39 (ie
JET) with S=10° and n=<1/J§>. This g-profile is particularly unstable
to n=1 and n=2 tearing modes at p=0, and has been used extensively in
disruption studies [15, 16]. Despite this a strong stabilising effect
is evident in Fig. 4 as g, is raised. The y== curve in Fig. 4 is from
the incompressible code, although we have verified numerically that as
y+~ the compressible results limit to this value. The compressib]é and
incompressible results agree well except near g=0 where the regime
we<<w occurs for the compressible case. The dispersion relation

appropriate to this regime is

=212 6 (AT ()T (23)

q S

This is the normal cylindrical result [2] and differs from the g0
1imit of Eq. (19) in the omission of the (1+2q2)1/h term of VS/XD.
The (1+2g2) term is related to the compressional waves damping the
tearing mode and so is absent when w0 . Thus we expect the g =0

limit of the incompressible case (y==) to differ from the compressible
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result (y#w) by (1+2q2)  =1.55. Even though this case (Fig. 4) is
tight aspect ratio and has several resonant surfaces the ratio of the
compressible to incompressible p=0 growth rates (=1.76) is still near

the analytic single helicity ratio for the m=2 mode of 1.55.

The S value (10%) used in Fig. 4 is much lower than that in the
JET experiment, which is typically S~107 to 108, If we increase S for
the same case as Fig. 4 at g,=2%, then the importance of the average
curvature terms within the layer increases and the growth rate
eventually decays much faster than the tearing mode scaling (as-a/s)
and becomes overstable (Fig. 6). For values of S consistent with JET
the dispersion relation shows that the mode is completely stable (we
are unable to confirm this numerically because the initial value method
requires a growing solution). For the computation shown in Fig. 6 we
have used the incompressible code, although because we<w  We find that
the compressible code (y=5/3) gives almost identical results. From Eq.
(19) we see that a scaling of the growth rate as 5-3/5 indicates that
the curvature terms are not playing an important role in determining
the growth rate. Thus since in Fig. 6 the growth rate scales as s
for S=105 we may conclude that the stabilisation for 50<2% in Fig. 4
is not due to the curvature terms. Instead it is caused by changes in

the equilibrium profiles and poloidal mode couplings as g, is

increased.

We now examine a circular boundary case which is less unstable to
tearing modes at By=0, q=1.1(1+(p/0.506)8)l/h; in this case the n=1
tearing mode growth rates are significantly reduced by 50=l% at $=10°
(Fig. 7). There are three curves in Fig. 7, two of which are the

compressible (y=5/3) and incompressible results with the g-profile as a
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function of p held constant as g, is raised. The remaining curve
corresponds to conserving the FdF/d¢ profile as By 1s raised (with g at
the axis =1.1) and is for the incompressible 1imit. By raising B, at
constant q we are implicitly changing the current profile which itself
affects the growth rate. The difference between the g-constant and
FdF/dy constant results (in Fig. 7) indicates that the effects of the
finite-g modifications to the profile are reTative]y small. The ratio
of the compressible to incompressible results at g=0% is 1.72 here,
which again is in reasonable agreement with the analytic prediction.
Since however the regime >>0, is of Tittle interest for present day
Tokamaks we have not bothered to examine the region near p=0 in detail.
For this case (Fig. 7) we have so far considered $S=105, by raising this
to higher values the instabilities are further stabilised. Figure 8
shows how the incompressible growth rates vary with S for 30=0, 0.5 and
1% (q-constant). At large S (>106) the g,=0 growth rate asymptotes to
the tearing scaling (8-3/5) while the g,=0.5 and 1% cases decay much
faster than this and become overstable. The compressible (y=5/3)
results show very similar behaviour as S is increased. The
trajectories in the complex w-plane as S is increased at g,=1% are
compared for the y=5/3 and y== (incompressible) cases in Fig. 9.

1/4
), £=0.39] the ideal

For this profile [g=1.1(1+(p/0.506)8
ballooning threshold is p,=6% (Fig. 10) and hence there is a
significant region of complete stability to the ideal ballooning mode
and n=1 tearing mode (g,=1.5 to 6% at S=105). The critical g, for
ideal ballooning scales as ¢ [17], whilst at constant S the average
curvature stabilisation terms are independent of e; hence the region of

stability to both the n=1 tearing mode and ideal ballooning mode

shrinks as the aspect ratio is increased (at constant S). Figure 10
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shows the ideé] ballooning (n==) growth rates as a function of B, for
several y value with £=0.2 and 0.39, and q=1.1(l+p/0.506)8)1/“. The
ballooning growth rates are quite sensitive to y but the marginal
points are independent of f. The difference in the critical g, isin
good agreemént with the inverse aspect ratio scaling predicted by
Troyon/Sykes [17,18]. It should be noted for the tearing modes that by
holding S constant as we change the aspect ratio, we are imposing the
requirement that n and T be varied to keep a2T3’2/(Rn%) constant., If
instead we make the more physical assumption of noT (and allow S to
vary) then the critical g, which must be exceeded to stabilise the
tearing mode scales as (R/a2)l/3. Hence with this assumption the
region of stability to the n=1 tearing mode and ideal ballooning mode
shrinks even more rapidly, since the critical p for stability to the

tearing mode now increases as the aspect ratio is raised.

Raising the aspect ratio also effects the stability of the ideal
n=1 modes. For the free boundary n=1 mode the critical-g for
instability scales, like the ideal ballooning mode, as the inverse
aspect ratio [17]. The global nature of the free boundary n=1 mode
means that it is sensitive to the position of the conducting wall;
placing it at the plasma boundary has a strong stabilising influence on
the mode. .A detailed parameter study of the fixed boundary internal
kink has been given by Manickam [19]. His results show that at high-p
(gﬁp~0.8) the n=1 internal kink remaips unstable for a central qg> 1.
This effect is particularly pronouncéd for large aspect ratio, peaked
pressure profiles, and gq-profiles with low shear near the axis. At
still higher B (5ﬁp>1.2 for qa/q0=4) the internal kink is stabilised

(for all qo) as it enters the second region of stability.
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For the profile q=1.1(1+(p/0.506)8)l/q at aspect ratio 5 the n=1
tearing mode (S=10°) is not completely stabilised as g, is raised (Fig.
11). This is in contrast to the JET aspect ratio case (Fig. 7) which
is stabilised by g, = 1.5%. The increase in growth rate for g >2% in
Fig. 11 is associated with the mode becoming ideally unstable. By By =
5% (eﬁp=0.7) the growth rate of the mode is almost 1ndependent_of S
(Fig. 12); indicating an ideal mode. For higher g the growth rate of
the q0=1.1 case decreases and becomes completely stable for sBp>1.2 as
the ideal mode enters its second region of stability. At these
high-g's the curvature stabilisation is very strong and the tearing
mode is stable. The behaviour of the ideal mode in this case is in
good agreement with the results of Ref. [19]. Also shown in Fig. 11
is the behaviour of the n=1 growth rate with Bo for the profile
q=1.34(1+(p/0.558)8)1/h. In this case, because of the higher q, the
mode does not become ideally unstable, and the tearing mode is
stabilised by ﬁ0=5% at S=105. For the q0=1.1 case in Fig. 11 it is
possible to achieve a region of stability to the tearing mode, and
ideal ballooning and n=1 modes, by increasing S. Figure 12 indicates

at B,=2% that the n=1 tearing mode is stabilised by the curvature terms

at high S.

For all the JET cases presented so far in this section we have
used broad current profiles. To study the effect of more peaked
profiles we use the parameterisation q=1.1(1+[(4.3/1.1)K-1]p2l)1/h.

By varying A we can go from flat (x=4), to rounded (A=2), to peaked
(A=1) current profiles [20]. Figure 13 shows how the n=1 growth rates
vary with ) for 50=0 and 0.5%, with $S=105 and ¢=0.39. The reduction in
growth rate as A decreases is mainly attributable to the reduction in

shear and n(=l/<JE>) at the q=2 surface. By a=1.5 the g,=0.5% case is
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stable. Thus the n=1 tearing mode is stabilised at Tower g, (or S) for

the more peaked profiles.

Finally we examine the effects of B, on the n=2 (predominantly
m=3 at B,=0%) tearing mode. This mode is harder to destabilise than
the m=2, n=1 mode and requires broad current profiles; we use the
relatively unstable g-profile used for Fig. 4
[q=1.34(1+(p/0.558)8)l/q]. Figure 14 shows that incompressible growth
rate as a function of g, for the n=2 mode in this case; here S$=10%,
n=<1/JE>’ and €=0.39. At this value of S there is no region of
stability to the n=2 tearing mode, although the n=1 mode is stable by
Bo=4% (Fig. 4). For this profile the ideal ballooning threshold is
By=5.5%. At high-g the magnetic energy spectrum becomes very broad and
the n=2 mode has a strong ballooning character. Figure 15 compares the
magnetic energy in the dominant poloidal harmonics between the B,=0%
and 8% cases shown in Fig. 14. At the higher g the spectrum is much

broader and actually peaks at m=4.

For the n=2 ideal mode the instability is more radially localised
that the n=1 mode and the conducting wall position has less effect.
Figure 16 shows the growth rate of the ideal n=1 and n=2 modes as a
function of Bp computed with the ERATO stability code [21]. The
equilibria in this case have dP/dy = - (1 + a) ¢, FdF/dy = ap +0.63
ag3, € = 0.39 and q, = 1.2; where 'a' is varied to alter the Bp'
Results are shown in Fig. 16 for the wall infinitely far from the
plasma and at the plasma surface. For the n=1 mode placing the wall at
the plasma surface stabilises it in this case, whereas the more

localised n=2 mode remains unstable for all wall positions. Results

are also shown from FAR in Fig. 16; these are in reasonable agreement
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the wall on plasma ERATO results. Figure 17 shows the velocity flow in
the £=0 plane from the FAR code at Bp=2.2; the very strong ballooning
character of the mode is evident. The strong ballooning character and
relatively localised nature of the fixed boundary ideal n=2 mode mean
that careful convergence studies are necessary. With ERATO we have
used several computational grids (the finest being 90 radial intervals
and 60 poloidal intervals) and then quadratic extrapolation to a zero
mesh interval. With the FAR code we have used 120 radial grid points
and the poloidal spectrum m=-2 to 11 (which is the Timit imposed by
computer memory). At the highest-g's (5p>2.3) using slightly reduced
poloidal spectrums indicates that the FAR growth rates are not fully
converged for these very broad spectrum n=2 ballooning type modes; this

may in part account for the discrepancy between the FAR and ERATO

results.

Thus the failure of the n=2 mode to be completely stabilised with
increasing g, (Fig. 14) arises because the n=2 fixed boundary idea1
mode is destabilised before the tearing mode is stabilised (S=10%). At
higher S the curvature terms (DR) will be more important and stabilise
the tearing mode before the ideal n=2 threshold is exceeded. Figure 18
shows the S dependence of the n=2 growth rate for the same case as Fig.
13 at p,=2%, and indicates that by raising S to large enough values

then n=2 tearing can be completely stabilised.

For the n=2 mode we have only shown results from the
incompressible FAR code. This is because the very broad spectrums of
the n=2 mode require us to retain many poloidal harmonics to obtain
numerically converged results. Unfortunately because of computer

memory limitations we are unable to use so many modes in our
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compressible calculations. Comparison of calculations with reduced
spectrums ( m=1 to 7) do however indicate that the effects of

compressiblity on the n=2 growth rates are not too great (~10%).

5. Conclusions and Discussion

The finite-g properties of the tearing mode in the Tokamak have
been studied computationally.. A code has been developed which solves
the linear compressible resistive MHD equations in toroidal geometry
with no ordering assumptions. The computations confirm the analytic
results of Glasser et al [1]; there is a strong stabilising effect as g
is raised which results from the favourable average curvature terms
(DR<0), within the resistive layer. The importance of these
stabilising average curvature terms increases as S (ie conductivity
temperature) is raised. At large S the tearing mode growth becomes
overstable and as S is raised still further the mode is stabilised
(wI<0). Examining the scaling of the critical g for tearing mode
stability [Eq. (3)] shows that this tearing mode stabilisation will be
particularly pronounced at high temperature and low aspect ratio. To
confirm this we examine the finite-g behaviour of tearing modes for
equilibria with the inverse aspect ratio £=0.39, which is consistent
with JET. .For q-profiles which are moderately unstable at g = 0 (A' ~
5), we find that the n=1 tearing modes can be completely stabilised by
Bo=1.5% (at S=10°). Since for these cases the critical p for ideal
ballooning is 6%, there is considerable region of complete stability to
the n=1 tearing mode and ideal ballooning mode (ﬁ0=1.5—6%). Raising
the aspect ratio causes the critical g for ideal ballooning to decrease
inversely. Also increasing the aspect ratio with the assumption ngT

means that critical g for stability to the tearing mode increases as
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1/3
(R/a2) . Thus as the aspect ratio is increased the range of B over
which the n=1 tearing and ideal ballooning modes are stable shrinks and

eventually disappears.

Since generally the sound waves propagate faster than the tearing
mode growth time (ms>>w) the compressible (y=5/3) results differ very
little from the incompressible results. In the region near =0 where
the sound speed is low (ms+0 as B,»0) the y=5/3 and y== results do
differ markedly; this behaviour however appears to be of little

relevance for present day Tokamaks.

For the n=2 tearing mode it is harder to achieve complete
stability. This is because at high-g the n=2 fixed boundary ideal mode
is destabilised. It should be noted however that the n=2
tearing mode is intrinsically harder to destabilise than the n=1 mode

and requires broad current profiles.

In this paper we have only considered equilibria with circular
boundaries. Elsewhere we have considered the effects of D-shaping, at
JET aspect ratio, on the tearing mode [22]. The effects of increasing
the D-shaping were shown to be strongly dependent on whether q(p) or
FdF/d¢ was held constant as the shape was changed. For modest levels
of shaping (b/a ~1.4) there was no clear effect on the finite-p tearing
mode stability. It is worth noting here however, that the shaping does
have a marked influence at high-g on the stability of low n ideal modes
and n== ideal ballooning modes [23, 19]. Shaping will thus affect the
behaviour of the n=2 and large aspect ratio n=1 modes in the regimes at
high-g where they become ideally unstable. It will also alter the

range in g over which the n=1 tearing mode and ideal ballooning mode

_19_



are stable, by increasing (or decreasing) the ideal ballooning

B‘]imitn

Finally we note that linearly the average curvature stabilising
effect relies on the properties of the resistive MHD equations within
the tearing layer and thus further refinements to the theory (Finite
Larmor Radius terms, Diamagnetic effects etc) may be important.
Nonlinearly however, the curvature terms play an important role in
determining the island growth rate [24], and so the results in this
paper may be of relevance in situations where the linear resistive MHD

equations appear inapplicable.
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Fig. 1 Growth rate (w) as a function of central beta (50) comparing

the dispersion relation [Eq. (19)] and incompressible numerical

results, n=1, S=5x106, and £=0.05.
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Fig. 2 Growth rate as a function of S for, (a) dispersion relation,
and (b) numerical (y==) computation. The labels are S values,

Bp=0.25%, and all other parameters as Fig. 1.
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Fig. 3 Energy spectrum and growth rates showing convergence as the
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number of harmonics are increased, g=1.1(1+p/0.506)8 , S$=1035, n=1,
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Fig. 5 Velocity flow in =0 plane for the same case as Fig. 4 at
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Fig. 9 Trajectories in the complex w-plane as S is increased for

compressible and incompressible cases (same case as Fig. 7, Bo=1.0%).
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