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Abstract

The linear mode conversion regime for the approximate dispersion

relation (g = w(x,k))(w - wz(x,k)) = n occurs near x = X, k = k., such
that uu(xc,kc) = mz(xc,kc). Cairns and Lashmore-Davies have recently
expressed the associated energy flow in terms of a single parameter which
involves 1 and the partial derivatives of wy and wye In this paper,
a different, wave mechanical approach is used té‘obtain the same

result. The érocess of linear mode conversion is discussed using the
system LY = 1d¥/0t, where L is a Hermitian operator. The degeneracy of
plasma modes, and their coupling by warm plasma corrections in an
inhomogeneous plasma, is dealt with using first order perturbation theory.
Simple coupled first order differential equations for the wave amplitudes
follow, which can be integrated directly. Thelcalculated energy flow
reproduces the expression that is obtained froﬁ the theory of Cairns and
Lashmore-Davies.
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I. INTRODUCTION

The process of line#r mode conversion can be described as follows,
in its simplest, one-dimensional form. Suppose that we have a medium
which supports two modes of oscillation, which are independent of each
other to leading order: w = ml(x,k) and w = wz(x,k). Here, k is the
wavenumber and x is the spatial coordinate. Consider a wavepacket which is

launched on the first branch. It propagates into the medium with a group

velocity given by

dx
ox _ owy (1)
dt ok

Let the carrier frequency be externally fixed at a constant value wye
Then as the wavepacket propagates into the medium, and x changes, so the

wavenumber k will also change in such a way that

wy (x(€)k(E) ) = wy(x(0),k(0)) = wy, (2)

It follows from Egs.(1) and (2) that

dk 6wl
= - (3)

—

dt ox

The evolution of x(t) and k(t), determined by Egs.(1) and (3), causes

the value of wz[x(t),k(t)) to change continuously following the

wavepacket:



= - (4)
dat ox Ok ok Ox

The linear mode conversion process arises if, at some time t = t , the
c

local value of Wy becomes equal to that of w) ¢
wy(x(e ) vk(E ) ) = oy (x(E)ik(E )] = w, (5)

In this case, the higher-order terms in the dispersion relation, which
couple the two waves, can no longer be neglected. The problem then arises
to calculate the energy flow between the modes.

Cairns and Lashmore—Davies "7 have recently developed a simple,
unified approach to this question. The starting point is the approximate:

local dispersion relation
(0 = w(x,%) ) (w = wylx,k) ) = nix,k) (6)

Here the small term 1 describes the mode coupling. As an example, in
plasma physics, w; may be a cold plasma mode, with w, a warm plésma
mode, and 1 a further warm plasma correction. Cairns and
Lashmore=-Davies proceed1-3 by expanding Eg.(6) about the mode conversion
point defined by Egq.(5). The resulting algebraic equation is transformed

into a differential equation by identifying
k = - id/4g (7)

where E = x - x(tc). The resulting differential operator was first

1 ;
considered as operating on a single field amplitude. Later, a pair of
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field amplitudes was cons:i__dered,2 and the resulting coupled differential
equations were related to the fields and currents in the plasma. The
relation of mode conversion equations to the underlying Maxwell-vlasov
system has been discussed by Friedland.4'5 Transformation of the
equations of Cairns and Lashmore-Davies leads to Weber's equation,6 and
the asymptotic behaviour of it; roots yields information on the energy
flow in the system. This result is of particular interest in plasma
heating experiments. For example, in electron cyclotron resonance
heating, the absorption coefficients for ordinary or extraordinary modes
can be calculated1 in terms of linear mode conversion to cyclotron
harmonic or Bernstein waves respectively. 1In general, the fraction of the
energy originally incident in the first mode thgt is converted to the

second mode is given by1-3

- 27n
a=1- exp| ————__ ‘ (8)
ag - bf

Here nc is the value of n(x,k) evaluated at the mode conversion point

t = tc defined by Eqg.(5), and

dw; dw, dwy dw,
a=___,bs=  £E= —— , g = — (9)
ok Ox ok ox

all of which are again evaluated at t = tc. We note from Eq.(4) that

ag - bf| = [(dwy/at), . (10)
Cc



For small arguments, Eg.(8) gives

@ = 2nnc/|ag - bfl (11)

The simplicity of these results, and the wave-mechanical overtones of
much of the treatment - for example, Eg.(7) - motivate the present study.
Our aim is to complement the existing treatment by showing that these
results can be derived directly using the familiar7 first-order
perturbation theory of wave mechanics. We must first construct a suitable
Hermitian operator L such that the system LY = id¥/0t reproduces the
features of the linear mode conversion problem. L will contain leading
order diagonal elements which are related to the two basic modes, and
first order off-diagonal coupling terms. Its eigenvalue structure will
reflect the properties of the normal modes of the system that have already

been introduced.

II. WAVE MECHANICAL DESCRIPTION

We shall be concerned with the evolution of the following Hermitian

system:
Lg = g0 (12)
ot
L =1Ly + L, (13)



Lo = g wy(t) (143
178 ‘ (15)
0 =i (t)
L, = 172 N
in (t) 0

Here V¥ denotes the two-component wave field. The fact that wy, and n'
depend on t through x(t) and k(t) has been suppressed in our
notation for simplicity. We have already established the time derivative
of Wy following the wavepacket in Eq.(4); that of mn. which can be
obtained analogously, will not in fact be needed. The Hermitian operator

L contains the information that we require about the wave system. 1In

t
particular, its eigenfunctions vary as exp[~ ifow dt'), where by Egs.(12)

to (15),

(0 = 0 )(w= wy(£)) = net) (16)
This is the same as the dispersion relation Eg.(6). It has roots

w, =.§ {wy + wy + V[(w) - w2+ an]} (17)



which are plotted as a function of w, for fixed Wy in Fig. 1. The

mode conversion region is identified by the near degeneracy of the

eigenfunctions of L.

The eigenfunctions of the operator L, are

exp(—iwlt) 0

\Fl = ’ \1’2 = e (18)
0 exp(- ifo wz(t')dt')

These are the plasma normal modes, in the absence of coupling by L, as a
first order correction to L, We may then use the standard techniques?
of first order perturbation theory in wave mechanics to calculate the time
evolution of the wave field. Let us seek a solution of Eg.(12) in the

form
¥=c (t)¥) + cy(t)¥, (19)

Substituting Egs.(18) and (19) into Egs.(12) to (15), we obtain

dsy 1/2
2 t
— =01 (Bleyt)exp(-i [ (wy(t')-wpat*) (20)
at
d02 1/2 . t ' |
E; = (t)cl(t)exp(l fo (w,(t")=w)dt") (21)



We note first that Egs.(20) and (21) conserve energy, which is a primary

requirement of the linear mode conversion process:
d 2 2) =
—(Jeq]? + |eyl?) =0 (22)
dt

The equations Eqgs.(20) and (21) have some resemblance to the equations in
laser physics that describe induced two-level resonant transitions.
However, our equations are less tractable because wy(t") varies
continuously, rather than remaining constant. There is also a resemblance
to the linearised equations describing sideband waves during the Langmuir
; ; e 9-12 ;
medulational instability, when the pump wave amplitude greatly exceeds
that of the sideband waves. In this case, however, both sideband waves

can grow simultaneously at the expense of the pump wave, whereas in Egs.

(20) and (21), either wave can grow only at the expense of the other.

It does not appear possible to give an exact analytical solution of
Egs.(20) and (21). Nevertheless, it is possible to make progress within
the framework of first order perturbation theory. In particular, we shall
first give a simple derivation of the result Eg.(11). We note that the
exponential terms in Egs.(20) and (21) set up two distinct domains of t

1/2
for the solution. Except when t!' = tc' ,mz(t')fwll >> 1 (t'). It
follows that in general, except when t = tc, dcl/dt and dcz/dt are
rapidly oscillating quantities. Thus the wvalues of <, and Cy s averaged

over many oscillations, do not change except when t =t . Near t =t ,
c c

the exponential terms in Egs.(20) and (21) vary slowly. It is useful to

quantify this by defining a time T over which the phase of the

exponential term changes by the relatively small amount /4 from its



value at t = tc:

t + T
| | (wy(t) = wy)at| = /4 (23)

By Eg.(5), for t =t ,

dwz
wyE) = w) = (t -t )(—) (24)
dt B
c
Combining Egs.(23) and (24),
1/2
/2
T = (25)
(dwz/dt)t _ tc

The interval from tc-T to tc+T is thus the period during which W, is
significantly close to wy for our purposes. It is analogous to the
coupled mode regime described by Louisell,13 where the normal mode

frequencies are sufficiently close that appreciable energy transfer

between the modes can be expected.

e now aim to integrate Eg.(21) over the interval from tc - T to

tc + T. During this time

(26)

1]
=

n(t) = n(tc)



and we shall treat the slowly varying exponential term as a constant
complex number of modulus unity; without loss of generality, this can be
set equal to one. It only remains to establish the boundary conditions
for this integration. Until ¢t = tc - T, ¢ amd C, oscillate rapidly
about their initial values at t = 0, which remain their average values.

Since the wave is launched as a pure Tl cold plasma eigenfunction,

cl(D) = 1. c2(0) =0 (27)

Then Egs.(21), (26), and (27) give

tc+T
dc2
_ 7]
Ac, = i — dt = 27T M (28)
£ - dt

Combining Eg.(25), (27), and (28), the fraction a of the energy incident

as ¥, that is converted to ¥, 1is given by

A, |2 27m
= s (29,

o =

e |
c
Using Eq.(10), we see that this result is identical to that given by
Eg.(11). We have therefore met our first objective of deriving this

parametric dependence in a simple physical manner using wave mechanics.

oo 1,2
Now let us derive the full result of Cairns and Lashmore-Davies '

given by Eg.(8). It follows from Eg.(24) that for t = tc, the integral



arising in the exponential terms in Egs.(20) and (21) is

dw
1,2
(

jz (wz(t') - w1)dt'=A? HE_]t=t (t—tc)2 + const (30)
c

Without loss of generality, we set the constant egual to zero. We also

define
T=t -t (31)
o
dw
1 2
= _ 32
b= glge) et (32}
Then in the mode coiversion region t = tc, Egs.(20) and (21) give
de
1 _ 1/2 L2
= - "% czexp( ipt™) (33)
dec
2 1/2 )
—_— = 34
i e C1exp(lut) (34)
Defining variables a‘I = c1exp(ip12/2), a2 = czexp(-iptz/z), we obtain
dZa
+ (=ip + n_+ p2tda, = 0 (35)
2 c 1
dt
dZa 2 2
E;E_ + (ip + nc + pT )a2 = 0 (36)
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Now let us define

A

L
|

= -(-i+ n/wy B2 = -G+ o/ | (37)

E = plfz.t (38)

Then Egs. (35) and (36) become

2
i WY (E2 - A12)a1 =0 . (39)
ag?
d2a2
42

These equations are identical in form to Eg.(15.68) of Budden.1

We now follow Budden by defining nys n, and u:.
Af = -2i(n, + 1/2) A§ = -2i(n, + 1/2) (41)
£ =2"1/2 exp(-in/a)u (42)

so that Egs.(39) and (40) become

dZa 1_1 5
- + + - - a =0 3
B2ty sty g uia, ), (43)
du
R ; 6,14 ’ .
This is Weber's equation. - It has previously been employed in the

context of mode conversion by Cairns and Lashmore-Davies, '“ as was
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mentioned in the Introduction. We can now follow the treatment in Ref.1,
to which we refer for further details, to obtain Eg.(8) from Eg.(43).
Weber's equation is satisfied6 by the parabolic cylinder functions Dn(u).
By Egs. (31), (38), and (42), we are concerned with complex arguments for
Dn which have opposite sign on either side of t = tcn We can therefore
use standard relations6 between the asymptotic forms of Dn(z) and Dn(wz)n
These show that the modulus of a, for t >> tC is equal to exp(inZn) times
its value for t << tc. Here n, is given in terms of physical variables by
Egs.(37) and (41). It follows, using also Eg.(22), that the fraction of

energy incident in the first mode which is converted to the second mode is

R
I

1 - exp(*zinzﬁ)

1 - exp(vnnc/p) (44)

Using Egs.(10) and (32), Eg.(44) is identical to Eg.(8). We have

?

therefore reproduced the full result of Cairns and Lashmore-Davies by

using a wave mechanical approach.

III. CONCLUSIONS

We have used wave mechanical perturbation theory for a simple model
Hermitian system to calculate the flow of energy in a linear mode

conversion problem. The result is identical to that previously obtained

in a different manner by Cairns and Lashmore-Davies. Our approach

1"1 = . . .
complements previous work 2y 12514 by dealing from the outset with a pair
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of coupled first order differential equations with a single independent
variable - the time following the motion of the wavepacket. This variable
is implicitly present in the mode conversion problem. By employing it as
our single independent variable, we are able to use the familiar apparatus
of wave mechanical perturbation theory. The solution of the problem then
rests on the specification of a suitable Hermitian operator L. The
structure of the Hermitian operator L, reflected by the equation for its
eigenvalues Eq.(16), automatically includes the algebraic equation Eg.(6).
The interpretation of the scalar wave amplitudes ¢y and c, is imposed
by the structure of L, and the conservation of energy is similarly builﬁ'
into the system. This approach leads to the basic coupled equations
Egs.(20) and (21) - which display the separate roles of wave coupling and

frequency degeneracy - and these are then integrated directly.
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Fig. 1. The eigenvalues w, of L, plotted as a function of Wy with

the value of w) constant, and 7 << w;, Wy












