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Abstract

A gyroaveraged Lagrangian is used to describe the motion of a single
electron undergoing anomalous Doppler resonance with a wave that has both
electrostatic and electromagnetic components, propagating at arbitratry
inclination to the magnetic field. Tt is shown that the flows of parallel
and perpendicular energy are oppositely directed, and have magnitudes in
the ratio 1 + w/(Q/y):1. The change in perpendicular kinetic enerqgy, or
equivalently Larmor radius, is related very simply to the E x B drift
occurring at Landaﬁ resonance. The classical single-particle description
of the anomalous Doppler resonance underlies the existing classical
collective descriptions, and is the classical counterpart to the
well-known quantum single-particle description.
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I. INTRODUCTION

The anomalous Doppler resonance1 plays a fundamental role in plasma
physics.2-15 It is a basic mechanism by which the component of electron
kinetic energy parallel to the magnetic field can be transformed into
perpendicular energy and into the field energy of an electromagnetic wave,
travelling slower than the electron, that satisfies the familiar resonance
condition that we discuss below. This mechanism places a theoretical
limit on the stability of non-thermal electron velocity distributions.
Such a limit is particularly of interest when the plasma current, which is
necessary for bulk plasma stability in a tokamak, is supported by an
extended superthermal tail. It is believed to explain4 the relaxation
oscillations in the soft X-ray signal that have been observed from
low-density tokamak discharges, both 0hmic7'14 and with lower hybridr

current drive.g'”'14

In this paper, we give a classical single-particle treatment of the
anomalous Doppler resonance. Previous descriptions have been based on
quantum single-particle theory or on classical collective theory. The
connections between the energy flow in the quantum and collective
beam-plasma cases were pointed out by Nezlin.3 More recently, the
parallel and perpendicular energy flow has been demonstrated in the case
of a continuocus distribution of electron velocities.15 The existence of a
collective classical treatment suggests that there exists an underlying
single-particle classical basis for the anomalous Doppler resonance, which
is also the classical counterpart to the guantum single-particle

treatment. 1In principle, the fundamental nature of the resonance, in



terms of the relationslbetween field energy and parallel and perpendicular
electron kinetic energy, is determined at the single-particle level. The
collective treatment adds a different class of information: namely,
whether a given wave in a given ensemble of electrons grows or is damped -
the overall direction of energy flow. This information is not provided by
a single-particle treatment, where the initial wave-particle phase

information remains, and has not been integrated over a distribution.

The single-particle classical theory presented here is based on the
gyroaveraged Lagrangian techniques that have been developed by
. . 16-19- . . . .
Littlejohn. In our treatment, the magnetic field geometry is simple,
so that the gyroaveraging process is relatively easy, and Lie transform
techniques are not called for. While it is hoped that the treatment of
the gyroaveraged Lagrangian is self-explanatory, we refer again to
. . 16-19 . . : ;
Littlejohn's papers for a more extensive discussion of the topic.
Our treatment is developed for waves that have both electromagnetic and
electrostatic components. A Hamiltonian approach to the interaction of
. ; x : 20,21
electrostatic waves with magnetised plasma has already been derived,
but it has not included a treatment of the anomalous Doppler resonance.
The classical Lagrangian approach employed here enables us to demonstrate
explicitly for a single particle the energy flow between parallel and
perpendicular kinetic energy that is the hallmark of this resonance. 1In
addition, consideration of classical single particle dynamics yields

information on the relations between the anomalous Doppler resonance and

the Landau resonance. We note that the change in perpendicular energy



that is associated with the anomalous Doppler resonance is equivalent to a
change in Larmor radius. We then examine the very close links between
this isotropic quantity, and the directional E x B drift velocity that
is induced by the perpendicular component of the electrostatic field at

Landau resonance.

II. LAGRANGIAN FORMULATION

We first construct the Lagrangian for an electron of charge -e,
moving in a uniform magnetic field which is oriented along the z-axis,
whose motion is perturbed by a wave that has both electrostatic and
electromagnetic components. The wave has wavevector E, with components
k" in the z-direction and ki in the x-direction, and has frequency w.
The canonical momentum p of the electron is

P = ymv - eA/c = mu - er/c (1)

Here v is the electron velocity, m its rest mass, and Y is the usual

Lorentz factor. For the magnetic field of interest,

A=B x + (A, & + A z - wt) (2)
- —v 1x —=x

0 Ez)cos(klx + k

1z I

where B0 is the static magnetic field strength, and Al describes the
electromagnetic component of the wave. The electrostatic component of the

wave 1is described by the'potential

= 3 cos(klx + kuz - wt) (3)



Then the Lagrangian of the system

B x e

= (mu - e O s6-_(n é+A, & )cos(k x +kz - wt)).X - mcz(1+u2/c2)h
c ¥ 1x—x 1z—z L 1 =

+ eq) cos(klx + kHZ - wt) (4)

Next, we express the Lagrangian of Eq.(4) in terms of coordinates which

reflect the guiding centre and cyclotron aspects of the electron motion:

u=uz+ ucosh &+ u sing & (5)
- II= L - 1 —¥

Y Y1
x =X + — sin® € - — cosb € (6)
T Q ™ 9 —

where

eBO/mc. Clearly, 6 represents the gyroangle, X is the
guiding centre position, and ul/Q is the Larmor radius. Let us use

Egs.(1), (2), (5) and (6) to write



: . ulﬁi ufe
p-é = m(u"z + ulx cosfO + cos6 sinB + _—_ cos?2p
Q Q

-QXY + xﬁl cosf - Xule sing)

e . " u 0
- _—_ A X+A Z+ A + - wt 7
[ 1x 1z g cose)cos(klx k"z J (7)
e Q
Similarly,
k u
cos(k X+ k z - wt) = cos(k X + sinB + k 7z - wt)
L Il 1 I
Q
L=}
ik
= =+ -
) Jn( ]cos(klx ne + k"Z wt ) (8)
9]
n=—w
We now aim to construct the gyroaveraged Lagrangian
_ 27
=" a6 (9)
27 0

The averaging process is relatively simple, and in Eg. (8) the averaging
process will select out any resonant terms, while mapping the other terms
to zero. In order to preserve generality, we shall not explicitly

identify the resonant terms at this stage. Instead, we shall



o res
replace the symbol 2 ) by z , and select out the resonant terms
n=-—o n

explicitly when convenient. Combining Egs.(4), (7). (8) and (9), we

obtain
- . mqu_ . . }2
L=mu2 + —— 6 - mQXY - mc2[1 + u2/c2 + uz/cz)
Il K I
2Q
. . res
-e(a Xea Z-6) V s (xx+ne+kz-ut) (10)
1x & 1z c 1 n* L II
n

The requirement that fL dt be stationary for arbitrary variations of the
configuration subject to fixed end points gives rise in the usual way to

the Euler-Lagrange equations

d oL _ oL (11)

dt 8q;  0qy

where the qi are X, ¥, Z, u , 4

L and 6. For clarity, we shall

I
consider first a purely electrostatic wave with A, = 0. This is the
approximation usually employed when studying the stability of
non-Maxwellian electron velocity distributions in tokamak plasma. -
Later in this Section, we shall-generalise our treatment by including an

electromagnetic component A, #0 for the wave field. Setting A, = 0,

the equations of motion following from Egs.(10) and (11) are:



X =0 (12)

res
: e kJ_@‘l o )
y=-S_-'1 7 Jn[klul/ﬂ)s:l.n(klx+n6+k"Z - wt) (13)
m Q
. Q e ki@1 wes
p=_"-_ L Jé[klyl/Q)cos(klx + no + k"Z - mt) (15)
Y m u
1 n
res
. e F
iy = -2k 7 J (klul/Q)Sln(le tno+ k32 - wt ) (16)
m n
5 e Q®1 rés
u =- ;.;_a L n Jn(klgl/Q]sin(klg + nbo + k"Z - wt) _ (17)
1 n

Now the electrostatic wave represents a perturbation on the zeroth-order
cyclotron motion. In forming the argument of the sine and cosine
functions, we require only the zeroth-order contribution to 6 from
Eq.(15): 6 = GU + Qt/v. Eqs.(12)_and (14) integraté to X = Xgr 2 = Z(J +

u"t/y. Let us define a set of constants

Efn=kJ_X0+n60+ k||ZU (18)

Then the remaining equations of interest, which describe the gyroaveraged

effect of the electrostatic wave on the electron motion, can be written



. k & '°° ;

__ e 11 \ : _
Y = -— ) Jn(kluL/Q)SJ.n[\lfn + (ku /v + n@y w)t ] (19)
n
res
— e . > . 1 -
T k@ ) Jn[klul/Q)s:Ln‘_‘lfn + (ku /v + 0@y w)t ] (20)
n
: e, o
u = -‘;‘T;— ) n Jn(klgl/9)51n[wh + [k“u“/y + nQ/y - w]t] (21)
1 n

We now select out resonant terms from the sums on the right hand side
of Egs.(19) to (21). This procedure has been postponed from the
gyroaveraging which took place at Eq.(10). We need only consider the
small argument case for the Bessel functions, as it has been shown
¢=3J.s;e:where1-5 that ion Landau damping stabilizes the anomalous Doppler

effect in plasmas outside this regime. Then

Jdkff9)~1 (22)
= = k o~

Jl(klpl/Q) J- ( fJL/Q) klul/zQ (23)
For the Landau resonance, n = 0 and

Ky =*y,=o (24)
Then Egs.(19) to (21) give

5 k &

Y = - 1 sin ¥ _ (25)

B



=-%x ®, sin ¥, (26)

i =1 (27)

Now k"®1 = E 50 that Eq.(26) describes the parallel force on the

I
electron arising from the resonant parallel electric field. The sign of
this force depends on the initial phase ¥y of the electron with respect
to the wave field. This is to be expected in a single-particle treatment

of the Landau resonance. Similarly, k & = E so that Eg.(25) describes

11 iy
the E x B drift of the electron guiding centre in the direction
perpendicular to the plane of the wavevector and of the magnetic field
direction. This drift arises becauses, at Landau resonance, the electric

field component perpendicular to the magnetic field is constant in the

guiding centre frame.
For the anomalous Doppler resonance, n = - 1 and
k“u"/y= w+ Uy (28)

Then Egs.(19) to (21) give

v= 21 (2d)einvy (29)
By 2@
. k.Lu.L
u =2k & (==) sin ¥ , (30)
I 11 -1 |
m 2Q



u o =-2 sin ¥_, ' (31)

Eqgs.(30) and (31) display the fundamental features of the anomalous
Doppler resonance. The rate of change of electron kinetic energy parallel

to the magnetic field direction follows from Egs.(28) and (30):

2 k u

+
mu"u“ = ed, sinW_1[w Q/Y) (32)
2 'y
The rate of change of perpendicular kinetic energy is, by Eg.(31)
. k u
L1 .
mulul = -2 @1 ; sin T;1 (33)

Thus, whenlthe parallel kinetic energy decreases, the perpendicular
kinetic energy increases, and vice versa. The magnitudes of these rates
of change are in the ratio 1 + w/(Q/y):1. This result is identical to
that obtained using guantum single-particle1 or classical collective
treatments,2'3'15 and provides a necessary link between the two
treatments. In the collective treatment,15 the parallel and perpendicular
energy flows were calculated using the components at resonance of the bulk
quantity Re(i.g*). Here, it has been shown that these flows are a

reflection of an underlying classical single-particle effect.

We note in addition that there is a previously unexplored link
between the Landau resonance and the anomalous Doppler resonance. The

electron Larmor radius rL = ul/Q. Egs.(25) and (31) indicate that the



rate of change of Larmor radius at anomalous Doppler resonance is, on
average, equal to half the E x B drift velocity acquired by the electron
at Landau resonance for the same wave. Both effects are driven by the
perpendicular component of the electrostatic field. Physically, the
coincidence in magnitudes suggests that the increase in ul - and
equivalently Larmor radius - at aﬁomalous Doppler resonance is the
counterpart of the E x B drift, averaged in all directions by cyclotron
gyration. The fact that the n = - 1 drift is isotropic, whereas the

n =0 drift is directional, reflects the basic difference between the two
resonances. The wave frequency experienced by the electron at the n = 0
Landau resonance is zero, so that a constant E x B drift results. At
the n = - 1 anomalous Doppler resonance, the magnitude of the wave
frequency experienced by the electron is equal to the electron cyclotron
frequency. There is thus a constant phase relationship between the
gyrating electron and the perpendicular component of the wave field. This
constant phase relationship leads to a steady increase or decrease in the

radius of gyration.

Let us now complete our treatment by returning to Eqg.(10), and
including the electromagnetic wave term in L. For clarity, we now set
® = 0. The variation of L with respect to Z yields

res
. 2 k u

== [X(kﬂA1x - k_LA1zJ - (ne - mJA1z:| Z Jn( - lJ

Q

sin(klx *kZ+n8 - ut) (34)



variation with respect to 6 yields

res
. . . k,u
e Q il IES
u = — = (B, X+ A, Z) ) na_| Jsin(k X + Xk 2 + no - wt ) (35)
me u n Q

The results obtained previously in Egs.(12) and (14) carry over, and as in

Eq.(15), 6 = Q/y to zeroth order. Using Eg.(18), Egs.(34) and (35)

give
. . rés kg '
ma.u == — (ne/y - w]A1zu" ) Jn( )51nLTh g (k"un/y + nQ/y - m)t]
o] n 9}
(36)
p b k)
mu = ;_QA1ZZ ) n Jn( : ]51n[wh + (k"u"/y + nQ/y - m)t] (37)
_ n

Using Egs.(14), (23), (36), and (37), it is easy to recover the familiar
hallmark of the n = - 1 anomalous Doppler resonance, this time for an

electromagnetic wave field. The energy flows parallel and perpendicular
to the magnetic field direction are opposite in sign, and their magnitudes

are in the ratio 1 + w/(@/y):1.

III. CONCLUSIONS

We have given a classical single-particle description of an electron

which is in anomalous Doppler resonance with a wave propagating at



arbitrary inclination to the magnetic field. The wave field has both
electrostatic and electromagnetic components. This single-particle
description underlies the existing collective classical descriptions,2-15
and is the classical counterpart of the well-known quantum single-particle
description.1 We have shown how, at the single-particle level, the flows
of parallel and perpendicular electron kinetic energy are oppositely
directed, with their magnitudes in the ratio 1 + w/(Q/y):1. 1In addition,
the change in perpendicular energy, or equivalently Larmor radius, which
occurs at the anomalous Doppler resonance, has been related to the E xB

drift velocity which occurs at Landau resonance.
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