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ABSTRACT

This paper describes non-linear numerical simulations of ideal internal kink modes

in cylindrical geometry with a flat central g profile as a model for the rapid sawtooth

collapse seen in large tokamaks. The resulting plasma motion is consistent with

that obtained experimentally from X-ray tomographic reconstruction. Attention

is drawn to the effects of limited poloidal resolution in this diagnostic.
(Submitted for publication in NUCLEAR FUSION)

1. Introduction

This paper describes a series of non-linear numerical
simulations of internal kink modes in cylindrical
geometry with a flat central g profile. Its purpose is
to investigate the idea that the rapid sawtooth collapse
seen in large tokamaks is due to an ideal m=1
instability™.

The calculations, carried out with a 3-dimensional
incompressible MHD code without transport effects, do
not attempt to simulate a train of sawtooth oscillations,
but focus instead on the plasma motion that accom-
panies a single sawtooth collapse. In particular, an
attempt has been made to model the distribution of
emission that would be seen in experimental X-ray
tomographic reconstruction'? of such motion.

The need to re-appraise the theory of sawtooth oscilla-
tions has become apparent from results®® from large
tokamaks which show a sawtooth collapse time (typical-
ly 100us in JET) much shorter than that (typically 5ms
in JET) suggested by the conventional Kadomtsev
model™, and the frequent absence of any significant
plasma perturbation (rotating or stationary) immediate-
ly before the collapse.

Theidea!! that the plasma motion during a sawtooth
crash is due to the ideal m=1 internal mode has been
developed in®. In this theory, it is argued that owing to
the long resistive diffusion time, the g profile can change
by only a small amount (typically 1%) during the
sawtooth ramp phase. With the assumption that the
sawtooth process flattens ¢ to unity in the central region,
it follows that g must also be close to unity at the onset
of collapse.

Although the hypothesis of a flat central g is
eminently plausible and appears to find some justifica-
tion from experiment!®), other experimental results!”
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suggest that it may not be the only possibility. The resolu-
tion of this point is at present unavailable,

With a flat ¢ profile, the ideal m=1 internal mode
may be unstable in a torus for arbitrarily small values
of 3,. This contrasts with the conventional case of
monotonically increasing g, for which instability is
possible only for values of B, greatly in excess of those
obtained experimentally. The plasma flows associated
with the instability are of the form of a diffuse convec-
tive cell, rather than the rigid shift (‘top-hat’) of conven-
tional theory. The investigation of these flows is the
subject of the present paper.

In order to put the calculations into precise context,
it is useful to consider the nature of the sawtooth col-
lapsein further detail. The experimental results'® show
that it may be regarded in two phases.

The first phase, comprising the first 75—300us
(depending on discharge) sees the development of a gross
radial motion of the plasma core, with helical symmetry
around the torus diagnosed tobe m = 1, n= 1. Although
the distribution of soft X-ray emission changes, the ab-
solute magnitude remains essentially constant. It seems
entirely reasonable to regard this phase as the develop-
ment of a fluid instability and to interpret the chang-
ing X-ray pattern as the result of convection of the
emission with the plasma. It is this aspect that is address-
ed by the numerical simulations.

The second phase, comprising a further 25—100pus
sees the sudden drop of the X-ray emission everywhere
and the loss of energy from the central region until a
poloidally symmetric final state is reached. The
mechanism of this loss, being a transport phenomenon,
is outside the scope of the present simulations and is not
considered further.



It will be noted that for simplicity, the present calcula-
tions are carried out in cylindrical geometry. This ap-
proach would be inappropriate for the conventional case
of a monotonic g profile, for which the m=1, n=1
mode shows a significant difference between the cylinder
and the torus. However, as has been noted above, for the
case of flat ¢, the toroidal stabilization is largely
removed and with it the difference in stability boundary.
The plasma motion is then broadly similar in the two
cases and use of a cylindrical model is justified. This view
is given support by good qualitative agreement with the
results of linear® and non-linear® calculations in
toroidal geometry.

The simulation of a sustained series of sawtooth-like
oscillations in cylindrical geometry with a flat q profile
has been undertaken using a reduced MHD model!"”!
and more recently using a full MHD model".

2. Numerical model

The numerical model is that of 3-dimensional, resistive,
inviscid, incompressible MHD in a periodic cylinder.
Although it is resistive, the unstable modes are ideal and
the resistivity has no significant effect. In dimensionless
units, the equations may be written

dv

T+w.‘79= —Vp+jxB
9B _ -
T vV X ('va S")
vV.o=0
7 =n(r)

Here, times are normalized to the Alfvén time based on
the (minor) radius of the cylinder and the ‘toroidal’
magnetic field B,. S is the ratio of resistive diffusion
time to Alfvén time and n(r) is the resistivity profile.
This is a fixed function of r in the model and is deter-
mined by the requirement that the equilibrium current
profile j, is not subject to resistive diffusion,
ie. q(r) f,(r) = const.

The boundary conditions are those pertaining to an
impermeable conducting wall, ie. »,=0, B, = 0. A
constant electric field E is applied at the wall to drive
the equilibrium current.

These equations, containing neither density nor
temperature, clearly do not allow the calculation of an
intrinsic X-ray emission. However, as has been describ-
ed above, the present interest is that for which the emis-
sion moves with the plasma. In order to model this, the
MHD equations have been augmented by the equation
of passive scalar convection

d0A

Bt
in which A represents the magnitude of X-ray emission.
Following experimental observations, the emission A
is taken to have a Gaussian profile in the equilibrium
state.

+ V.(@A) =0

The model profile for the equilibrium current j, has
been taken as

J. =Jzo =const, r<r
N (o s
J:=J0 m r=r

and the magnetic field B, =1. This means that g is
exactly constant (g=g¢,) for r<r, and rises
monotonically with continuous derivative for r>ry.
This is therefore the simplest model of a flat g profile.
Fig.1 shows a typical case. The constant C is introduc-
ed to allow a current density at the wall, necessary with
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Fig.1 The model g profile. g is constant for r=0.3.

an electric field boundary condition. It has been fixed
by setting the current density at the wall to be a small
fraction (5%) of that at the centre.

In the present calculations, the aspect ratio was 3 and
r,=0.3 (for consistency with JET), C=1.262 and
1<go=<1.07. The value of S was taken as 10° for
numerical simplicity. As has been described above,
resistivity makes only a small perturbation to the ideal
nature of the instabilities that are found. The numerical
representation used poloidal mode numbers 0=m=4,
‘toroidal’ mode numbers —4 <n <4 and 64 radial
mesh points.

It is stressed that the simulation uses an equilibrium
specified a priori and investigates the consequences of
this choice. It is not a self-consistent calculation; in par-
ticular the equilibrium is linearly unstable (see below)
but the manner of evolution to this unstable state is not
addressed.

3. Ideal linear stability of the model equilibrium
In order to clarify the results of the numerical
simulations, it is important to investigate the ideal linear
stability of the specified equilibrium.

For the incompressible case, the linear eigenvalue
equation!"? for the radial displacement
£.(r) exp i(mf+kz) in ideal MHD may be written

[40t)] - B&=0

r(y*+F*)
m*+ k*r?

in which e
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(m? +k*r*) (v + F?)
d 2mFB,
dr \r(m?+ kzrz))
Here v is the growth rate and F'= mB, /r+ kB, . The wave
vector k is given by k=2xn/L =n/R in which L isthe
periodic length of the cylinder, R is its ‘major radius’
and # is the ‘toroidal’ mode number. Resonant modes
have negative n in this convention.

With the conditions r£,=0 at r=0 and r=1, this
equation provides a 2-point boundary value problem for
£, and . This has been solved numerically using the
Lentini-Pereyra method™¥. The advantage of such a
(finite difference) approach is the availability of a global
error estimate and hence the provision of a numerical
solution of over all high integrity and accuracy (typically
1 part in 10°).

Of particular interest is the dependence of the growth
rate v on the parameter g,, the central value of g. This
is shown in Fig.2 for the mode numbers m/m= —1,
m=1,2,3,4. It can be seen that for a given m number
there is a value of g, (decreasing with m) below which

B
B=y+F-254 (Tﬂ)

+r

20

10

0

1-00 1:04

Fig.2 Dependence of the ideal linear growth rate v (in units 1073/ 7,,)
on g, (the central value of g) for modes mm=—1, m=1,2,3,4.

the mode becomes unstable. It is also apparent that the
maximum growth rate increases with m, as m":.

The features of Fig.2 can be understood in terms of
a partial analytic solution of the eigenvalue equation.
In the region of constant ¢, the equation may be solv-
ed exactly!". The appropriate solution for m/m= — 1
may be written

kZ %3 :
rE, = mi, O\ - (m) AL (M)

72= (Bz_ )ZmZ(q _1) (l—q +#)

qoR ‘ *T (2 +kH"R
The quantity A is determined by requiring continuity C*
with the decaying solution in the region r>r,.

It is clear from these expressions that 4* is a near
parabolic function of (1— g,), in qualitative agreement
with Fig.2. In addition, the value of g, for marginal
stability 2

qo(y=0) = 1+5%5

is a decreasing function of m, as observed. This follows

because the outer solution is then small, so that
N (\*»k?) is roughly given by J,(\r;)=0 and is
therefore an increasing function of m.

A more accurate value for the marginal value of \ for
m=1 may be obtained analytically in the limit of large
aspect ratio by developing the solution for = r, . In this
region, characterized by a length scale & given by

5 - 20@—1)
q1
the approximate solution for £ is

£ =k [1_3(1 :’y2+arctany)]

™

in which y = (r—r;)/6. The expression for A derived
by matching the inner and outer solutions may then be

written 5

A=) (1 -
in which A, = 3.832/r, is the value of A obtained by
neglecting the outer solution. This shows that the layer
rzr; is destabilizing.

It should be noted that v* does not necessarily vanish
for (1—go)—0 since (\*+ k?) also becomes small and
the limiting value must be determined by a full solution.

In fact the value g, =1 is special since the perturbed
magnetic field b = V x (£ x B) is then exactly zero in the
region of constant g. Moreover, for the incompressible
model, the region becomes neutrally stable, any instabili-
ty must be driven by gradients in the layer r=r,, and
the inner eigenfunction for m =1 isa ‘top-hat’ given by
E=1+3k*r?/8. This follows directly from the linear-
ized momentum equation with 5=0, w?£= Vp and
the requirement V.£=0.

In order to avoid this pathological case, which arises
entirely from the assumption of incompressibility, a
minimum practical value of g,=1.005 has been used in
the simulations, rather than g, =1 exactly. Fig.3 shows
the corresponding eigenfunction for £,.
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Fig.3 Linear m=1 eigenfunction £, for g, =1.005, showing the
difference from the ‘top-hat’ of conventional theory.

Theincrease of growth rate with /2 number contrasts
with the conventional case of monotonic g, for which
modes of higher m number are expected to be more
stable, owing to the large positive contribution by the
term (m’—1)(1—g)*£? in the energy principle™).
However, for the case of small (1 g) this stabilizing term
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is clearly diminished and the distinction between m =1
and m>1 is lost. The feature of growth rate increasing
with # is not solely a property of cylindrical geometry
but is also apparent in toroidal calculations!*®!.

4. Simulation results

The existence of a series of unstable modes with
m/n= —1 means that the precise results of the simula-
tion depend on their relative magnitudes at the start of
the calculation. Being motivated here by the study of
m =1, the initial conditions have been taken as a small
perturbation (8B/B = 10"%) containing only m=1,
n= —1. This means that the higher modes, if unstable,
grow from numerical noise at a much lower level
(8B/B=10"'%), It should be noted that a certain
arbitrariness has thus been introduced into the simula-
tion model.

Results are presented here for two representative values
of ¢y, go=1.04 and g,=1.005. The distinction between
them, through the value of (g, —1), is the decreased ef-
fect of field line bending in the latter case compared with
the former. This leads to a significant difference in the
flow patterns for the two cases.

TFig.4 shows the time development of the poloidal
velocity for g,=1.04. The flow is seen to have the form
of a diffuse convective cell in the central region. For com-
parison with experimental values the frames have been
annotated with dimensional times, assuming that the
normalizing Alfvén timeis 0.1 us (appropriate for JET).
A precise numerical comparison is not implied, however.
The evolution beyond the time shown in these frames
is of no interest for present purposes.
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Fig.4 Evolution of poloidal flows for g,=1.04, assuming an
Alfvén time of 0.1 us. The arrows are scaled to the maximum
velocity in each frame (respectively 1.5, 1.0, 0.69, 0.73, x107%2,).
For clarity, only the region (r<0.45) of significant velocity is
shown.
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Fig.5 Energy spectrum of B, vs. time, showing the development of
the individual modes for g,=1.04.

Fig.5, a plot of the energy spectrum of B,
(i.e. [|B,|*rdr) versus time, shows how the individual
modes develop for g,=1.04. The dominant mode
throughout is m=1, with m=2 becoming comparable
at the end of the run.
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Fig.6 Evolution of contours of simulated X-ray emission for
g,=1.04.

Of particular interest is the corresponding evolution
of the simulated X-ray emission shown in Fig. 6. The
effect of the poloidal flow is to convect plasma from the
outer region into the centre. However, for this case of
relatively large (g, —1), the penetration is limited to the
formation of a notch in the emission contours. This is
rather similar to the tomography results for the partial
sawtooth in JET shown in Fig.7.

In contrast, Fig.8 shows the development of the
simulated X-ray emission for g, =1.005. The reduced
value of (g, —1) now allows the deep penetration of a
cold bubble into the centre of the plasma. In addition,
the effect of the more rapidly growing modes of higher



mode number is also apparent in the shape of the con-
tours, particularly m=4. This is consistent with Fig.2
which shows that all modes in the calculation are linearly
unstable for this value of g,.

Fig.7 Experimental contours of X-ray emission from a partial
sawtooth in JET. (Shot 8898, r=100us).
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Fig.8 Evolution of contours of simulated X-ray emission for
g=1.005.

The plot in Fig.9 of the energy spectrum of B, shows
how the individual modes develop for g,=1.005. The
linear growth rate of m=1 agrees with that in Fig.2 to
3%.

When comparing the simulated X-ray signals with
those:- from JET, it is important to note that the
tomographic reconstructions are limited in poloidal
resolution to m <2, Fig.10 shows how the simulated
X-ray results for g,=1.005 appear when subjected to
graphical reconstruction with the same limited poloidal
resolution. The penetration of the central region now
takes the form of a bubble of cold plasma and is rather
similar to the experimental result on JET shown in
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Fig.9 Energy spectrum of B, vs, time, showing the development
of the individual modes for g,=1.005.
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Fig.10 Evolution of contours of simulated X-ray emission for
gy =1.005, with m=2 in the graphical reconstruction.

Fig.11 Experimental contours of X-ray emission from a full
sawtooth in JET (Shot 9585, t=75pus).

Fig.11. It should be understood that the appearance in
the simulation of this reconnection of the emission con-
tours is entirely an artefact of the reconstruction and that
the plot of the actual distribution is shown in Fig.8.



5. Summary

Simulations of the m =1 ideal internal mode have been
carried out with a non-linear, cylindrical incompressi-
ble plasma model and a simple flat g profile with g
marginally above 1. Comparison has been made with
the observations of the X-ray emission during a sawtooth
collapse in JET.

The calculations are directed specifically at the generic
nature of the plasma flows associated with the in-
stabilities and use an unstable equilibrium as initial con-
ditions. The important questions of the evolution to such
an unstable state, and of the nature of the loss of energy
during a sawtooth collapse are not addressed here.

For a relatively large value of (g—1), the instability
isunable to bend the field lines to a great extent and on-
ly a small indentation is produced in the contours of the
simulated X-ray emission. The results are rather similar
to those obtained experimentally in JET for the partial
sawtooth collapse.

For a relatively small value of (g—1), the field lines
are easily bent and a large region of cold material is
convected into the centre of the plasma.

When account is taken of the limited poloidal resolu-
tion (m =2) inthe tomographic reconstruction in JET,
the indentation appears as a cold plasma ‘island’ and
is rather similar to the experimental results for the full
sawtooth collapse.

A complicating feature of the simulation results is
the existence of unstable higher modes with growth rates
larger than that of the m=1. At present it is not known
whether such modes are important in experiment. The
evidence from magnetic field measurements on JET is

of n=-2 and n= -3 signals at the plasma edge with
amplitudes relative to n=—1 of =10% and =3%
respectively!”). Since the higher modes may be expected
to decrease rapidly with distance from the g=1 region,
their internal amplitude may in fact be significant. There
may therefore be no conflict with the present simulations
in this respect.
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