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Introduction

Theoretical investigations of the internal disruptions (sawtooth
behaviour) observed in most Tokamak discharges have concentrated on three
separate aspects of the phenomenon:- (i) the reconnection(1-6) occurring
during the non-linear phase of the m = 1, n = 1 kink instability; (ii) the
simulation by transport codes (3'4)of the slow evolution of the discharge
wﬂich returns it to a kink-unstable state, resulting in the cyclic
behaviour observed; and (iii) the establishment of marginal stability
criteria for the internal kink mode (resistive as well as ideal) and

(7-12)near to marginal stability. Without the

studies of linear growth
third ingredient the transport simulations lack credibility because they
assume the plasma reconnects when some arbitrary criterion is satisfied,
and the non-linear reconnection studies lack credibility because they
start from a strongly unstable equilibrium.

(13,14) have employed reduced fluid

Recent sawtooth simulations
equations which follow both the fast Alfvenic time scales and the
transport time scale. The equations include electron thermal transport
both along and across the magnetic field as well as resistivity. These
simulations extend the earlier work of Sykes and Wesson(s) and have been
very successful in producing ecyclical reconnecting behaviour. However,
the geometry is cylindrical, and as is well known the stability properties
of the internal kink mode are quite different in cylindrical .and toroidal
geometry.(e) The conditions under which each thermal collapse is

triggered may therefore be rather different in this simulation from that

holding in a real Tokamak discharge.



Another difficulty encountered in sawtooth simulations, concerns the
very fast collapse time frequently observed in large Tokamaks (100p sec in
JET). As noted by Wesson(7)this collapse time is at variance with the
estimate given by Kadomtsev, and is difficult to reconcile with any
mechanism involving a transport induced evolution through a linear
stability boundary, be it of an ideal or a resistive mode. If such a
mechanism is responsible for the temperature collapse, an exceedingly
sharp stability boundary must be involved: sharp, that is, in the sense of
large growth rates being possible for equilibrium parameters close to
marginalitye.

A knowledge of linear stability criteria, and of linear growth rates
near marginal stability, is therefore an important ingredient in
understanding sawtoothing in Tokamaks. An important contribution in this
field is the Toroidal calculation of the ideal mhd energy &% by Bussac et

(15-17)]

al(a)[subsequently presented in more detail « From the later paper

by Bussac et al(10)

one can obtain analytic expressions for the linear

growth rate of the internal kink mode in a resistive plasma as well as in

the ideal limit S+ (where 5 is the magnetic Reynolds number). These

results are limited in several ways, all of which may be relevant to

understanding sawtoothing. These are:-

(i) The analysis assumes an aspect ratio expansion of the egquilibrium,
and orders B ~ 52, where g is the inverse aspect ratio.

(ii) oOnly g(r) profiles (where g is the safety factor) having a single
g=1 radius, are considered.

(iii) In the inner region, r < r, where q(r1) = 1, the ordering |q - 1|>>E

1

is assumed.



It is the purpose of this paper to remove these limiﬁations and to
establish the internal kink stability properties of Tokamaks for a variety
of g(r) profiles, including non-monotonic g(r), at finite as well as large
aspect ratio. We devote particular attention to identifying marginally
stable equilibrium configurations, and to evaluating growth rates close to
marginality, for both the ideal and resistive internal kink modes.
Detailed quantitative comparisons are made between the computational
results obtained from a linear toroidal resistive mhd code (FAR)(1B'19)and
analytic results.

The structure of the paper is as follows:- in section 2 we summarise
the analytic theory for ideal internal kink modes when a single q = 1
surface is present in the plasma, and extend it to cases for which two
q = 1 radii are present. In section 3 results from analytic theory are
compared with numerical growth rates obtained from the FAR code. In
section 4 numerical results are presented for tight aspect ratio devices,
strong shaping, and very low shear profiles. These calculations include

examples which model the measured g profiles in ASDEX(ZO}

TEXTOR(21). Many of the calculations are for equilikbria consistent with

and in

JET. These cases are strictly beyond the regime of walidity of the

analytic theories.

Finally in section 5, the results are summarised, and conclusions on

the nature of the sawtooth collapse are drawn.



Section 2

Analytic Theory of Internal Kink Stability

(a) Cases with a single q = 1 surface.

The ideal mhd toroidal stability problem was considered for a large

(8)

aspect ratio torus by Bussac et al and the effect of shaping was

22 , ;
analysed by Edery et al.( )Shaplng effects decouple from toroidal effects

in the large aspect ratio limit, so that the combined effects are
additive. For an equilibrium of circular cross section the energy

integral &W, after minimisation, is given by
4

r
R (T)
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with BP the poloidal field strength and r1 the radius at which g(r) = 1.

(T)

The gquantities b and c in &W are the values of the logarithmic

derivatives



b a2 [ j o= —0 2 I (3)

obtained on integrating the m = 2 Euler equation

(3 - 1,28 2

d 1 1.2
from the axis (with regular boundary condition there) to give b and from

the g = 2 surface, (or the plasma boundary, if there is no g = 2 surface
within the plasma) to give c.

An important feature of the toroidal effects (2 is that the

cylindrical contribution to &W is identically cancelled out for an n = 1,
m = 1 mode in toroidal geometry. It follows that if the value of the
ideal MHD energy, éW, is important in determining the trigger for internal
disruption and reconnection, cylindrical simulations must give incorrect
results.

To obtain the linear growth rate of either the ideal MHD mode or the
resistive kink mode, the above calculation of &W must be supplemented by a
theory of the singular layer.

In the case of the ideal mode the growth rate may be obtained by

equating the kinetic energy, K

2
k=X of|g[Pa’ (7)
2

(23)

to the potential energy available for instability, (=-&W). Because of

the inertial layer at r1,K is dominated by the contributions from 562 and

§¢2 in the inertial layer, where



(8)

while the discontinuity at the singular layer is resolved by the inertia,

and one finds

d Y2 1 2 dgr
= {3_2.+(.c.1.-1) bz | = © (9)
dr Wy

with mA = VA/R and VA the Alfvén velocity.

The factor 3 appearing in equation (9) is the inertial enhancement factor

2
M=1 + 2q found by Glasser, Greene and Johnson

(24)

in toroidal geometry.
To obtain the correct linear growth one must add the field line bending

modification to the potential energy which comes from the layer. This is

given by
ag
si=21fa% e 2. 2 =X |3 (10)
2 o g dr

At marginal stability this contribution vanishes, but when egn (9) is used

to give the layer solution a finite contribution is obtained.

Finally, equating K = - [6W + 65] one obtains the linear growth rate



{f ax ] == T (11)

where x = (r - r1)/r1 is the local radial variable.

Several cases can now be distinguished:-

(i) Monotone g(r) : q(r1) = 1 and q'(r1) # 0. (Fig. 1a)

r2

Y - 1 T [_GW(T)] 1 (12)

Zr r.q' v3 ;7

A 1
(ii) Non-monotone q(r) with a minumum at r1, q(r1) = 1 and q'(r1) =0
(Fig. 1b)

2/3 r2 2/3
Y- ! [- o &"] (13)
/3 R®

(iii) Non-monotone g(r), with q(r1) # 1 and q'(r1) = 0 (Fig. 1c)

1/3 1 2/3

5 &4 YT
1+ = = - &w
R T CL B L
(r.I q" )

(14)

- 2
where y = LEI_ + (6q)2]1’2 and & = q(r1) = 1 << 1. The above expression

“A

(14) is valid for both positive and negative values of 6q, provided that



when &g < 0O, |6q] does not become large enough for the inertial layer to
separate into Ewo layers at the different g = 1 radii. For positive 69
there is a strong stabilising effect from the field line bending at r1,
and an equilibrium which is unstable when - 1 (i.e for which 6WT is

negative) is marginally stable for

= 2/3
1
L [-—11_1_ éwT] (15)

The ideal growth rate peaks for negative &g at Ymax = 1.09 TO with YD the
&g = 0 growth rate. As &g becomes more negative the growth rate decrea-
ses, but the single layer theory eventually becomes invalid. These
analytic results are compared with computed growth rates in the next
section, (Fig.4)-.

(iv) Monotone g(r) with a point of inflection at r): q(rl) =1

q'(rl) = CI"(I']_) =0
Y 1 6 L/5 27 r12 p.3/5
—_=— ) [ —— 7] (16)
W Y3 r 3" 3 R?

The presence of a point of inflection of g at . therefore, enhances the

T .
ideal mhd growth rate (y o (rl/R)6’5) when &W <0. For GWT>0 the resistive
stability of such g(r) profiles is investigated in Sec.4.

(b) The role of resistivity.

In the foregoing estimates of growth ratés it has been assumed that
6WT < 0, i.e. that there is energy available to drive ideal mhd
instability. However, even when this is the case it does not follow that
the ideal growth rates calculated above are correct. Resistivity may
dominate the layer behaviour. To estimate the magnitude of resistive

effects we compare the inductive contribution to the parallel electric



e 2A
where d is a

field, yA , with the resistive term in the layer njua
[ a2

measure of the layer width.

From this we find that resistivity is negligible if the condition

a? -1
L_l_)L__z) > S (17)
DJA rl

is satisfied.

Here, S = with = 2/r 2,
' Wy T, T nc e/ 1

Estimating the layer width 4 from eguation (9) and the growth rates

from equations (12) and (13) we find that for q'(rl) £ 0 ineguality (17)

becomes
" 3 r,¢ 3
s« E (rat@p)S () [-a7) ] (18)

V3

while for the non-monotonic case, (ii) with g 'n= 1, it becomes

_ -5/3 1, 8/3 4/3
s <7 raE e ) ) e (19)
2/3 1/3
where the layer width is d/r; = J_§n1/3 (El.__il___] (- 6W(T)) .
. R r qll
1

Inequality (18) gives the familiar result that resistivity (even with S in

the range 106 - 108) tends to dominate the linear growth of m = 1 modes.



Inequality (19) however, shows that because of the broader inertial layer
and larger ideal growth rate the internal kink becomes an essentially
ideal mode when the shear vanishes at the g = 1 surface.

When 6W(T)> 0 no ideal instability is possible and a resistive layer

(93 have given this theory in cylindrical

(10)

theory is required. Coppi et al
geometry (with q'(r1) # D) and Bussac et al have extended this to
toroidal geometry. The dispersion relation is given in reference (10)
with diamagnetic and toroidal coupling effects included. 1In single fluid
resistive theory, neglecting coupling to the g = 2 tearing mode, it

reduces to

2 : [u+5)

r r
1 (T) |, 2 3/2(3y 1/4 p= 1 "7/ _
— &W * = (r,a") [MA ] " p(“+3) =0 (20)
S
3/2
. _ 73 Y 1/2
with p = - (_._m ) )

T@is yields the ideal mhd growth rate when 6W(T)< 0 and S+=, and the

2
- -1/3 . |1 T3
familiar y ¢ S scaling when § < i~ W l « For very large S, very
R

tight aspect ratio or small shear (q‘{r1)40) the scaling of y is modified
-3/5 . ; a0 3

to the S of conventional tearing modes. No theory of the resistive

layer appears to have been done when q'(r1) = 0, but as we shall see from

the numerical results, no unstable m = 1 resistive mode is found when

q(r)>1 everywhere, provided the rippling modes are excluded.

(c) Equilibria with two g = 1 surfaces.
As noted in the foregoing, the analytic estimate of the growth rate

given by equation (14) breaks down when the characteristic layer width d

-10-



becomes less than the separation of the two q = 1 radii when qmié 1.
The analytic minimisation of &W for two q = 1 radii is similar to the
original analysis of Bussac et al. The analysis is outlined in the

appendix, where the following expression for &W is obtained.

2T 4 . b b r 4
o = 21°RB {(E - B) —_ o0 + B2 2 a0+ TE- Bt 0] (21)
0 21 RZ2 2 RZ 3

with r1 the radius of the first and r2 the radius of the second q = 1
surface, E the amplitude of the 'top-hat' m = 1 eigenfunction in [0,r1]
and E the amplitude in [r1,r2]. The expressions for 6W1, éwz and 6W3 are

given in the appendix. They depend on the quantities

r
_ jdrer 3.1 _ : o

s = Joo &)= =-1).3=1.2 (22)

i g
2  F5apr 2 :

and B = = ——— J 'cE(?:—) dr y j = 1,2 (23)
B (r.)
P 3

which are obvious generalisations of the single surface case.
The ideal growth rates, and eigenfunctions (ratio of E to E) of the
two possible ideal modes are also calculated in the appendix.

The results are

) _
2 2_ .
.ZEEEA.E+CD) +/(AE+CD) ¢ + (B 4AC)DE] (24)

Y T
“a 3
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and

g r_ 1
T E e e ':-(AE-CD) + /(AE+CD) 2 + (32—4AC)DEZI (25)
E 1 BE
r% r? r%
whereA=_E&-i’2. B=T6W3. C=_26W1.
R R°r, R

= " = ]
D= |ra'(r,)|, E= |ra'(x)

3. Comparison of analytic and numerical results.

In this section we demonstrate the very close agreement which exists
between the aspect ratio expansion analytic techniques presented in

section 2, and computational results using a modified version of the FAR

(18) (19)

code. The modified FAR code solves the linear compressible (or
incompressible) resistive mhd equations in full toroidal geometry, with no
ordering assumptions. The double eguations of state, g% = 0, and

(18)

V.(X/Rz} = 0 employed in the original FAR code have therefore been
replaced by the adiabatic equation of state or, in the incompressible
case, by V.V = 0. As a result the localised resistive pressure-driven
modes which appeared in earlier m = 1 simulations using the original FAR
code,(18)and in simulations with reduced equations using the RST

(25)

code, do not appear at finite B.
In all other respects the new version of FAR is identical to the
original code as described in ref. (18). As input to the FAR code the

flux coordinates are computed from numerical solution of the

Grad-Shafranov equation.

-12-



I. Monotonic g(r)

Fig.2 shows the variation of ideal mhd growth rate with B for
monotonic g(r) = 0.9(1+r2). The aspect ratio A = 102 and the pressure
profile is a parabolic function of r, the flux coordinate used in ref.8.
For this comparison the logarithmic derivatives b and ¢ of equation (5)
were evaluated numerically and found to be 1.15 and = 2.02 respectively.
The code was run incompressibly with resistivity set to zero. As
p;edicted analytically y = 52 and close agreement exists between
computational and analytic results.

Fig.3 shows the growth rate of the resistive mode as a function of
the magnetic Reynolds number S, for the same equilibrium as Fig.2, but at
zero beta. The comparison is now with the analytic prediction taken from
equation (20). Within the range of S values investigated the dispersion

(T) plays no role. The growth

3/5

relation is effectively p = 1, so that &W

-1/3

rate scales as S « At even higher S a transition to s~ behaviour

should occur (probably beyond S = 1012 for this case). This transition is

demonstrated for an equilibrium of tight aspect ratio in section 4.

II. Non-monotonic g(r).

In Fig.4 we compare the ideal mhd growth rates computed from the FAR

code with those calculated analytically for the non-monotonic profile

at zero beta and A = 10.
The solid curve is that given by equation (24) which should be valid

whenever two separate inertial layers are present. The broken curve is

_13_



evaluated from equation (14) which should apply when only one inertial
layer is present. A striking feature is the very sharp stability boundary
close to % ™ 1. Results are also shown in Fig.4 from the compressible
FAR code. At zero beta the sound waves no longer propagate in a
compressible formulation and thé inertial enhancement factor M = 1 (as
opposed to M = 1+2q_2 when the sound waves propagate faster than the mode
grows). Thus the compressible and incompressible growth rates should and
do differ by the factor v(1+2g2) = v3.

The spatial dependence of the radial displacement eigenfunction is
shown in Fig. 5 for various values of i The transition from one
inertial layer when Do, ™ 0.99, to two separate layers when 9 in < 0.97
is apparent. In the cases with two distinct layers the ratios of the
constant values for the eigenfunction in [o,rl] and [rl, rz] are in good
agreement with the analytic prediction in eg. (25). Fig.6 shows the
variation of growth rate with aspect ratio for this case with qmin = 1.0,
with close agreement again between analgtic and computed results.

The non-monotonic class of profiles studied here includes a
marginally stable equilibrium (for ideal mhd modes). This remains true
when finite resistivity is introduced and will be demonstrated for JET
like equilibria in the next section.

Fig.7 shows a comparison of analytic (eq. 13) and computed growth
—)2)?

rates as functions of B, for the non-monotonic g(r) = 1 + Ag(1 - (T
1

with Ag = .1, T 0.33, and an aspect ratio A = 10. In this case the

1

term in & which is linear in B is weakly stabilising but is rapidly

dominated by the guadratic term as B is increased. Thereafter the growth

rate y scales as 34/3.

—-14-



The remarkable quantitative agreement found in the foregoing
comparisons demonstrates that the analytic, large aspect ratio, theory
provides an extremely valuable framework for understanding the varied
scalings of linear growth rate with S, B, e etc, which emerge when

different equilibrium g(r) profiles are investigated.

4. NMumerical Results.

In this section we extend the results of the previous section by
computing growth rates of ideal and resistive mhd modes in various
equilibria for which the analytic theory should be expected to break down;
namely equilibria of small aspect ratio (A<3), strongly shaped cross

section, or very flat g(r) within [0,r1], or very low shear at the g = 1

surface.

1/3)

Fig.8 shows the transition from resistive kink behaviour (y= s~

; i 12 -3/5
to the more slowly growing tearing mode (reconnecting mode( )'T“ S 3/ )a

1/2
high values of S, for the profile g(r) = 0.9(1+ z 4 at A = 1.4,
_ 0.65

t

(We are forced to use this very tight aspect retio to recover tearing mode
behaviour even for the high S values (~103) used.) In the high S, or
tearing regime, this mode should be sensitive to the stabilising effect of
favourable average curvature.(24) This effect is however rather weak at
the g = 1 surface since the DR of ref.(24) is much reduced there.

Fig.9 contrasts the resistive kink mode eigenfunction corresponding
to Fig.3 with the very localised tearing mode eigenfunction corresponding
to Fig.8, (at S = 107).

Fig.10 shows the growth rate of the m = 1 mode at the JET aspect

ratio of A = 2.5 for the non-monotonic q(r) = q , + 0.1(1 - 8r&+16rt),

-15-



and several values of S. The equilibria in this case have a circular
boundary. The behaviour of y is gqualitatively the same as that found at
large aspect ratio, (Fig.4), and a notable feature is again the sharp
stability boundary. In this case when qmin>1 the growth rates are almost
independent of S, with very weak resistive damping when qmin>1 (Fig.11).
As noted in the previous section this shows that the non-monotonic profile
considered is marginally stable to both ideal and resistive m = 1
instability when d in is slightly above unity. For qmin<1 the usual
xs—1/3

Y scaling of resistive kink modes is also displayed in Fig.1i.

Fig.12 shows the destabilising effect of B for the previcus case,

with 90 = 1, while Fig.13 shows a new important destabilising effect

from triangular shaping. This last result is in qualitative agreement

(22)

with analytic theory. Previous results have indicated that
triangular, quadrangular and high order shaping is stabilising for
internal kink modes, but in these calculations monctonic g(r) was assumed.
The present result shows that this stabilicing effect is profile dependent
and can be reversed for non-monotone g(xz)-.

Recently, Wesson(7) has suggested a sawtooth model which is quite
different from the original Kadomtsev model, and which has as its crux the
assumption of an 'ultra-flat' g(r) profile for 0<r<r1. This assumption is
supported by both the measurements on ASDEX(ZO) and by transport code
simulations which, once such a flat g is established, tend to show very

small deviations from it. Fig.14 shows the growth rate as a function of g

on axis for an "ultra-flat' profile

a = qo[1+(0].:62 ]

1 B~



at the JET aspect ratio A = 2.5, and central beta of 2%. Various values
of S5 are shown, but it is clear that the unstable mode is essentially

ideal near qo~1. For qo>1.02 the 'm = 2' tearing mode becomes unstable:

the transition from an m = 1 to an m 2 mode being clear in the energy
spectra of the eigenmodes. The sharp ideal stability boundary similar to
that found for non-monotone g(r) is again evident. Growth rates
calculated from the compressible FAR code are also shown in Fig.14. For
this finite B equilibrium sound propagation along the magnetic field is
faster than mode growth so that the compressible and incompressible
results are in good quantitative agreement.

In Fig.15 the dependence of the linear growth on B is shown for the
same case as Fig.14(S = 10°), and in Fig.16 the eigenfunctions are
compared for various values of ﬁo and qo. In all cases the eigenfunctions
extend out to a significant radius, and in addition those closest to

marginal stability show the rounded feature observed in the reconstructed

flows using soft x-ray data(zs).

Fig.17 shows a similar plot of y against qo for a somewhat less flat
r 4-.1/2
g(r) = q°[1+(_zs) ] with all other parameters identical to Fig.14. The
increasingly sharp ideal stability boundary as the shear within the q=1
radius decreases is evident when Figs.14 and 17 are compared.

s (21) ,
Experimental measurements on TEXTOR have produced evidence of
somewhat different profiles of the safety factor and longitudinal current.
In TEXTOR measurements of the poloidal magnetic field indicate an axial

value of the safety factor q0<0.7, with a point of inflection in the
current J_ (r) and somewhat reduced shear at the g = 1 surface. For such

(8)
a

an equilibrium the original Bussac et.al. theory of ideal nd

resistive (1D)stability is valid. This theory predicts that, at large

—.17_



aspect ratio, the ideal mhd mode should be stable below some critical
pB-value, while the resistive m = 1 mode should be unstable (whatever the
Bl

Since the effective A' for driving the resistive m = 1 mode in
toroidal geometry(1o) is [q'(r{)]z/[sibw(T)] for a large aspect ratio
device, it is of interest to investigate what might be gained by modifying
the current profile to remove the shear completely at r1(q'(r1)+0) in a
tight aspect ratio torus. To study the general properties of profiles of
this class we adopt the simple parametrisation

q = 0.6 + 2.2r2 - 2.2(:2—1—%){100(:2":3)2
so that q'(r1} = q“(r1) = 0 with q(r?) = 1.

Results from the FAR code for this equilibrium profile (with B = 0)
are shown in Fig.18 where a strong stabilising trend is evident as aspect
ratic, A, is reduced. Surprisingly, for a force free equilibrium, the
mode becomes overstable at small aspect ratio. Overstability may (as in

(24)

he cavourable curvature stabilisation of conventional tearing modes)
be symptomatic of a stabilising mechanism within the layer which could

vyield absolute stability below some critical value of A. This is

Aifficult to establish computationally and remains a conjecture.

5. Discussion and Conclusions

A key ingredient in understa@ding, and possibly controlling the
internal disruptions in Tokamaks is an understanding of the stability
boundary which is crossed at the instant of the fast temperature crash.
An important clue is provided by the experimental observation that the

phase inversion radius of the temperature collapse which is usually

-18-



interpreted as the radius of the g = 1 surface, is not small. The
marginal g(r) profiles therefore appear to pass through, or close to,
unity at a finite distance, r, from the axis of the discharge.

As a result of the calculations presented here we can distinguish
three distinct classes of g(r) profile which possess this property, and
can be marginally stable to m = 1 modes. These are:-

(i) non-monotonic g(r) with a minimum value close to unity at r = r1

(ii) ASDEX-like, or ultra-flat d(r) profiles which are close to unity over
ﬁhe whole region [0,r1]

(iii) Monotonic g(r) profiles for which q0 is well below unity, q(r1) =1
and r1 is a point of inflection for q, or at least a point of weak shear.

Examples of each of these profiles have been analysed for ideal and
resistive growth close to marginal stability, and earlier analytic
theory(s)has been extended to provide a framework for understanding
computational results from the initial value code FAR. Remarkable
agreement has also been found in comparing analytic and computed growth
rates.

Amongst the new results presented here, are the observations that
(i) very sharp stability boundaries can be found when a critical g value
determines stability. Examples are given for 'ultra flat® and
non-monotonic g profiles.

(ii) 5“1/3 scaling of linear growth rates is not found for any of the
profiles (i) - (iii) above, close to marginal stability.

(iii) Triangular shaping of the plasma cross-section can be destabilising.
Its effect is dependent on the g(r) profile.

(iv) Equilibria with axial g values well below unity have been found which

may be stable to resistive as well as ideal mhd m = 1 modes, in a tight

_19_



aspect ratio torus. Overstability of the mode makes the determination of
a stability boundary in A difficult.
Many of the features of the sawtooth in smaller Tokamaks were

(27) Uhich invoked island growth of

explained by the model of Jahns et. al.
the resistive kink mode. In particular the precufsor oscillations, and
their growth rates, agreed with the model proposed. In larger tokamaks,
such as JET, however, precursor oscillations are not usually observed(zs)
in conditions of constant current. In addition the initial plasma

(28)

displacement in the sawtooth collapse is too fast (100 psec in JET )

for the model of ref (27). This suggests that the steep, ideal mhd,
stability boundaries apparent in Figs.(4) and (10) might be involved. We
can calculate the initial time dependence to be expected as an eguilibrium
evolves resistively through such a boundary. Assuming a time dependence

of the g profile such that

] ‘ with Tn e
n nc?

alﬁ

q=aqa(r)[1 -

and using equation (14) for the growth rate [for a non-monotonic q(r)

with (qmin - 1) = éq] we find that initially the mode growth is given by

3/2
exp(t/T ) ., with the hybrid time Ty defined by
H

= (5% )V (26)

where 6qc is the value of &g at the stability boundary. Thus, even

though the mode is an ideal mhd instability, the resistive evolution of g

introduces an nlfa into the time scale. Estimating this hybrid growth
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time for JET parameters, we find Ty ~ 300 psec which is still a little
too long to account for the experimental observations. To understand the
fast time scales involved, it therefore appears that theory must look to
non-linear, or kinetic-theory phenomena.

To understand the nature of the internal disruptions in Tokamaks it
is necessary to study the non-l;near evolution of the m = 1, n = 1 kink
mode. The present paper suggests a number of equilibrium g(r) profiles
which could be marginally stable in linear theory, and which therefore are
;ppropriate initial states for such non-linear studies. Because of the
considerable differences in these q profiles a wide variety of non-linear
behaviour is to be expected, with the classic Kadomtsev reconnection as

one possibility. Such studies are under way using a non-linear version of

the FAR code, and will form the basis of a future paper.
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Appendix A
The ideal mhd theory of Bussac et al{a) can be readily extended to
the case with two distinct radii at which g is unity. Denoting these by
r1 and r2, we follow refs.(8) and (15) in expanding the ideal energy
integral & in powers of the inverse aspect ratio, for a large aspect
ratio equilibrium, with circular plasma cross section and poloidal beta of

order unity. Using the straight field line coordinates of ref.(8) and

(17), ©, 6, ¢

2-,r (Y24 A.1
Y 2 ojo T ¥
d
B =& [P0 A.2
9 "° g2y
P

and ¢ is the axisymmetric angle. In (A.1) and (A.2) ¥ is the poloidal

flux function, and the magnetic field is given by

B=V¢x Vo+ 1(¥)ve

and A measures arc-length along B.

In lowest order of the aspect ratio expansion, one finds 5wo =0

provided 50 is chosen to satisfy

d d _
E(rgm)+?9.a;eo = 0 A.3

i(mB-n¢)

where éo « e with m =n = 1.
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In second order, §1 is also required to satisfy (A.3) and

ag
2, .2 1 2 ro| 2
&, = 2m°R BZ Jr ar {La = 1" —1°} A.4

This is minimised by the choice

Ero = 50, 0 <r < T, 7]
= Eo' r,<r<r, A.5
= 0, r2 <r <a J
when 6W2 = 0.

The relative magnitudes of the 'top-hat® solutions Eb and EO are

arbitrary at this stage.

In fourth order, after minimising with respect to §2 the second order
correction to the m = 1 component, and with respect to the m = 0 part of
51, one obtains

6w4 = aw4(0.r1} + 6W4(r1,r2) + 6w4(r2,a)
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& (o,r,) r4
g OrE a4 3 9 9
—g—3— = & =2 sy = (s B, - 55,78,y + 27!
27 ROBO R
3
3 = 1. .13 _ _,
+ 5 BBz (s, * By - ot 7T £1§1|r1 A.6
& (r.,r.) 4
a‘F1 T2 -2‘215_3(s+ \2 9 )+ 2}
"‘2‘_‘2""—50_2{’22 T8t By '8'262 64
27 ROBO R
4
=2 T1,1 3 2 9
- & ;‘E{'Z Sy = zi8*Byy) T gls t By Tt zal
r3 1'3
3 Ta 17 3 51 1
t 3 Bl s,R,m gk s w B8, (r ) [s b1” 7 J
1 3= s i 3 = =
i §1£1|r2'1r1 §1§1|r1 Al
Falrp® SERN A.8
g T Z "2 °1°1 Ir .
2n R_B
00
where
r 3
_ j rdar (1 _ -
%5 I =— b= %) ] 142
i q
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2 *5 dp
Bp(rj)

and §1(r), 21(r1, E1{r) are all solutions of the homogeneous, m = 2

Euler-equation

Since the full m = 2 solutions in the three regions are given by

(m=2) i 1 & ,
3 = E(r) = E (A + ) in [0,z ]
(m=2) = = = . 1r )
g = &.(x) - g (a t>g) in (z4:2,)
(m=2) ~ .
E = g,(x) in [rz,a]
- (m=2) .
continuity of E ~requires that
1r _ = = A 4
g trp) - gy +’£i)r1 = &trp - Ear 54 r A-10
and = F - (0 v 2 3) A.11
L Rirgl = Rml - h 7R, :

In addition 51(r) must be regular as r + 0, and E(r) must be small at the

g = 2 surface if that falls within the plasma, or 21(a) must vanish if

I, < 2.
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In the above equations A(r) is the shafranov shift, so that

. _ 1 ' 1
Az = g (s1+ BP1+_].
r
] _ 2 1
AY(r,) = g [52 * By * '3)'

To proceed with the minimisation of 6WA, we choose to represent
31(r), which is a solution of equation (AR.9), by a linear superposition of
51(r) and 21(r), the solutions which are regular at r = 0 and at the g = 2

surface.
Thus writing

21(r) = a§1(r) -+ ﬂg(r)

the two continuity relations (A.10) and (A.11) are used to eliminate a and
B. The energy integral may now be expressed in terms of go, EO and two
quantities characterising the magnitude of the 51(r) and E1(r) solution
(51(r1) and 21{r2) say), together with six quantities which characterise

the solutions 51 and 21. These guantities are:-

Lo rEiiry) . - r,glxy) P r1E;(r1)
NEN e L)
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Thus

W = 6w4[50, 8 By(ry)s B (x)); b, o d e £, g s

% 3 BPJ']

The next step is to minimise 5w4 with respect to 51 and E1. These

minimisations are algebraic but tediously complicated. The final result

is

with
1 ' 2 3, 9
& —-3.{251+ (b+3)(ﬁp1+s1) + 3(13-1)(fsp1+s1) + 1z(b=1)

-%{_g__'_;;_ [(b+3](s1+ﬂp1) + _i.(b - » P} A.13

1 2 3
&, = z{zsz-(e+3)c1392+sz) [1+ (e+3)/a] - ,z(e+3)(ﬂpz+s2)[1+(e-1)/a]

+ 2341-e)[1+(e-1)/a]} A.14

-27-



1 3 3
o {251—3(BP1+51)-[(e+3)(BP2+52)+.z(e-1)][(b+3)(ﬁp1+51)+ z(b-1)]

372
[(d—b)f+(e-c)g r22/r21]

1 T2
'2'"'::_ (d-b)fg A.15

2
_(e=eyfg _ 171 (1-fg) (@B (e=c)g r2]2
TT=f3y 3 2 T(dbifg '‘{T-fg) (1-fg) 2

,

r
2

The necessary and sufficient condition for ideal mhd m = 1 stability

can now be expressed as

(1) 6W1 > 0
and

(ii) 6“'3 >0 A.17
and

(1ii) [;3]8(&«2)2 - agd &0, < 0.

1

If any one of these three inequalities is violated an ideal m = 1

mode is unstable.

The appropriate ideal growth rates and eigenfunctions of unstable

modes are obtained by equating the expression (A.12) to the energy

_.28_



contributions from the two inertial layers at r, and r,, in an
anologous way to that discussed in the main text for a single inertial

layer. The single surface result (equation (11)] now becomes

(& ~ &) _502 oy (g0.Ep)

+ = =
I10v] 1207 (2n2R By2)

where I (y) = f
J 2 3
+ g'(r,
[rjq (r]}] X

]
B
w
lh'EM I-<M g’

and &, (EU'EOJ is given by A.12.

On solving for T/uh and extremising with respect to the ratio
50/20 we obtain the growth rates and eigenfunctions of the ideal modes.
It is these results (equations (24) and (25) of the main text) which have
been used in the comparison of analytic growth rates with those obtained

from the FAR code.
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Fig.1 Profiles of the safety factor g(r) for which ideal mhd growth rates are
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Fig.3 Comparison of analytic [equation (20)] and computed growth rates for
the resistive kink instability, as functions of magnetic Reynolds number S. 8, =0,
A=10% g=0.9(1+r%).

ORNL-DWG 86-2917 FED

. | | |

R

o= :Q

®@Tr=5/3(x1//3) i

roQ

& ¢

) :
x 1 1 —

-~ ]

3 8

~ ]

>~ |

]

|

|

Q )

O— 1

0 I | I
0.90 0.95 1.00

9 min
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Fig.5 Structure of the eigenfunction (m=1 component of radial
velocity) as a function of radius, for various values of Qrntin -
Bo=0; A=10; g=gpin+0.2(1-4r>
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Fig.6 Ideal growth rate against inverse aspect radio e=A"", for the same
equilibrium as Figs.4, 5. g,,;, =1.0. Analytic results (solid curve) are from

eq.(13).
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Fig. 10 Computed growth rates for A=2.5
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of S, plotted against g,,,;,.
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Fig.11 Computed scaling of kink mode growth
rates with S. for three values of g,,;,. Same
equilibrium as for Fig. 10.
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Fig.13 Computed growth rate as a function of triangularity of the plasma
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ORNL-DWG 86-2912 FED

1.0

Y/w, (x1072)

\
0 S=107,Tr=5/3 \'\
\
‘ Q
l l 1 |
0.96 - 0.98 .00 102
9

Fig.14 Computed growth rate as a function of gy, for4=25,
1+ (5aes) ) Bo=2%, p()=po(1~LY and 5
G=Q(+ ) y Bp= o,pr=p(—-——),an or
0 0.462 9 g v,
various values of S. Open circles are growth rates obtained using
the compressible FAR code at S=10".



1.0

ORNL-DWG 86-2911

FED

l

BO= 2 %

o
@)
-
=
I
3
~
.
0 | | | I
0.96 0.98 1.00 1.02
9o
Fig.15 Computed growth rate as a function of g, for
varicus values of 3,. Same equilibrium as Fig. 14 §=105.
ORNL-DWG 86-2923  FED
157 0.95 q0;0.98 q0=‘l.01
r I |
STABLE
Bg=0%
ool E SE—
= ! I
2
= | [
s
>
30:2‘70
O — - —
| I |
0 0.5 10 O DS 1.0 O 0.5 1.0
P

Fig. 16 Comparison of m=1 eigenfunction, V,.(r) for various 3y, go-
Same equilibrium as Fig. 14 §=10°.



ORNL-DWG B86-2921 FED

° | T ]

0.96 0.98 1.00

4\V;
Fig. 17 Computed growth rates of m=1 kink mode for g(r) = qo(l + (0—:16) ) 2,
2 . :
A=25,p=p, (1 _?/Hf'_) and various values of 3, and §.

1072
3
Z 5x1073F Y
>
0 l ‘
0 - 5 - 10

Aspect Ratio

Fig.18 Computed growth rate of m=1 kink mode for
q(r)=0.6+2.2r*-2.2(r - r?)e 10 =) 1 =0.426, B,=0, S=10°,
plotted against aspect ratio 4. The mode becomes overstable at the
smallest aspect ratio shown.













