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SUMMARY

In this paper we describe a finite-difference model of
multiphase mixing. The model is applicable to the study of a
hot fluid poured into a cold vaporisable fluid. We represent
this situation using the continuum equations of multiphase
flow and give a description of the equations to be solved and
the boundary conditions used. The outline of the numerical
solution scheme is described and the new features we have
developed are highlighted. Emphasis is placed on the need to
ensure qualitative consistency of the finite difference
scheme with the properties of the differential equations.
Finally, we present some sample calculations showing that the
model gives good general agreement with experimental data.

1. INTRODUCTION

The calculation of multiphase flow is of considerable
interest in the nuclear and process industries. A particular
application, the modelling of transient buoyancy-driven
multiphase mixing which occurs on relatively slow timescales
(~ 1 second), is the subject of this paper. For example, we
are concerned with the modelling of the behaviour of a jet of
hot melt poured into a pool of cold vaporisable liquid
(usually water). This situation may occur in certain
accidents within the metal casting industry or may arise in
the progression of hypothetical accidents in the nuclear
industry if core material melts and pours into water L1].

This problem is particularly difficult to model since the
melt may be at a very high temperature (~ 3500 K) so that
the heat transfer rate to the cold liquid (water in our
application) could be of the order of 5 MW/m2 from thermal
radiation alone, leading to very high vapour production rates.
A recent review [2] of the available models of this process



has identified the need to develop a transient, 3-component
(melt (M), water (W), steam (S)) multiphase flow model. To
be a useful tool the model needs to have the following
properties:

(a) The resulting computer code must be stable, robust
and ensure that guantities such as volume fractions
always remain positive.

(b) It must be able to work with virtually arbitrary
constitutive relations for interphase drag,
heat=-transfer rates and melt particle fragmentation.

(c) There is no great need for a high order accuracy in
the finite difference scheme since many of the
constitutive relations are only known approximately
and the experimental data are global measurements
with substantial uncertainties.

(d) It must be relatively cheap to use so that the effect
of uncertain parameters can be scoped.

In the remainder of this paper we describe the model, finite
difference equations and solution procedure developed to
satisfy the above aims, together with the simulation of a
particular experiment. Due to the short length of this paper
we draw heavily on our earlier work described in references
3,4 and 5. .

2. FORMULATION OF THE MATHEMATICAL MODEL

We assume that mixing takes place axisymmetrically in a
right-circular cylinder of radius R, height H, open at the
top. The flow velocities are small enough to allow the
incompressible approximation, so that the mass densities
Pys Py and pg may be taken as constants. This results in a
set of equations of the form

%( ai;ai>+.:: %r_( rU; o f; H%(Vi %P )=Sgs v

where ay is the volume fractiocn, u; is the horizontal
velocity (in the r-direction) and V; 1is the vertical
velocity (in the z-direction) of species i (i =M, W, S).
Table 1 below lists the wvariables ﬂi and the source terms
for the water species equations, plus the melt enthalpy and

melt length-scale equations.



Equation g source term
Conservation of
water mass 1 mw/pw
Conservation of [ -aW.QE - o ox
i or or
radial momentum
+F,§M + Fﬁs + Fg.
Conservation of PV -a, 9B 4 g { - )
' Ww O ™ Gt Py~ Py
axial momentum
tgaaglpg ~ oy)
z A z
tPam * Fys t Fum
Melt enthalpy pMHM —ig hfg
Melt length-scale Ly -aM(LM - Lcrit)/TL
Table 1 : Coefficients and source terms in the conservation

eguations.

In addition to the above equations the volume fractions
must satisfy the constraint

oy toag =1 (2)
which implies the following elliptic constraint,
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The above equation allows the common pressure to be
determined, as will be illustrated in section 3.

2.1 Form of the source term

In this section we describe the source terms, together
with the necessary constitutive relations needed to close the
problem. We assume that my = 0 so that there are no
internal sources or sinks of melt in the solution domain.
Melt is either present initially in the solution domain or is
injected at a boundary. We assume that there is no
condensation of steam (i.e. mS>0), since in all problems of
interest to us the water is saturated. In addition, we have
mw + ms = 0 and set

mw = -awaMGh(TM - Tw)/Lthg (4)



where we have assumed the melt to be in the form of spheres of
diameter Ly Ty and T, are the melt and water temperatures,
hf is the latent heat of vaporisation and h 1is the
approprlate heat transfer coefficient (usually radiation plus
film boiling).

In the momentum equations we work with a reduced
pressure, defined by

H
E=p=-3%=pP~ fzg(“MPM + agpy t agpgldz (5)

Thus the usual axial momentum source term -GW — = % Py9
takes the form given in table 1 and ax terms appear in the

radial momentum equations. The termsbrF,ﬁM and FWM
represent interphase drag between the melt and water in the

r and =z directions respectively. These terms were modelled
using the drag law proposed by Harlow and Amsden [6] and
their exact form is given in [5]. The important point to

note is that

r - nr _
FWM -_ DWM( a].'d.’ %l Lml wa Umt le me Vw) (UM Uw) (6)
so that provided DﬁM = Dﬁw Newton's third law is satisfied.
The terms Fﬁm etc. represent evaporation reaction forces and
are not present in the melt equation. These take the form

i = Uy ¢ Fgp = hgly - (7)
In the enthalpy eguation the kinetic energy of the melt and
terms arising from pressure and drag work have been

neglected, since they are small compared to the thermal energy
terms. The source term ensures that the melt cools by an
amount consistent with the heat used to produce vapour. The
melt temperature is determined from the enthalpy by using a
suitable caloric equation of state. 1In the melt length=-scale
equation the source term causes the melt length-scale to
reduce to Lcrit with a fragmentation rate 1/rL.

2.2 Boundary and initial conditions

We assume that Ui =0 on r =0, Ui =0 on r = R,

Vi =0on z = 0. At the top (z = H) we set U; =0 and

— = —- = 0. A uniform steam velocity outlet profile is set

3§th tgg flow rate determined from the volume integral of
equation (3). At t = 0 an initial velocity and volume
fraction field is specified together with the length-scale and
temperature of each species. Any melt injected into the



solution domain is given a specified velocity, length-scale
and enthalpy.

3. SOLUTION SCHEME

Only the outline of the solution scheme is presented
here, full details are given in references 3,4 and 5. The
equations given in the previous section were finite
differenced on a staggered grid. All convective terms were
upstream differenced for stability. The solution procedure is
as follows:

(a) Time advance the Ty equation to get aM(t+At)
using the melt velocity and oy fields at time t.

(b) Similarly time advance Ly and Hy and determine
Ty using the caloric equation.

(c) Time advance the oy equation treating the source
term implicitly.

(d) Determine ag = 1 - Oy ~ Oy

(e) Determine new velocity fields using the pressure
field at time t.

(f) Substitute the new velocity and volume fraction
fields into the finite differenced form of equation
(3) to determine the local continuity error.

(g) If this error is too large update the pressures
using Newton's method, go back to step (e) and
repeat the procedure using the modified pressure
field. 1Iterate steps (e)-(g) until the local
continuity errors (suitably normalised) are below
the desired accuracy level.

Typically after 2 iterations the above procedure converges and
the code steps forward in time again. The chosen method of
time advancing the a's ensures that they remain positive and
if the continuity error is reduced to a suitably small value
they remain less than unity [3]. For stability we require the

V. At UiAt

Courant number (Max g > )) to be less than unity and

’

r
for accuracy we require the product of any rate parameter and
the time-step to be less than unity e.g. At/TL << 1.

In the momentum equations the velocities of all species
are coupled at each grid location due to the drag terms. Thus
at each grid point we invert a 3x3 matrix to obtain the new
velocities of all 3 species simultaneously. This procedure
ensures that even with extremely large drag forces Newton's



third law is exactly satisfied. A semi-implicit scheme is
used for accuracy.

The pressure correction is carried out by first
correcting the pressure level in vertical slabs. The pressure
is then corrected locally within each slab. Thus we avoid the
need to solve Poisson's equation directly but instead use a
TDMA solution for the blocks and then a TDMA solution within
each block.

4. RESULTS

The code has been extensively tested on model problems
and has been found to give grid independent solutions and to
predict solutions which depend continuously on the initial
data. It has been used to simulate the one-dimensional mixing
of heated ball-bearings with water [4] and has been used to
model a two-dimensional mixing experiment carried out at
Argonne [5]. In this section we present a further comparison
with the Argonne experiment (CWTI-9) in which the melt
length-scale is evolved with time, unlike in our earlier work
where we assumed pre-fragmented melt of a fixed size. The
experimental geometry is shown in Figure 1 below.

To expansion tank Melt inflow
(volume 1-4m?) (22mm diameter jet]

' |

| | le— Interaction vessel
(212mm 1D x 510mm high)
o
Expansion pipeway
{108mm 1D)
- Water pool
320mm deep
Fig 1. Illustration of the experimental geometry.



A full description of the experiment and chosen
constitutive relations is beyond the scope of this paper. The
experiment is reported in reference 7 and we use the same
constitutive relations as those used in our previous
calculations (see section 6.1 of reference 5). A 10x10 grid
and a time-step of 5x10”®s was used. Briefly, the experiment
consisted of the injection of molten corium into a vessel
partially filled with water. The vessel was closed except for
a pipeway on the side which allowed the steam produced to be
collected in a tank (see figure 1). In our calculations the
vessel is assumed to be open at the top (we cannot model 3-D
effects) and we determine how much steam is produced. In this
way we can use our data to generate a pressure transient
similar to that measured in the expansion vessel by the
experimenters.

A comparison of the calculated pressurization results for
three different assumptions about the melt fragmentation
parameters, (case 1 = Lcrit= 1mm, T, = 0.02s, case 2
= Lcrit= 2mm, Ty, < 0.00335,'c§s§ 3 = Lopit™ 2mm, T, = 0.02s),
is shown in figure 2. The initial melt length-scale was set
equal to the pour diameter. The plot shows that the

experimental data is well-fitted for this range of parameters.
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Fig.2 A comparison of the predicted and measured vessel pressurisation data.



These are consistent with the experimentally determined
particle size distribution and break-up rates resulting from
hydrodynamic instabilities. The agreement is less good at
later times as the present simulation does not allow for
vapour condensation. However, comparison of the present
results with the simulation presented in reference 5 shows
that allowing for a finite melt fragmentation rate improves
the agreement with the experimental data.

Figure 3 shows the steaming rate and the experimentally
measured corium inflow rate as a function of time. This
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Fig.3. The transient steaming rate.

figure shows how the fragmentation parameters affect steam
production, with the peak vapour production occurring when
most of the melt has entered the water pool, at about 0.25s
after melt release. At later times the steam production rate
oscillates because steam sweeps melt out of the water, the
steam production rate falls and then the melt falls back into
the water leading to further vapour production.

Figure 4 shows volume fraction and velocity field plots
for the melt and water 0.1s after melt release. The plots are
for case 1 but all cases show the same qualitative features.
The plots show the melt entering the water pool as a jet and
then spreading as it mixes with water. The water level rises
due to the entry of melt and steam production. The water
velocity plot shows the level swell rate to be about 0.5 m/s
and also shows that some water is carried along with the
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leading edge of the jet. At later times vapour production
becomes very rapid and the water pool 'froths up' to fill the
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vessel.
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Figure 5 shows volume fraction and velocity plots for
water and steam at a time of 0.2s. The figure shows that most
of the water has been pushed to the side of the vessel and
steam is exiting the system with a peak velocity of 93 m/s.
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In the experiment 13% of the corium and 36% of the water
were estimated (by the experimenters) to have been expelled
from the mixing vessel. Table 2 below shows the calculated
values for the three different simulations performed.

Case % melt expelled % water expelled
1 26 93

2 17 73

3 12 79

Table 2: Melt and Water 'Sweep-out' Data

The data in the above table shows that the melt
'sweep-out' is most accurately modelled for a final particle
size of 2mm. However, the model predicts that approximately
twice as much water was 'swept-out' as observed in the
experiments. This difference could be due to differences in
the experimental and modelling geometries (in the experiment
the steam has to flow around a bend so this may cause both
water and melt to be deposited by the flow) or it may be due
to the chosen steam-water drag law. However, the simulation
shows good qualitative agreement with the experimental data
and highlights the importance of the 'sweep-out' phenomena.

5. DISCUSSION

In this paper we have described a multiphase flow model
of the mixing of a hot fluid jet with a cold vaporisable
liquid. At the beginning of the paper we set out four quiding
aims for producing such a model. These have been largely
realised. The computer code is stable and robust due to the
choice of method used to finite difference the conservation
equations and the choice of solution scheme. The constitutive
relations need only satisfy very general properties which are
required on physical grounds alone, for example, the drag laws
must satisfy Newton's third law. The code gives generally
good agreement with the limited available experimental data.
Finally, although each computation uses typically 3500 cpu
seconds on a CRAY-XMP, this is still relatively cheap and far
less costly than experimental studies of mixing. Thus the
code can be used to determine the important parameters and
effects which can then be examined in detailed experimental
studies. To the best of our knowledge the code described in

this paper is unigue in its ability to model experiments of
this type.
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