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ABSTRACT

In the theory of relaxed states of toroidal plasmas certain
eigenvalues of the equation V x E = pE play a crucial role. These
eigenvalues are associated with wvanishing toroidal flux and determine the
onset of current limitation in a toroidal discharge. In axisymmetric
systems there are both periodic and axisymmetric eigenfunctions and it is
important to know whether the eigenmode associated with the lowest eigen-
value is periodic or axisymmetric. This depends on the shape of the
poloidal cross-section and determines the nature of the current limited

discharge.

We have computed the eigenvalues of periodic and axisymmetric modes
in rectangular and elliptical cross-sections and in re-entrant Multipinch-
like «cross sections. The re-entrant case required new numerical
techniques which are described. We find that in rectangular and elliptic
cross-sections the lowest mode 1is always periodic. However in the
Multipinch a transition occurs in which the lowest eigenmode changes from
periodic to axisymmetric as the "waist" in the cross-section 1is made
narrower. The critical width is determined. These calculations suggest
that in the GA Multipinch experiment the current saturated discharge
should be axisymmetric = unlike all other existing pinch experiments where

it is periodic.
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I. INTRODUCTION

1
According to the theory of relaxed states a turbulent plasma relaxes
to a configuration of minimum energy subject to the constraint of fixed

helicity X = [A*B . This configuration satisfies
VxB = puB , p = constant . (1)

[For a review of the theory of relaxed states and related experiments see

reference 2.]

In-a torus the boundary condition E'Q = 0 ensures that the toroidal
flux ¥ 1is also an invariant and the relaxed state is fully determined by
the two invariants K and V¥ . However, in order to select the. correct,
minimum energy, solution of Eg. (1) one must consider certain of its
eigenvalues. These are values of p (= pi) at which there are solutions
of Eq. (1) for which the toroidal flux vanishes. We refer to them as
"zero-flux" eigenvalues. This zero-flux eigenvalue condition should be
distinguished from the better-known condition (in an axisymmetric torus)
of vanishing toroidal field at the boundary - required for "field-

reversal".

One reason for the importance of the zero-flux eigenmodes is that in
a relaxed state . cannot exeedz'3 the smallest eigenvalue Moin ° This
leads to an unexpected and important property of toroidal discharges. It
means that, since u = I/¥, there is a maximum toroidal current I (at

fixed toroidal flux) in a relaxed state discharge. Below this value the



plasma current increases with Volt-seconds in the discharge, but when the
limiting value is reached the current is fixed. Instead of producing

higher current any additional Volt-seconds are lost through an increase
in plasma inductance. An example of this current limitation is shown in

Fig. 1, taken from the Multipinch experiment.4

In an axisymmetric torus the zero-flux eigenmodes fall into two
distinct classes - those which are themselves axisymmetric and those which
are periodic, but not axisymmetric, in the toroidal direction. In the
infinite aspect ratio limit which we consider here, the eigenfunctions are
~ exp(ikz) - with k = 0 for the "axisymmetric" class and k # 0 for the
"periodic" class. It is of considerable interest to know whether, for any
given cross-section, the lowest eigenfunction is axisymmetric or periodic,
for this determines the configuration of the plasma in the current-limited
state. It has been observed that cufrent saturation is more clearly
evident in experiments where the associated eigenfunction is believed to
be axisymmetric (as in Multipinch 4) than when it is periodic (as in the
conventional Reversed Field Pinchs). In the latter case there is often no
true saturation but only increased resistance and fluctuatiocn levels-2
This may be because there is much greater plasma-wall interaction in a

periodic configuration than in an axisymmetric one.

There is also an interesting theoretical distinction between the two
classes of eigenfunction. In a periodic solution the toroidal flux can be
written as Wooexp(ikz) . H;wever, because of the boundary condition
neB = 0 the toroidal flux must be independent of z ; consegquently YO
must be zero. Thus, for periodic solutions the boundary condition itself

ensures that the toroidal flux wvanishes and is sufficient to determine an



eigenvalue. On the other hand, for axisymmetric (k = 0) solutions the
zero-flux condition must be explicitly imposed in order to determine the

eigenvaluex*.

A. Some earlier investigations

. . . ’ 1 .
The first investigation of this problem concerned the simple case of
a plasma confined in a circular cylinder of radius a - representing a
toroidal discharge of large aspect ratio. For this configuration the

lowest zero-flux eigenfunction is a periodic mode
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with wave number ka = 1.23 . The corresponding eigenvalue is
IJ.a. = 3011 -

*The zero-flux eigenvalue problem can be expressed through boundary
conditions alone by introducing the vector potential A . Then

VxVxA =pVx with A. = 0 on the boundary.
~i i ~1

A,
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There are an infinite number of other eigenfunctions of the
cylindrical system - both axisymmetric (k = 0) and periodic (k #0) -
but all their eigenvalues are greater than 3.11 . The lowest eigenvalue
among the k = 0 modes is pa = 3.83 . This is actually degenerate and

associated with the two distinct eigenfunctions

B = 0 , B, = BOJ1(|J.r) i Bz = BOJO(pI) ' (3)

and

B
0 ; _ ' -
B =-__ J1(pr)51n9 + B, = BOJ1(pr)cose ¢ B, S 0J1(pr)cose - (4)

r i 0
Although the lowest eigenmode in a circular cross-section cylinder is

periodic, the lowest mode in other cross-sections may be periodic or
axisymmetric. This is illustrated by the results obtained for the
eigenvalues in Spheromak configurations. [Spheromaks are not true
toroidal systems. They are singly-connected and, unlike the toroidal
situation, the zero-flux eigenmodes are themselves relaxed states - in
fact they are the only relaxed states.z] For a Spheromak in the form of a
cylinder of height h and radius a the lowest axisymmetric

eigenfunction 156'7



B = =B (k/1) J_(2r) cos(kz)
r 0 1
Be = Bo(p/l) JT(Rr) sin(kz)
Bz = B0 Jo(lr) sin(kz) (5)

with kh = nm, fa = 3.83 . Its eigenvalue is

) * (H) ] ¥ ' (6)

The non-axisymmetric, i.e. periodic, modes ~ exp(ing¢) of this
configuration have been obtained numerically.6'7 The lowest eigenvalue
of the (n = 1) mode lies 22&23 Egq. (6) when the elongation of the
container h/a > 1.67 . 1In this Spheromak confiquration, therefore, the
lowest mode changes from axisymmetric to periodic as the elongation

increases. This behaviour illustrates the way in which the relaxed state

depends on the shape of the plasma container.

Eigenvalues have also been computed8 for a "Spheromak with a central
conductor". [This is similar to Fig. 2 and is, in fact, a multiply-
connected toroidal systeml] This computation again implies that the
lowest eigenfunction changes from axisymmetric (n = 0) to non-
axisymmetric (n = 1) as the height/width of the container is increased.
However, it appears that the n = 0 mode in this calculation is not
associated with the zero-flux eigenvalue condition but with the condition

of vanishing toroidal field at the boundary (see Sec. II A).



In the following sections we consider the zero-flux eigenvalues for
other forms of flux conserver. In Sec. II we investigate modes in a
cylinder with rectangular cross-section (representing the linear analogue
of the configuration shown in Fig. 2) using methods similar to those in
Refs. 6, 7 and 8. We conclude that the lowest eigenvalue is always
associated with a k # 0 mode whatever the height/width of the
cross~-section. However, the separation between the lowest k # 0 mode

and the lowest k = 0 mode tends to zero as the cross-section becomes

more elongated.

In Sec. III we investigate the eigenvalues of configurations with a
re-entrant (figure-eight) boundary similar to the Multipinch experiment4
(Fig. 6). The methods of computation used hitherto are not applicable to
such configurations and we have therefore developed two new numerical
procedures for computing eigenvalues in cylinders of general cross-
section. For the figure-eight cross-section these computations show that
the lowest eigenmode changes from periodic to axisymmetric as the "waist"
in the cross-section is made narrower and the point at which this
transition from periodic mode to axisymmetric mode occurs is computed for

the idealised Multipinch configuration.



II. RECTANGULAR CYLINDERS

A. Axisymmetric (k = 0) eigenmodes in a rectangular cross-section

cylinder

For axisymmetric modes in a cylinder the magnetic field can be

written in the form

B = 2z x Vp+ z¢ (7)

(where 2z 1is along the axis of the cylinder). Then ¢ must satisfy

2 2
a_$+.a_(£+ p,zq, = 0 (8)
ax2 ay2

and must be constant (= ¢B) on the boundary.

It is convenient to take the rectangular cross-section 0 < x € a P
0 <y <b , then any function ((x,y) satisfying the boundary condition can

be expressed in the form

b o= gy ¥ a . sin[ﬂgi) sin(E;z] _ (9)

The amn must be chosen so that Eq. (8) is satisfied. However, it is

necessary to distinguish two classes of potential solutions, according as
#0 or =0 .

QJB qJB

For the first class, with ¢B # 0 , insertion of (9) into Eg. (8)



leads to a solution

. (MTX )
16 p2 ) sin (o) sin (55 ] £ 8

12 odd mn( p? - m272/a? - n212/b2)
L]

The toroidal flux associated with this is

64 p? 1
i A ] (11)
t gdg mznz(p.2 - m?272/a? - n?272/p2)
L

¥ = abg [1

and the zero-flux eigenvalues are obtained by setting ¥=0 . A
numerical evaluation gives the eigenvalues shown in Fig. 3 (curve a). For

a square cross-section b = 6.79 and pb + m as the elongation

a/b =+ 8 .

When ¢B = 0 , each term of the sum in (9) can separately satisfy

Eq. (8) and one finds that the second class of solution is

¢ = sin(mmx/a) sin(nmny/b) (12)
with
2 2
w2 = w2+ ) . (13)
a? b2

]
. 2 +1_) . (14)



However, this is not a zero flux eigenvalue since the toroidal flux
associated with (12) vanishes only if either m or n is even.
Consequently the lowest zero-flux eigenvalue among the solutions with

¢ =0 is not (14) but

u? = nz(f._+_1._) , (a > b) . (15)

This result illustrates the importance, referred to in Sec. I, of
distinguishing between the zero-flux eigenvalues and those defined by
Bz = 0 on the boundary. In the present case the latter are given by Eg.

(13) for any non-zero m, n, while the former are given by Eg. (13) only

Il
—
-

when either m or n is even. Thus m n =1 gives the first

1 gives the first zero-flux

]

point at which Bz =0 while m =2, n
eigenvalue and the second Bz = 0 point. The first Bz = 0 point is

that associated with spontaneous field reversal.

The eigenvalues obtained from (15) are shown in Fig. 3 (curve b).
For a square cross-section pb = 7.02 which lies just above the value
given by (11). However, for cross-sections with an elongation a/b > 1.12
the eigenvalue given by (15) is lower than that of {11) but also =+ as

a/b » = .

It will be recalled that in a circular cross-section there are two
degenerate eigenmodes with Bz = BDJO(pr) and Bz = BOJ1(pr) cos B
respectively. The eigenmodes in the rectangular cross-section which have
¢B # 0 are analogous to the Jo(pr) mode and those which have ¢B =0

are analogous to the J1(pr) cosf mode.



B. periodic (k # 0) eigenmodes in a rectangular cross-section

cylinder

We now consider eigenmodes which are periodic in the 2z direction,
~ exp(ikz) . 1In this case it is more convenient to take the rectangular
boundary so that -a/2 < x <a/2, 0 <y <b. The field can no longer

be represented in the form (7) but, without loss of generality, it can

still be expressed in terms of a single scalar function d(x,y,z) as
§=¥‘xv<19+%v><(yvxv¢>} . (16)
Then, assuming 2 = Re[@(x,y)exp(ikz)], we have
V29 + (p2 -k%¢ = 0, (17)

and the vanishing of the normal component of B gives the conditions

22¢ .
= = +
=5 iukd at x + a/2 for 0 <y <b (18)
and
2 .
ELE + p2¢ = 0 at y = 0,b for - a/2 £ x <a/2 . (19)

3%

By expanding ¢ as a Fourier series, one finds that an expression
satisfying the boundary condition (19) must be made up of terms in

sinpy , cospy and sin(mny/b) (m= 1,2,+++) « We can therefore write a



general expression satisfying Eg. (17) and one pair of boundary conditions

in the form

= = e-kx) co + (e g g e-kx) sinuy +
qJ = a‘oe 0 suy 0 0 I-’-Y
. , ; my
+
) (c cosh x + d sink x] sin (=) - (20)
m=1
where
22 = ((p? - k%)b2 - m2x2) (21)
and a, b0 p o+ d ., are arbitrary coefficients. The problem now

consists of satisfying the remaining pair of boundary conditions (18).

Re-defining arbitrary coefficients where appropriate, this gives

. =]
a kef¥e"tHY | ke KX 1LY o z ik (c_cosA x + 4 sinA x) sin CEEXJ
0 0 -1 m m m m b

@  MmTA

y m . m‘ny ~
+ mz1__m5_ [cm51nhmx = dmcoskmx] cos L_B_) = g (22)
which must be satisfied at x = #a/2 for 0<y <b .

7.8 ; : .
To make use of (22) we musts' '” express it in a set of functions which

are complete over the range 0 <y <b . A suitable set is {cos Egi ;P

= 0,1,2...} + Then we have



.ommy Py '
sin —_- = z fmp cos - (23)
p=0
where
m
fo = (1o 0"
+
£ = £ [1-¢-D"P] , p > 1 and m # p
e w(m? - p?)
= 0 ’ m = P p
and
; [=-]
1y _ PY
e = 7 9,008 5 (24)
p=0
where
= 1 (1 - cosub)
Yo 3]
2ipb .
g, = [1-¢-nP ), 5 5 1 .

(u2? - p2g2)

Inserting these expansions into Eq. (22), setting x = #a/2 .and adding

and subtracting the results gives (for p = 1,2,3... )

pnlpcot(kpa/Z)dp @
* - "
giey + 9,9, TEOE + ) £ ¢ 0 (25)

- 13 =



pmA_tan(A a/2)c © -
P P P+ T £a = o (26)
meq TP m

ka

ka
-— (

tanh ( -— )gpdo + T

)g;co - tanh

where g; denotes complex conjugate and the coefficients c ¢ dm have
again been re-defined. Equations (25) and (26) are an infinite set of
linear eguations in c dm and the eigenvalue | is determined by the
requirement that the associated matrix have zero determinant. Taking the
complex conjugate of Egs. (25) and (26) at most only changes the sign of
the determinant, which can therefore be taken to be purely real. The

eigenvalue is also real.

We have computed approximate eigenvalues by truncating the infinite
set of equations (25) and (26) (seﬁting Cm = d.m =0 for m> M ) and
numerically evaluating the resulting determinant. Due to the way the
problem is set up (with the boundary condition satisfied algebraically on
one pair of walls) the computation of p(a,b,k) is quite independent of
the computation of p(b,a,k) . Consequently, a check on the accuracy of
the result is provided by the requirement that pla,b,k) = u(b,a,k) . 1In
most cases this was satisfied to within 10-% with a matrix size of

8 x8 .

Note that, as discussed earlier, when considering the k # 0 modes
it has not been necessary to introduce the vanishing flux condition

explicitly.

The results of the computations of the periodic (k # 0) modes are

summarised in Fig. 3 (curve c) which shows the lowest eigenvalue ﬁnin as



a function of the elongation a/b . The value of the wavenumber k at
which this minimum eigenvalue occurs is shown in Fig. 4, and the variation
of the eigenvalue with wavenumber is shown in Fig. 5. For a sguare
cross—-section the lowest eigenvalue is pb = 5.57 and occurs at a
wavenumber kb = 2.23 . As the elongation a/b increases the lowest
eigenvalue decreases and occurs at a smaller, but always non-zero,
wavenumber. In the limit a/b + @ (when 0¢/0x may be neglected) the
eigenvalue tends to the limiting value

7 . (27)

b = (n2 + k%2

Figure 3 shows that the lowest eigenvalue among the periodic modes
(curve c) always lies below the lowest eiggnvalue of both classes of
axisymmetric modes (curves a and b) but above the value for field reversal
(curve d). However, all four curves approach ub = 1 as the elongation
a/b »+ @ . This means .that for rectangular cross-section cylinders the
current limited relaxed state would always be periodic (non-axisymmetric)
if all values of k are permitted. This might not be so if a "toroidal"
periodicity constraint were imposed, and only discrete k are allowed,
but, since the permitted values of kb are spaced at intervals of ~ 2¢
(where € = b/2R 1is the toroidal aspect ratio) it can be seen from Figs.
4 and 5 that it is only in systems with large € and large elongation

a/b that the *toroidal constraint could be significant.



IITI. RE-ENTRANT CROSS-SECTIONS

In Sec. II we found that in cylinders with rectangular cross-section
the lowest eigenvalue always corresponds to a periodic (k # 0)
eigenmode. As we will show later, the situation is similar for systems

with elliptic cross-section.

One might conjecture that for "simple" cross-sections the lowest
eigenfunction is always k # 0 . However, the situation may be different
for cross-sections which are re-entrant, such as the Multipinch4 shown in
Fig. 6. To understand why, consider the extreme case in which the
Cross-section is made up of two circles (radius a) connected only by a
narrow gap. In this situation an approximate axisymmetric solution of Eq.
(1) satisfying the boundary conditions and carrying zeroc net toroidal flux
can be constructed from solutions for the circular cross-section, one in
the upper circle carrying positive toroidal flux and one in the lower
circle carrying equal, but opposite, flux. Continuity of the field
requires that Bz vanishes in the narrow gap and consequently Bz =0
everywhere around the boundary. It is well-known that this occurs when
pa = 2.40 , whereas the lowest value of pa at which a periodic eigenmode
can be fitted into a circular boundary is pa = 3.11 . This suggests that
in a Multipinch-like cross-section the lowest eigenfunction must be
axisymmetric (k = 0) when the "waist" is very narrow. It also implies
that the lowest zero-flux eigenvalue must be close to a value at which
Bz= 0 on thé wall.

The method used to compute eigenvalues for rectangular cylinders in

Sec. II cannot be used for other configurations. We have therefore



developed two methods for computing eigenvalues for cylinders of more
general cross-section. These are described in the following subsections

B 1 and B 2, but we first describe the computation of axisymmetric

eigenfunctions in a general cross-section.

A. Axisymmetric Eigenmodes (k = Q)

The computation of k = 0 =zero-flux eigenfunctions is a straight-
forward numerical problem, even in highly deformed cross-sections. As in

Sec. II A we write

B = 2z xV+2z¢ ; (28)
where

2 2

B B, By = G . (29)

axz ayz

The boundary condition is ¢ = constant (= ¢B) and the zero-flux
condition is <¢> = 0 (where < > denotes average over the cross-

section). It is convenient to write ¢ = ¢ - <¢> , then one has to solve
V29 + p2(p - <¢>) = 0 (30)

with only the condition ¢ = constant (= ¢B) on the boundary4. Since
Eg. (30) is unaffected by a change in the origin of ¢ we can set

¢B = 0 . The solution of (30) can then be computed by standard methods



such as successive over-relaxation (S.0.R.).

If the boundary is symmetric about the mid-plane, as for Multipinch,
the eigenfunctions separate into up-down symmetric (even) modes and
up-down antisymmetric (odd) modes. [Note that the terms odd or even refer
only to the behaviour in the poloidal plane; all these modes are
toroidally axisymmetric.] For any odd mode <¢> wvanishes automatically,
so ¢ 1is identical to ¢ and ¢b = ¢B = 0 . Hence the odd modes are
similar to the second class of k = 0 modes found in a rectangular
cylinder. Their eigenvalues are also points at which BZ = 0 on the
boundary. For Multipinch-like cross-sections we find that the lowest
axisymmetric zero-flux eigenmode is indeed odd and its eigenvalue

coincides with the second value of p at which Bz = 0 ; the first such

value is the conventional "field reversal" point.

B. Periodic Eigenfunctions (k # 0)

The calculation of k # 0 eigenmodes in a re-entrant cross-section,
proves to be a difficult numerical problem. The origin of this difficulty
apparently lies in the need to fit a periodic magnetic field, whose field
lines are distorted helices, into a non-periodic but convolutgd boundary.
The problem can be expressed in the form of a differential equation
similar to (17) but the boundary condition is difficult to deal with
because it couples the normal and tangential derivatives of ¢ « We have
developed two successful methods of computation for this problem and these

are described in the following subsections.



1= Method 1

Because of the difficulties mentioned above, the method first adopted
for finding k # 0 eigenfunc£ions in a convoluted cross-section is one
which deals directly with the field components Br' Be, Bz . It is
restricted to cross-sections in which one can construct a polar

co-ordinate system 1, 6 such that the boundary rB(G) is a single-valued

function of 6 .
We write the magnetic field in the form
B(r, 6, z) = Re[B (r, 6) exp(ikz)] (31)

with similar expressions for Br, BB . Then the poloidal dependence of

Bz(r, ) etc. can be decomposed into terms ~ exp(imB) and the most

general magnetic field satisfying Eg. (1) is

@

_ c ir um ' im0, ikz
B, = Re ({7 — Q?_ J_(y) + kJm(y)]ame fe™% ]
m=-—<
p mk ; im@, ik
By = Re [{] -;_ (= To(0) + BT Ja_e ™"l ]
m==—-w
B, = Re [{ I Jm(y)ameime}eikz] (32)
m==—@®
where y = (pz - k2)1/2r  and the am are arbitrary.

- 19 -



The am are to be determined from the condition

anr + neEe = 0 _ (33)

on the boundary (for all =z ). This leads to an equation of the form

im@
ré a f£(8) e = 0 (34)

where the functions
r ; g
fm(e). = = [(p+ k)(in - n)J _ (y) + (u- k)(in + nG)Jm-H(Y)] (35)
must be evaluated at r = rB(G).

We now expand

£ (0188 o g PO (36)
m mp
P
with
_ 1 i(m-p)6
B = Hffm(e)e ae . | (37)
Then
77 at P9 - (38)
m mp
pm

- 20 -



so that

Zaf = 0 for P =0 ’ i1 7 i2 e (39)

This infinite set of equations for am is truncated in m and p at M
and the determinant of the resulting (2M + 1) x (2M + 1) matrix is
equated to zero in order to determine an approximate eigenvalue HM(k) .

A value which numerically converges as M is increased is considered to
be a satisfactory approximation to pu(k) . A check on the accuracy of
this result can be generated by noticing that the condition for wvanishing
normal field, Eg. (33), can be weighted by an arbitrary function g(8) .
This factor then appears in the integrand of Eg. (37), altering all the

matrix elements, but the final (k) should be independent of g(#@) .

If the boundary is symmetrical the computation can be considerably

simplified. For the cross-sections considered here,
= -+ = - = - @
rB(G) rB(n 8) rB(n ) rB( e) (40)

It can be shown that in such cases Re(fmp) =0 for all m and p , and
fmp =0 when (m - p) is odd. Furthermore the symmetry ensures that if
B(r, 8) is an eigenfunction then E(r, T+ 06) (but not E(r, -9) ) must
also be an eigenfunction. Hence we may again separate the eigenfunctions
into even and odd classes, now with E}r, T+ 8) = +E(r, 8) and

E(r, T+ 8) = -E(r, 8) respectively. Clearly even (or odd) eigen-

functions require retention of only even (or odd) values of p . After

these reductions the matrix f is real and dense. In many cases the
Iy



use of a (dense) matrix of order 9 x 9 gave satisfactory estimates of
(k) , but it was sometimes necessary to employ a 29 x 29 matrix. [This
requires very accurate evaluation of the Bessel-functions Jm .] In all
cases the computation becomes more difficult as the "waist" in the

cross-section becomes very narrow.

2. Method 2

In this method we again express the magnetic field in the form

1w
]

1
,zvxv4p+_uvx(ixw;) (41)
with

G(x, y) exp(-ikz) . (42)

=
It

Then again Eg. (1) is satisfied if

2 2
S Dy (w2 k% = o (43)
x2  py?

and the boundary condition becomes

3 . . ¥
kg *ibgg = 0 | (44)

where 9/0n and 8/08s are derivatives in the normal and tangential

directions respectively.

- 22 -



Writing ¢ = U + iV we have

vfu + (p2 - x%u = 0 (A)  (45a)
Viv + (p2 - x2)v = o0 (B)  (45b)
and on the boundary
ou ov
k - = 0 (46a)
= 5 o |
ov ou
= - b
k = i e ] 0 (46Db)

Equations (45a) and (45b) can be solved using a standard finite difference
scheme on a rectangular (square) mesh in the x-y plane. But for this
one needs explicit boundary values for U and V . We therefore first

integrate Egs. (46) around the boundary to give

S
_ k U
v (s) < i = Bds+VB(so) (C) (47a)
0

and similarly

S
_ _k v
ug(s) = Esj = ds + Ug(s,) - (D) (47b)

B
0

In order for VB(s) and UB(s) to be single-valued we must have

- 23 -



au ov

ds = 0 , s = 0 : (48)
on g on 5
which will be true if
Juaxday = o , fvaxay = o . (49)

Consequently we must impose these constraints on the solutions of (45a)

and (45b).

Once again, symmetry of the cross section simplifies the computation.
For the mode with the lowest eigenvalue, U is antisymmetric about y = 0
and Vv .is antisymmetric about x = 0 so that condition (49) is
automatically satisfied. [The remaining description refers specifically

to this situation.]

For each k the computation now involves several iteration-loops and
also iteration between the four equations A, B, C, and D. An outer
iteration involves the functions U(x, y) and V(x, y) and two estimates
of the eigenvalue which we designate as K and M, There are also two

normalisation constants Cu and Cv « Then the procedure is as follows.

Step 1: Starting from some V(x, y) and B, we compute the function
U (= UB) on the boundary using Eq. (D). Then by S.0.R. we solve Eq.
(A) for U(x, y) , iterating on pu to satisfy the normalisation

condition (over half the cross-section where U > 0 )
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(p? - k?2) [ U axdy = c, - . (50)

[An important point is that each time p is adjusted in order to satisfy
the normalisation, the boundary function UB is also adjusted according
to Eg. (D).] From this iteration emerges U(x, y) and a new value of

designated Ph « One then enters Step 2 (which is similar to Step 1 but

with U and V interchanged).

Step 2: From U(x, y) and pu we compute V (= Vb) on the boundary from
Eg. (C) and then solve (B) for V(x, y) , iterating to satisfy the

normalisation (again over half the cross-section)
(p2 - kx?2) [vaxdy = C (51)

(initially Cv = cu )« When this iteration has converged one emerges with

V(x, y) and Hy and returns to Step 1.

After several cycles of iteration between Step 1 and Step 2, it is

found that Ky and K tend to fixed but different values! One then
adjusts one of the normalisation constants Cu or Cv to obtain
convergence of Hy and B, to a single value p . Then one has a fully
converged solution to the problem and p = p{k) is the reguired eigen-

value.

The computations were carried out on a 36 x 49 sguare mesh, with

some cases being verified on a 72 x 99 mesh. This required considerably
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more computer time than Method 1, but has the advantage of greater

flexibility.

C. Application and Results

Before discussing results for the re-entrant cross-sections it is
convenient to mention the results obtained for cylinders with elliptic
cross-sections. As in the rectangle there are two classes of axisymmetric
(k = 0) mode, with Bz = Zero or non-zero respectively on the wall. The
lowest eigenvalue for these two classes (curves a and b), and the lowest
eigenvalue for a periodic mode (curve c), are shown in Fig. 7. The wvalue
for field reversal is also shown (curve d). The wavenumber kc
corresponding to the lowest periodic eigenmode is shown in Fig. 8. These
results confirm that for elliptic cross-sections the lowest elgenmode
always occurs at k # 0 (in agreement with Ref. 9) - as it did for a

rectangular cross-section.

For the investigation of Multipinch-like configurations we adopted
the idealised form shown in Fig. 9, in which the "waist" is a variable
parameter. The configuration is made up of arcs of two unit circles, with
centres three radii apart, linked by other circular arcs which intersect
tangentially and form the waist. The boundary curve rB(S) and the
normals nr(e) and ne(e) can be expressed in terms of the half-width A
of the waist by elementary trigonometry. [Note that rB(G) ceases to be

single-valued when A < 0.43 and Method 1 cannot then be used-]
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The two methods described above were used to compute .u(k) and the
computed values were accepted only when there was satisfactory agreement.
Method 1 was alsc subjected to the internal check referred to in Sec. III
B 1 using a weighting function g(8) = 1/r§(9) . Computations for a range
of k located the lowest eigenvalue Moin and the corresponding

wavenumber Kk (= kc) A

Some typical results are shown in Figs. 10-12. Figure 10 shows the
eigenvalue p(k) for configurations with three different values of A .
It can be seen that for the two larger values of A the lowest pu occurs
at a non-zero wavenumber k . However, for the smallest A thé minimum p
occurs at k = 0 . Thus, as anticipated, the Multipinch-like
configuration exhibits a transition in which the lowest eigenmode changes

from periodic to axisymmetric as the waist is narrowed.

This transition is shown more clearly in Fig. 11 in which the wvalue
of the wavenumber k (= kc ) corresponding to the minimum p is shown as
a function of A . For A > 0.66 the minimum eigenvalue corresponds to a
periodic (k # 0) mode whereas for A ¢ 0.66 it corresponds to an

axisymmetric (k = 0) mode.

Figure 12 shows the minimum eigenvalue and the field reversal point
as a function of A . The eigenvalue increases slowly as A decreases
and the field reversal point lies below the eigenvalue but approaches it
as A decreases - in agreement with the discussion at the beginning of

Sec. III.
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IV. SUMMARY AND CONCLUSIONS

We have computed the eigenvalues and eigenfunctions of V x B = uB,
(defined by vanishing toroidal flux) which determine the location and
nature of the current-limited relaxed state of axisymmetric toroidal
discharges. For the four-fold symmetric cross-sections considered the
eigenfunctions fall into three classes: (i) axisymmetric modes in which
the toroidal field is non-zero on the boundary; (ii) axisymmetric modes in
which the toroidal field vanishes on the boundary; and (iii) even and odd
periodic modes. It is important to know whether the lowest eigenfunction
is periodic or axisymmetric and to which class it belongs. This depends

on the shape of the cross-section.

In a cylinder of rectangular or elliptic cross-section, no matter
what its elongation, the lowest eigenvalue always belongs to a periodic
mode. The wavenumber of this periodic mode decreases, but remains
non-zero, as the elongation increases. Its eigenvalue lies below that of
all axisymmetric modes but above the lowest value of pu at which the
toroidal field vanishes on the boundary (the field-reversal point). As
the elongation of the cross-section tends to infinity, the lowest
eigenvalue of all three classes of eigenmode, and the field-reversal

point, tend towards a common value of p .

In a cylinder with re-entrant cross-section such as the Multipinch,
the situation is different. If the width A at the waist exceeds a
critical value then the lowest eigenvalue belongs to a periodic mode, as

is does in rectangular and elliptic cross-sections. However, when the
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waist is less than this critical value the lowest eigenvalue belongs to an
axisymmetric mode with zero toroidal field on the boundary. (This does
not represent the usual field-reversal point; it is in fact the second
value of p at which there is zero toroidal field on the boundary.) This
transition from a periodic to an axisymmetric lowest eigenmode is
illustrated clearly in Fig. 11 which shows the wavenumber of the lowest
mode as a function of A . For the idealised configuration shown in

Fig. 9 the transition from periodic to axisymmetric lowest mode occurs at
A= 0.66 (i.e. when the waist is 66% of the diameter of the upper and

lower chambers).

We estimate that the GA Multipinch experiment, described in Ref. 4,
can besf be represented in terms of our idealised configuration by a value
of A ~0.5 . (Although, of course, the experiment does not conform
précisely to the idealised configuration and is of finite toroidal aspect
ratio.) This is below the critical value and we therefore expect the
lowest eigenmode of the Multipinch to be axisymmetric - unlike orthodox
pinch experiments where it is periodic. The location and characteristics
of this axisymmetric eigenmode are in good agreement with the properties
of the current-limited state observed in the experiment4 but it has not
hitherto been shown that the axisymmetric mode is indeed the lowest

eigenfunction.
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