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I Introduction

It is well documented that many Tokamaks exhibit anomalously high
rates of torﬁidal momentum loss. Electron, and possibly ion, energy are
also lost at rates greater than predicted by neo-classical theory and it
is common to seek an explanation for this in terms of turbulent transport
from some micro—instability.. It is therefore natural to suppose a
similar mechanism is responsible for the loss of toroidal momentum and
one such, ion temperature gradient turbulence, has been suggested,
(MATTOR, DIAMOND and LEE (1986)). |

However, STACEY and SIGMAR (1984 & 1985) have advanced the
hypothesis that, iﬁ a torus, classical eroviscosity allied to inertial
effects due to sonic flows, can account for the experimental
observations. This contrasts gith an earlier discussion by HOGAN (1984)
of the same problem based on the full Braginskii stress tensor which led
to a Pfirsch-Schluter enhancement of classical perpendicular viscosity.

We have therefore reconsidered this problem and show in .Section II
that, for an up-down symmetric Tokamak, classical perpendicular viscosity
(without a Pfirsch-Schltter enhancement) is appropriate. This result is
consistent with kinetic treatments of this problem for low flow
velocities by ROSENBLUTH et al (1971) and HAZELTINE (1976) and for sonic
flows, by HINTON and WONG (1985), (see also COWLEY and BISHOP (1986)) .

Because of this confusion in the literature an important contrib-
ution in this paper is the discussion, in Section III, of the physical
interpretation of our calculation and the origin of the different results

obtained by Stacey and Sigmar and by Hogan.



II Calculation of Collisional Toroidal Momentum Loss

In this section we derive a momentum diffusivity from Braginskii's
stress tensor (BRAGINSKII (1965)) given in Appendix A, so that our result
is valid for a collisional plasma in which Rmfp' the mean free path for
all species, is small compared with the macroscopic scale size. For
simplicity we first consider the case with no ﬁemperature gradient or
impurities; the modifications due to temperature gradient are discussed
in Appendix B and the role of impurities is discussed in Appendix C.

In this situation the plasma is described by the following set of

equations for each species q:
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where the electric field E=-V¢p + Ei with Em the inductive
component . v, is the collision frequency between species g and Br
while Sa is the particle source and Ea the momentum source for species ¢
and the other symbols have their usual meaning. The viscosity tensor

T given in Appendix A, has a decomposition
T = ) = (6)

where Lo is the dominant parallel component characterised by a

coefficient of parallel wviscosity nu ~ naTa /vaa' §1a and gﬁa are the

roviscous terms with viscosity coefficients ~ and
g¥rov 4 n1,2 (vaa /“EaJ”o

: . P 2 .
L2 and L, are the perpendicular components with 3,4 (vaa/ubaJ g
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Here we have introduced the gyro-frequency @y eB/ma and it is also
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convenient to define the thermal velocity vtha

/W

radius 3
Ccq

pa - vtha
We solve Egs (1) to (5) by an expansion in pi/a where a is the

minor radius, treating Amfp/a as a subsidiary expansion parameter, and

seeking an evolution of toroidal momentum on a timescale

v,., V2 .
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as will be justified a posteriori. Therefore with & labelling order in

pi/a:
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Momentum sources do not change the order of magnitude of this answer

if |V'Eol >> lEi‘ and, since this is always satisfied, we consider the

case Pi = 0 for simplicity.

a) Lowest order flows

In an axisymmetric torus V.B = 0 implies that the magnetic field

can be expressed as

(2)

&

e

~
B = V¢ % + I
2= N By

where R is the major radius of the torus, ¢ is the poloidal flux
function and ET is a unit vector in the toroidal symmetry direction.
When the equilibrium flow velocity is of order the sound speed the

lowest order ion momentum equation yields the familiar result

= -E = V¢ (10)

and the electrons obey an identical equation. The magnetic field is
therefore frozen into the zeroth order flow. By taking the scalar
; 0 0 . 0 .

product of Eg.(10) with B we deduce that ¢ = ¢ (¢). Since V¢ 1s

, o . .
perpendicular to the flux surface V  is in the surface. We resolve zg
into two components, one parallel to B and one in the toroidal direction
(see Fig. 1.). It follows from Eq.(10) that

0
v, = w(¢)Re, + NB (11)



where w = ca¢0/a¢ and hi is arbitrary. For stationarity on this fast

timescale the continuity equation {(Eg.(1)) constrains this flow to be of

the form
0 K. (¢)
V. = w(¢)Re, + ek (12)

This form of the flow is discussed from a physical point of view in
Section III. We will refer to the toroidal part of the zeroth order flow
as the rigid rotator part. The parallel flow contains a poloidal
component which is strongly damped by parallel viscosity (also known as
magnetic pumping, (HASSAM and KULSRUD (1978)). On the long timescale of
Eqg.(7) we therefore expect Ki to be small. This is demonstrated

mathematically by considering the ion momentum equation in next order of

VxB
the v,,/w ., expansion. The Z.,enf (B + — = ) term is annihilated by
ii’ “ei i1 '~
' : dal .
the operation B., where df is an element of
B n
pi

length in the poloidal direction and BP is the poloidal magnetic field.
Physically, we are computing the flux surface average of the work done by

the parallel force on the parallel flow. Then, writing

<A> = jE_A (13)

we obtain the equation (temporarily retaining the effect of temperature

variations)
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Since the induced electric field EI is of order nJ and the
resistivity m ~ mivie/ne2 the last two terms iﬁ Eg.(14) are comparable
and give no contribution in zero and first orders, while the time
derivative also appears only in second order. In zero order we insert
YE into Eq.(14) noting that the inertia term vanishes identically. Using
the form of i given in Appendix A we find that s [wRedT) =0 so

that, ignoring temperature gradients, Eg.(14) reduces to

B B

~ ~ 1
<. Vem > = 3K () <n0(2.vq.£—;g.vn_) > =0 (15)
where E'= E/B. The parallel viscosity therefore constrains the parallel
flow to be zero at this order. The relaxation of Kg to zero clearly
occurs on a timescale Ezvthi/azvii' We discuss the physical mechanism
responsible for this relaxation in Section III.

To calculate the slowing down of the toroidal rotation mo(¢,t), we

will still require K;(¢), the longitudinal part of the first order f£low.
Kl(¢) is obtained from the ion momentum equation in next order of the
u/wc expansion, but we delay the calculation until certain equilibrium

properties have been established, in particular the nature of the

poloidal variation of ni(¢,£).



b) Equilibrium
Adding the momentum equations (Eg.2) for the ions and electrons we

obtain the. zeroth order pressure balance equation

2 VR ~0 B (16)

0 1 1 .
where p = n, (T, + T ) and J = Zn.e(V, - V_), and to this order
it7vi e ~ i '~ ~e

—4ﬂEP = cV x B. Taking the scalar product of Eg.(16) with B we obtain,

L (17)

where c, = [2(Ti + Te)/mi)1/2 is the constant sound speed. The density
variation in the surface provides a parallel pressure gradient which
balances the component of the centrifugal force in the surface. The

toroidal component of Egq.(16) yields JO. V¢ = 0, which with Eg.(7)

implies I0 = IO{¢). The V¢ component of Eq.(16) yields the equilibrium

equation
— 2 2.2 *
op 2- 9 (w w R _A¢ I BI
+ R'p L__) exp | } = + = . (18)
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S S

*
where p =1 (Ti + Te) and A is the usual Grad-shafranov operator,

* _ . d 103, 3¢ (19)



When temperature gradients are included in the problem (see
Appendix B) E.VTO = 0 and Eg. (18) is unchanged except that g, = cs(¢).
The equilibrium specified by Egq.(18) is determined by the three free flux
functions P, w/c_ and I (MASCHKE and PERRIN (1980) ), which evolve through

the transport equations.

c) Evolution of Toroidal Angular Momentum

We derive an equation governing the evolution of toroidal angular

momentum by annihilating the leading order part of the momentum equation

d

(Egq.(16)). This annihilator is _E R e ., and, applying this to a plasma
B ~T g
P

with a single ion species, we obtain.

0 2 0 2
<m (n, wR™)> H o < 0 GRTY T
- v 0
<Je —2> W< Re - g+ V¢ >. (20)

Physically the terms in Eg.(20) represent, from left to right: the rate
of change of angular momentum, the convection of angular momentum, the
toroidal J X E'force and the viscous drag between surfaces.

First we show that the toroidal Jx B and convection terms can be
.neglected. It follows from Gauss's law and charge conservation that the
toroidal J x B force is also equal to the rate of change of charge inside

the surface. Thus



2
_Vi>=<29|ﬂl > (21)
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where we have used Egs.(9) and (12). Comparing the J x B force to the

rate of change of angular momentum we find

<ag. Y, v 2
~ C A
= > ~ 5 . (22)
< mi'BE (niuR )> c

h i h f i LI, . i
where VA is the Alfven velocity VA B/Y 4T m.n, Since VA/ e <€ 1
in most experiments, the toroidal J x B force will be ignored.
We may express the convection term (which involves the second order
radial flow) in terms of the lower order flows by taking the scalar

product of the ion momentum equation with uR3§T and flux surface

averaging. To second order we obtain
e 2 2 _ 2 1.2 2 '
E-( niuR Yi.v¢ > = -m,;< wR V-(YimR ni) > = < wR V'E'EER >

2 1
TS R v PV 7 Y ) ey (23)

The first order flow vl can be calculated from the first order ion

momentum equation

2 V xB
02 VR® _ 0 1~ "~
- mn.w" — = -V, +n.e (-7 X ) (24)



together with Eq.(17). We first obtain the potential ¢1 from the
parallel component of Eg.(24) and Eg.(17)
2 .2

1 m,wR
3

i & (25)
T 2 (T +7T.)
e Xl

This potential provides an electron density variation which ensures
charge neutrality when the ions are expelled by the centrifugal force.
The perpendicular component of Eg.(24) and the condition of stationary

density in the continuity egquation at this order yield

v, = + l(H+ i )R(EJI' (26)

where prime denotes differentiation with respect to (. Note that the
diamagnetic toroidal velocity has a contribution due to velocity shear.
One may verify that substituting Vg and E; into Eq.(23) yields, to

second order,

< n.RV..T > =0 (27)
1 ~1

1/2
where we neglect the friction term because vie/ v ~ (me/ mi) .

ii
Thus we conclude that the toroidal J x B and convection terms in Eg.(20)
may be neglected.

The slowing down is therefore determined by the viscous term in

Eg.(20); evaluation of this term is aided by two identities:

_10_



(28)

1
o
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for any velocity, and

Ve §3i(uﬁe ) - =0 (2?)

Thus the viscous term in Eg.(20) is, to second order,
R . .. — R . , ° + ° i .
< RVy T %Il > < RV¢ gu(ngJIl) ?dr> <RV¢ EZl(MR%I') %I)
+ < RV ( V1) e > + < RV (V1) e > (30)
beBas ¢ ¥y beTy; (V52

so that the gyroviscosity contributes at the same order as the
perpendicular viscosity. The slowing down rate can therefore be
calculated once Kl is determined as we do not require Ei'

K? is determined from the parallel work done at first order using
Eg.(14). In this order the friction term and time derivative in Eq.(14)
are negligible, the inertia term again vanishés identically, and we

obtain,

B B B

~J 1 ~J ~J
——— - + . . + e - =
< nj. v LtOi(Y‘ ) o v ;;3i(wR5T) "] v g4i(ngI,) >=0 (31)

At this point we exploit the fact that the collisionality parameter,

Amfp/ a, is small in the collisional regime. The contribution to Eg.(28)
. . 1, ;
from the diamagnetic pa?ts of zi in T3 and L,; 1is smaller than that

from the perpendicular viscosity terms, Tis and Tost by a factor Rmfp/ a

-11-



; 1 . : ; 5
and can be ignored. However Ki' driven by gyroviscosity in Eg.(31), is

given by
1 _ o R2 212
K, = 3= <1y (HI B. VB o B.Vln n, )
(32)
o 2
<5 (b-v8 - 3B.Vlnn )%
n

1
%yH Pi |, a
- NwR(—a )(— ) (33)

i Amfp
so that K; gives a contribution to Eg.(30) through the gyroviscous term
comparable to that from the rigid rotation in the perpendicular
viscosity.
Clearly, when the magnetic field is up-down symmetric [B = B(R,¢)],
Kl is zero. Thus, in an up-down symmetric tokamak, the viscous damping

of toroidal flow comes entirely from the rigid rotator flow in the

perpendicular viscosity and Eg.(20) takes the form

g 4 o 212
o) 2 _ o) i P 4
a2 (n R > = - 2 [ @n—"F. + 20K _E_’._q’r >} (34)
ot o¢ B B

= - = = 2
where B_ | ve| 7/ R By I/R and m, = 1,/ 2 = 3/10 nT (v, ./w_; %)

(BRAGINSKII (1965)). The density evolution is given by

_.12_



bni mic
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and is therefore slower than the evolution of @ by a factor (vie/ Vii)'

We estimate the damping of toroidal rotation from Eg.(34) as

p, 2
08 ) (36)

& ~ Vi
and observe that there is no Pfirsch-Schldter enhancement. One may
verify that in an up-down asymmetric tokamak the term resulting from Kl
. . . . , - 2 2,2 .
in gyroviscosity gives a momentum diffusivity of order g ViiPy /a times

the square of the degree of asymmetry.

III Discussion

In this section we will discuss the physical processes that govern
the form of the flow and the slowing down and compare our results with
others in the literature.

The lowest order consequence of the momentum equation in a
gyroradius expansion is the familiar result §.+ Yi X E/c = 0, Eg.(10)-
The magnetic field is therefore frozen into the lowest order flow. We
may deduce the properties of the flow from the constraints thét the
magnetic field and density be stationary. Thus there is no flow
perpendicular to the flux surface since it would distort the surface. It
is convenient to split the flow in the surface into two compcnents: a

toroidal flow which, because of axisymmetry, does not perturb the density

-13-



and a flow parallel to the magnetic field which therefore does not per-
turb the field. The angular velocity of the toroidal flow, , must be a
flux function otherwise differential rotation within the surface would
'wind up' the field. To discuss the parallel flow V"i we consider a
flux tube through which the fluid flows. The continuity of the particle

flux within the tube requires that V iniéA be constant (where HA is the

I
cross—-section of the tube). Since V.E = 0, 6A B is also a constant
along the tube so that V“i = Ki(¢)B/ni. The form of the flow given by
Eg.(12) is therefore deducible from relatively simple physical
considerations.

The value of Ki is determined by parallel viscosity. The damping
of the parallel flow by parallel viscosity can be understood in terms of
the work done against Pl and P" the components of pressure perpendicular
and parallel to the magnetic field. A fluid element flowing along the
field line from the outside to the inside of the torus is elongated along
the field and compressed across the field. The rate of doing work
against parallel viscosity in a large aspect ratio tokamak is of order
(p - P") € V"i/a (where ¢ 1is the inverse aspect ratio). The

L

difference Pl - P" arises from competition between collisionless particle

motion which increases the anisotropy and collisions which decrease it

and is given by Pl - PII ~ EPV“i/avii. Balancing the loss of kinetic

energy of the parallel flow with the work done against parallel viscosity

2
/a v, . .

leads to a damping rate for poloidal flow of order Ezvthi bk

It is interesting to estimate the bulk parallel ion flow resulting
from neutral beams by balancing this parallel ion viscosity with the
friction between the beams and the ions. Since the frictional force is

of order m.n, v. f, where f is the fraction of beam momentum

3
i%Vii Veni/Vp) Y

b

going into parallel motions, vui/vthi can be estimated as

-



Vi R )
= [ ] e (37)
Ty

where ﬁb/ﬁi = anb/niTi with nb and Tb the beam density and
'temperature'. In typical tokamak experiments Vﬂi/vthi estimated from
Eg.(37) is less than a pergent.

Our result Eg. (32) differs from those of STACEY and SIGMAR (1985)
and HOGAN (1984). Hogan has argued that momentum diffusion is analagous
to thermal diffusion and that a Pfirsch-Schliter enhancement of

momentum diffusivity occurs. To understand this we review the calcul-

ation of thermal diffusion. In a non-rotating plasma (see Appendix B)

z I . LB x yr, + vk VI, (38)
~ i P 3

where the parallel thermal conductivity K“ ~ niTi/mivii and

KK,

to lowest order

~ ~ . ® i L] i f . . ] i V
KL/KA. vii/“E1 Expanding Eg. (38) in powers o yll/“bl yields

K B-VT? =0 (39)
I~ "1
0 0 1, . .
and therefore Ti = Ti (¢). Ti is determined in next order by the
equation
K" 1 KA aTiO
g-v(?g.wi]—g.vwxm_=o (40)

i ; 1 . ; ; ;
This is readily solved for Ti which is up-down asymmetric. The evolution

=]15-



equation for Tg(¢) is given by the flux surface average of Eg.(38) in

second order,

A 1 0
Bixwi+v.1<lvri> (41)

where the contribution from T; yields the PfirscﬁﬂSchluter enhancement.

While there is some similarity between the thermal conduction and
viscosity problems (parallel viscosity is similar to parallel conduction
etc.) there is a crucial difference between the role of viscosity in the
momentum eguation and the role of conduction in the temperature eguation.
Parallel thermal conduction dominates Eg.(38) whereas parallel viscosity
does not dominate the momentum equation (2). In the small gyro-radius
ordering employed in this paper the momentum equation is in fact
dominated by the Lorentz force (cV.EO/VBne ~ pilmfp/az)' In order to
determine the constraints imposed by parallel viscosity it is then
necessary to annihilate the Lorentz force in the momentum eguation by
taking the scalar product with E/ni and flux surface averaging. Thus K1
is determined from Eg.(31) by computing the work done over the whole
surface, whereas T; is computed locally on the flux surface. Hogan's
calculation neglects the Lorentz force and obtains a local equation for
the toroidal velocity 21 driven by 23,4(uRET)' analogous to Eg.(39) for
Tl. The contribution to the toroidal momentum loss from 53’4(21) then
yields a Pfirsch=Schluter factor.

In a series of papers STACEY and SIGMAR (1984,1985) have advanced

the hypothesis that classical gyroviscosity can account for the observed

-16-



anomalous toroidal viscosity. In order to achieve their effect they
postulate O(e), where g is the inverse aspect ratio of the tokamak,
variations of density n and V¢/R within a magnetic surface,
corresponding to non-rigid rotation. In particular these variations must
be up-down asymmetric. Gyroviscosity is then able to produce ; radial
transport of toroidal momentum with a viscosity co-efficient

By~ EZDB where Dy is the Bohm diffusion coefficient. It is interesting
to note that a similar result for thermal conductivity would arise if one
considered the effect of the finite gyro-radius heat flux in the presence
of an O(e) temperature variation in a surface! To justify these
variations in V /R and n Stacey and Sigmar use results obtained from
momentum equations in which the Braginskii viscous stress tensor is
simply replaced by a drag - njmijij (STACEY and SIGMAR (1984)). The
arbitrary drag coefficients V. are chosen to simulate the anomalously
large toroidal viscosity observed in experiments, and thus greatly
exceeds the equivalent value arising from Braginskii's equations.

However it grossly underestimates the parallel viscous drag of the

classical stress tensor. This is the essential reason for the result
obtained by Stacey and Sigmar. It allows much greater parallel flows, ie
K0(¢) # 0, than are permitted by the Braginskii anistropic stress tensor.
In particular non-rigid rotator flows occur, resulting in up-down
asymmetric density perturbations. The gyro-viscous stress then provides
the anomalously large toroidal viscosity. The authors can then envisage
a bootstrapped situation in which this anomalous viscosity is responsible
for the initially assumed anomalous drag. As we have seen the correct
form of Braginskii's stress tensor does not permit these effects - one

would have to remove the dominant parallel viscosity effects by invoking

_]7_



a greatly enhanced ion collision frequency. These essential points are
not significantly affected by complications due to impurities,

temperature gradients etc.

v Conclusion

We have examined the diffusion of momentum in a collisional toroidal
plasma with a sonic toroidal flow. We have demonstrated that there is no
pfirsch-Schliter enhancement of momentum diffusivity in an up-down
symmetric tokamak, i.e. the momentum confinement time, as given in

= 2 ; .
L v.iPs /az). Since experimental slowing

Eq.(34), is classical, [Tm
down rates are more than fifty times this classical rate (ISLER et al

(1986)) and (BRAU et al.(1983)), the momentum loss, like the energy loss,

is anomalously fast.

-18-



Appendix A

The Braginskii Viscosity Tensor

In this Appendix we give the ion viscosity tensor, (BRAGINSKII

(1965)).

Parallel

~0i

where M

Gyroviscosity,

T .
=31

and

T, .
md]

where Ny

This involves:

viscosity,

1 1
=3, (B2 -3 D (Bb- g D:iW

0.96 niTi/vii and b is a unit vector along B ;

n,T /w . = 21n,, the rate of strain tensor
i i® el 3

<<
<

aH
o
bl=2

-

(A.1)

(A.2)

(A.3)

(A-4)



Perpendicular viscosity,

By =Ml LW L +5L(B.d.0)] IR5)
’ézi=”2[=1=1"'i'132+13a2'£'1=1] (R.6)
where = 12/10 (n,T / 2 ) = 4 Thus
My = 17iVii’%i? T My v
: : = 1w, Sws (v /)2 (a.7
Mg ¥ MarTy * MyeTy B Vgl V33 W) e 1s.
The full viscosity tensor is
4
5L~ _l Tni (A.8)
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Appendix B Temperature Evolution

In this Appendix we discuss the modifications imposed by the
presence of temperature gradients. The ion temperature equation is
(BRAGINSKII (1965)).,

oT,
i

3 3
—_ + _ V.. . S = = =Y. - H + B.
i T i S R T R A T AL R TR L] t81]

ind M1 ~d
where Qi is the heat source (we ignore heat exchange with electrons) :and

%iis the ion heat flux,

b X VP, -k V.. (B.2)

Qg = “RpBRe W, * Ry 1

A~ I

The thermal conductivities are,

Ty 9 5 BTy BeTy i
K"i = 3.9 e Kﬂi =5 = = Kli =2 = [w .) (B.3)
1 11 1 Cci 1 C1 cl
In lowest order Eg. (B.1) becomes,
0,3 0 0 1 i 0
l(i(_2 E'wi + n’l‘i B.V E) = B.V ;2._ Q.Vri +
s & omvl
b.V(Z).b - = 2 .
3(x; ), (b V() b - ) (B.4)

where we have used Eg.(10). The flux surface average of this equation is

Eg. (14) to lowest order. Dividing Egq.(B.4) by Tg we obtain the

=-21-



condition,

1
K 3n B B.V —
i 0,2 042 0 ~ ~ T
- - = — . —_) e e - 2 .
(B VT (Ki) < —5 (g V(=) b 3 )2 (B.5)
B T, T

Since both averages in Eg. (B.5) are positive definite we conclude that
K, =0, B-VTi =0 (B.6)

The order of the slowing down time can now be determined from Eg.(20).
Using Egs.(28) and (29) and yg = w(¢)RET' we find that the temperature
gradient does not effect the order of magnitude of the slowing down. If
we wished to evaluate the precise effect of temperature gradients on the
slowing down we would integrate Eg.(B.1) to determine E.VTl and then
obtain K; from Eq.(14). To calculate the correct coupling of the
momentum loss to the temperature gradient we must include the
contributions to the viscous stress from heat flow (MIKHAILOVSKII and
TSYPIN (1971)and TSYPIN (1985)) which were not included by Braginskii.
Since the order of magnitude of the result is unchanged by the
temperature gradient and the correct result is given in HINTON and WONG

(1985), we will not pursue the matter further here.
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Appendix C The Influence of Impurities

In this Appendix we discuss the modifications to the theory of
momentum transport introduced by the addition of an impurity. We shall
assume that the impurity density n_ is such that,

I

n 22 ~n, (C.1)

In this ordering impurity-ion collisions are comparable with ion-ion
collisions. Eg.(10) holds for both spécies so that the zeroth order flow
for both is given by Eg.(11). In calculating the parallel flow from

Eg.(14) we must include the friction term. Eg.(14) for the ions becomes,

B n
2

B
K,l_..,_.>+<,,B>'+ . V. —_ > = C.2
i < n v 1=tt10(n) mlle KI< mlleB n i ( )

and for the impurities

B B 5 5 nI
—_— . — + . . z — = .
KI l:n v Ll:IO(n)> * mI\"I:l_B >] ¥ KJ.< IrlIvIJ.B ni > 0 (c.3)
so that KI = Ki = 0. The zeroth order flow is the rigid rotator, just as

in the case without impurities. The viscous slowing down time is now
determined from Eq.(20), and again arises from the rigid rotator flow in
perpendicular viscosity (and z1 in gyroviscosity in the asymmetric case).
The order of magnitude of the slowing down time is thus not changed by
the presence of impurities (i.e. it is still given by Eq.(31)) and so it

is unnecessary to evaluate the details here.

i ) G



Finally we note that the poloidal density variations can be obtained

from the parallel component of the zeroth order momentum equations;

1
_ e
n, = ne(¢)exp (- Tg_)
mimZR2 ¢1
n, =T, (¢lexp (__ZTI_ + Zie_@z )
R .y
n = nI(¢)exp (mf—ffz + T ) (C.4)

1
The poloidal variation of ¢ is determined from charge neutrality. If
1 ; ;
ZI>> 1, Zi = 1 and Eq.(C.1) holds, then ¢ is given approximately by
Eg.(25). In this limit the impurities play a role in the collisional

dynamics but not in charge neutrality.

=24-
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